

SCITECH RESEARCH ORGANISATION

Volume 10, Issue 1 Published online: November 11, 2016

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

On the Dihedral Cohomology of Graded Banach Algebras

Y. A. Alrashidi

The Higher Institute of Telecommunications and Navigation PAAET, Kuwait

Abstract.

We are concerned with the dihedral cohomology of a unital $\mathbb{Z}/2$ -graded Banach algebra A over $K = \mathbb{C}$ with a graded involution and study some properties of it. It is considered the prototype example of graded algebras with topology.

Keywords: Graded Banach algebras - dihedral cohomology.

1 $\mathbb{Z}/2$ -graded Banach algebras with graded involutions.

In this section we introduce some basic concepts and facts concerning $\mathbb{Z}/2$ -graded Banach algebras.

Definition (1.1) [11]:

A norm on a vector space V is a map $\|.\|: V \to \mathbb{R}$, such that :

- 1- $||x|| \ge 0$ for all $x \in V$, and $||x|| = 0 \Leftrightarrow x = 0$;
- 2- $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in V$ and $\alpha \in \mathbb{C}$;
- 3- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in V$.

Then $(V, \|.\|)$ is a normed space. A norm on V induces a metric d on V by $d(x, y) = \|x - y\|$. We say that $(V, \|.\|)$ is complete if the metric space (V, d) is (Cauchy) complete. Complete normed vector spaces are called Banach spaces. For a normed space V and $\lambda \in \mathbb{R}$, we write

$$V_{[\lambda]} = \left\{ x \in V : \|x\| \le \lambda \right\}.$$

Thus $V_{[1]}$ is the closed unit ball of $\,V\,$.

The maps between Banach spaces are the maps which preserve both the linear structure and the topology. Such maps are bounded linear maps ,or operators.

Lemma (1.2) [9]:

Let $T: V \rightarrow W$ be a linear map between Banach spaces, then :

- 1- T is continuous with respect to the norms on V and W;
- 2- T is continuous at 0;
- 3- For some $\lambda \in \mathbb{R}$, we have $||T(X)|| \le \lambda ||x||$ for all $x \in V$. T is bounded such that :

$$\lambda_{\min} = \|T\| = \sup\{\|T(x)\| / \|x\| : x \in V, x \neq 0\}.$$

Definition (1.3) [3]:

A Banach algebra is an algebra A with a norm $\|.\|$ such that $(A, \|.\|)$ is a Banach space with the property,

$$||ab|| \leq ||a||||b||$$
 for all $a, b \in A$.

Definition (1.4) [2]:

A Banach algebra A is called a simplicially trivial if $H^n(A, \overset{*}{A} \neq \{\}, \text{ for all } n = 0, 1, \dots, \text{ where}$ $A^* = Hom_K(A, K)$ is the topological dual space of A. C*-algebras can be thought of as special Banach algebras

[1].

Definition (1.5) [1]:

Let A be an algebra. A map $*: A \to A$, $a \mapsto a^*$, is an involution if :

- 1- $(\lambda a + b)^* = \lambda a^* + b^*$ for all $\lambda \in \mathbb{C}$ and $a, b \in A$;
- 2- $(ab)^* = b^*a^*$ for all $a, b \in A$;
- 3- $(a^*)^* = a$ for all $a \in A$.

Remark :

A map $*: A \to A$; $a \mapsto a^*$, is an involution if $*^2 = id_A : A \to A$. For all

 $a, b \in A$, we have *(a) = b and *(b) = a, then $*^{2}(a) = *(*(a)) = *(b) = a$, i.e.

$$*^2 = id_A$$
.

Definition (1.6) [1]:

Let A be a Banach algebra. The pair (A, *) is called a C*-algebra if

$$\left\|a^*a\right\| = \left\|a\right\|^2$$
 for all $a \in A$.

Definition (1.7):

Let G be a finite group with unit e, and A be a unital complex Banach algebra. A G -graded structure for A is a decomposition $A = \bigoplus_{g \in G} A_g$, where $A_g \subseteq A$ and $A_g A_h \subseteq A_{g+h}$ for all $g, h \in G$, \oplus is the direct sum.

An element $a \in A_g$ is a homogenous element of degree |a| = g, it is called nontrivial homogenous if $g \neq e$.

Example (1.8):

For the group $G = \mathbb{Z}_2 = \{0,1\}$ and $A = A_0 \oplus A_1$, we have $A_g A_h \subseteq A_{g+h} \mod 2$, for all $g, h \in G$, and

$$|a| = \begin{cases} 0 & if \quad a \in A_0 \quad (a \quad even) \\ 1 & if \quad a \in A_1 \quad (a \quad odd) \end{cases}$$

For the reflexive group $G = \mathbb{Z}/2 = \{-1, +1\}$ of order 2 and $A = A^+ \oplus A^-$,

we have $A_{g}A_{h} \subseteq A_{g+h}$, for all $g, h \in G$.

Remark :

A morphism $f : A \to A$ is a graded if $f(A_g) \subseteq A_g$, for all $g \in G$. Firstly, we recall some definitions and facts we need here. See [8]. We set up the theory of $\mathbb{Z}/2$ -graded Banach spaces, complexes and algebras. Let K ($K = \mathbb{C}$) be a field such that ch(K) = 0, and $\alpha \in \{+, -\}$ which we identify with $\{+1, -1\}$. A Banach space V is a complete normed vector space $(V, \|.\|)$.

Definition (1.9) [8] :

A $\mathbb{Z}/2$ -graded Banach space is a K-Banach space V equipped with an involution $\#: V \to V$, defined by $x \to \alpha x$, $(x \in V, \alpha = \pm)$. It is also, a $K[\mathbb{Z}/2]$ -module V.

Lemma (1.10) [8]:

A $\mathbb{Z}/2$ -graded K - Banach space V is trivially graded if :

(a) V is a trivial $K[\mathbb{Z}/2]$ -module; or (b) $V = V^+$ or $\# = id_V$.

Proof :

If $V = V^+$, then $x \in V^+$, |x| = 0 and $\alpha = +$, hence $\#(x) = \alpha x = x$, i.e. $\# = id_V$.

If $\# = id_V$, then #(x) = x, hence $\#^2(x) = \#(\#(x)) = \#(x) = x$, i.e. $\alpha = +$ or $V = V^+$

Remark:

A map of $\mathbb{Z}/2$ -graded Banach spaces is a bounded linear map (continuous) $f: V \to W$, i.e. $V^{\alpha} \mapsto W^{\alpha}$, $\alpha = \pm$, or commutes with # or a map of $K[\mathbb{Z}/2]$ -modules.

Definition (1.11)[8]:

A positively graded complex of Banach spaces

 $V_* = \{ \cdots \longrightarrow V_2 \xrightarrow{d} V_1 \xrightarrow{d} V_0 \longrightarrow 0 \} \text{ is a } \mathbb{Z}/2 \text{ -graded complex if all Banach spaces } V_i \quad (i \ge 0) \text{ are}$

 \mathbb{Z} / 2 -graded and all differentials $d: V_i \to V_{i-1}$ are maps of \mathbb{Z} / 2 -graded spaces.

Now, we can define the $\mathbb{Z}/2$ -graded Banach algebra.

Definition (1.12) [8]:

A $\mathbb{Z}/2$ -graded Banach algebra is an associative unital K - Banach algebra A such that the multiplication is a map $\pi: A \otimes A \to A$ of

 \mathbb{Z} / 2 -graded Banach spaces. That is:

(a) the involution $\#: A \to A$ is a homomorphism of Banach algebras : #(ab) = #(a) #(b) for all $a, b \in A$, or

(b) $A^{\alpha}A^{\beta} \subset A^{\alpha\beta}, (\alpha, \beta \in \{\pm 1\}).$

Remark:

The multiplication $\pi: A \otimes A \to A$ is a bounded linear map (continuous) as $\|\pi(a \otimes b)\| \mapsto \|ab\| \le \|a\| \|b\|$ for all $a, b \in A$.

Example (1.13) [8]:

Any \mathbb{Z} -graded Banach algebra $A = \bigoplus_{n \in \mathbb{Z}} A_n$ gives rise to a $\mathbb{Z}/2$ -graded Banach algebra B defined by $B = B^+ + B^-$, where, $B^+ = \bigoplus_n A_{2n}$ and $B^- = \bigoplus_n A_{2n+1}$.

Remark:

The involution given on $C_n(A) = A^{\otimes (n+1)}, n = 0, 1, ...,$ by the grading over $\mathbb{Z}/2$ is given by: $\#: C_n(A) \to C_n(A)$, such that $\#(a_0 \otimes \otimes a_n) = \#(a_0) \otimes \otimes \#(a_n)$, for all $a_0, ..., a_n \in A$. It commutes with the differential $b_n: C_n(A) \to C_{n-1}(A)$, defined by

$$b_n(a_0 \otimes \dots \otimes a_n) = \sum_{i=0}^{n-1} (-1)^i a_0 \otimes \dots \otimes a_i a_{i+1} \otimes \dots \otimes a_n$$
$$+ (-1)^{n+|a_n|(|a_0|+\dots+|a_{n-1}|)} a_n a_0 \otimes a_1 \otimes \dots \otimes a_{n-1},$$

and cyclic operator $t_n: C_n(A) \to C_n(A)$, defined by

$$t_n(a_0 \otimes \ldots \otimes a_{n-1} \otimes a_n) = (-1)^{|a_n| \langle |a_0| + \ldots + |a_{n-1}| \rangle} a_n \otimes a_0 \otimes \ldots \otimes a_{n-1}.$$

In other words, #b = b # and #t = t #.

Now, we can define the reflexive operator r.

Definition (1.14):

Let $A = A^+ \oplus A^-$ be a $\mathbb{Z}/2$ -graded Banach K – algebra with a graded involution

$$#: A \rightarrow A ; a \mapsto \alpha a$$
, $\alpha = \pm$, for all $a \in A$

The reflexive operator r acting on $C_n(A) = A^{\otimes (n+1)}$, n = 0, 1, ..., by the graded involution # is given by

$$r:C_n(A) \to C_n(A)$$

such that

$$r(a_0 \otimes a_1 \otimes \dots \otimes a_n) = \alpha(-1)^{\lambda(\lambda+1)/2} a_0^{\#} \otimes a_n^{\#} \otimes \dots \otimes a_1^{\#} \cdots$$
(1.1)

where $\alpha = \pm 1$, $a_i^{\#} = im(a_i)$ under the involution # and $\lambda = |a_0^{\#}| \sum_{i=1}^n |a_i^{\#}| = |a_0^{\#}| (|a_n^{\#}| + + |a_1^{\#}|)$. Since

$$|a_{i}^{*}| = |\alpha a_{i}| = \alpha |a_{i}|, 0 \le i \le n, \text{ then}$$

$$\lambda = |a_{0}| \sum_{i=1}^{n} |a_{i}| = |a_{0}| (|a_{n}| + \dots + |a_{1}|) \cdots$$
(1.2).

Special cases:

(a) When $\alpha = +$, i.e. $a \in A = A^+$, we have $|a_i| = 0$ and $\lambda = 0$, in (1.1) we have

$$r(a_0 \otimes a_1 \dots \otimes a_n) = a_0^{\#} \otimes a_n^{\#} \otimes \dots \otimes a_n^{\#}.$$

(b) When $\alpha = -$, i.e. $a \in A = A^-$, we have $|a_i| = 1$ and $\lambda = |a_0| \sum_{i=1}^n 1 = n$, that is $\lambda(\lambda + 1)/2 = n(n+1)/2$, in

(1.1) we have

$$r(a_0 \otimes a_1 \otimes \ldots \otimes a_n) = -(-1)^{n(n+1)/2} a_0^{\#} \otimes a_n^{\#} \otimes \ldots \otimes a_1^{\#}.$$

For example, $r(a_0 \otimes a_1) = \alpha (-1)^{\lambda(\lambda+1)/2} a_0^{\#} \otimes a_1^{\#}$, where $\lambda = |a_0| |a_1|, \alpha = \pm$.

Lemma (1.15):

The reflexive operator r, defined above satisfies the relation :

 $r^2 = 1$,

where $1 = id_A : A \to A$ is the identity map of A.

Proof :

$$r^{2}(a_{0} \otimes a_{1} \otimes ... \otimes a_{n}) = r(r(a_{0} \otimes a_{1} \otimes ... \otimes a_{n}))$$
$$= \alpha(-1)^{\lambda(\lambda+1)/2} r(a_{0}^{\#} \otimes a_{n}^{\#} \otimes ... \otimes a_{1}^{\#})$$
$$= \alpha^{2}(-1)^{\lambda(\lambda+1)} a_{0}^{\#\#} \otimes a_{1}^{\#\#} \otimes ... \otimes a_{n}^{\#\#}.$$

Since $a_i^{\#} = (a_i^{\#})^{\#} = a_i$ and $\alpha^2 = 1$ as $\alpha = \pm$, and also $(-1)^{\lambda(\lambda+1)} = 1$ as $\lambda(\lambda+1)$ is always even if λ is even or odd.

Thus, we have $r^2(a_0 \otimes a_1 \otimes ... \otimes a_n) = a_0 \otimes a_1 \otimes ... \otimes a_n$, i.e. $r^2 = id_A$.

2 Dihedral cohomology of $\mathbb{Z}/2$ -graded Banach algebras.

We use the references [4], [5], and [6]. For the basic concepts and constructions of dihedral homology and cohomology, see [10].

Let $A = A^+ \oplus A^-$ be a $\mathbb{Z}/2$ -graded Banach algebra over K. The topological dual space of $A, A^* = Hom(A, K)$ will be given over the $\mathbb{Z}/2$ -grading by $(A^*)^{\alpha} = (A^{\alpha})^*, \alpha = \pm$. The associated involution on A^* is the transpose map of involution on A, that is

$$#: A \to A; a \mapsto \alpha a \Longrightarrow #^*: A^* \to A^*; (a)^* \mapsto (\alpha a)^* = \alpha a^*.$$

Let *A* be a unital $\mathbb{Z}/2$ -graded Banach algebra over *K* with a graded involution $\#: A \to A$; $a \mapsto \alpha a$, $\alpha = \pm$. Consider the codihedral $K[\mathbb{Z}/2]$ -module $C(A) = (C^n(A), b^n, t^n, r^n)$,

where $C^{n}(A) = Hom_{K}(A^{\otimes n+1}, K), n \ge 0$, is the $\mathbb{Z}/2$ -graded Banach space of (n+1)-graded bounded linear maps (continuous) from A to K. These maps are called cochain maps $f: A^{\otimes n+1} \to K, C^{0}(A) = Hom_{K}(A, K) = A^{*}$, where $b^{n}: C^{n}(A) \to C^{n+1}(A)$, given by:

$$b^{n}f(a_{0}\otimes\ldots\otimes a_{n})=\sum_{i=0}^{n-1}(-1)^{i}f(a_{0}\otimes\ldots\otimes a_{i}a_{i+1}\otimes\ldots\otimes a_{n})$$

$$+(-1)^{n+|a_n|(|a_0|+\dots+|a_{n-1}|)}f(a_na_0\otimes a_1\otimes\dots\otimes a_{n-1})$$
(2.1)

cyclic operator $t^n : C^n(A) \to C^n(A)$, given by

$$t^{n} f(a_{0} \otimes ... \otimes a_{n-1} \otimes a_{n}) = (-1)^{|a_{n}|(|a_{0}|+.....|a_{n-1}|)} f(a_{n} \otimes a_{0} \otimes ... \otimes a_{n-1})$$
(2.2)

and reflexive operator $r^n: C^n(A) \to C^n(A)$, given by

$$r^{n}f(a_{0}\otimes a_{1}\otimes \ldots\otimes a_{n}) = \alpha(-1)^{\lambda(\lambda+1)/2}f(a_{0}^{\#}\otimes a_{n}^{\#}\otimes \ldots\otimes a_{1}^{\#}),$$

where $\alpha = \pm 1$, $a_i^{\#} = im(a_i)$ under the involution # and $\lambda = |a_0|(|a_n| + \dots + |a_1|)$.

The complexes $CC^{n}(A)$, $_{\alpha}CR^{n}(A)$ and $_{\alpha}CD^{n}(A)$ are called the cyclic, reflexive and dihedral complexes and their cohomologies give the cyclic reflexive and dihedral cohomology groups: $HC^{n}(A)$, $_{\alpha}HR^{n}(A)$ and, $_{\alpha}HD^{n}(A)$ respectively. the relation between the cyclic and dihedral cohomologies of Banach algebra is given by the following assertion [6].

The following isomorphism holds :

$$HC^{n}(A) \approx _{-}HD^{n}(A) \oplus _{+}HD^{n}(A).$$

Notes :

1- When $\alpha = +$, we have $|a_i| = 0$, then $\mathcal{E} = |a_n| (|a_0| + \dots + |a_{n-1}|) = 0$, in (2.1), we have

$$b^{n}f(a_{0}\otimes\ldots\otimes a_{n}) = \sum_{i=0}^{n-1} (-1)^{i}f(a_{0}\otimes\ldots\otimes a_{i}a_{i+1}\otimes\ldots\otimes a_{n}) + (-1)^{n}f(a_{n}a_{0}\otimes a_{1}\otimes\ldots\otimes a_{n-1})$$
 which is a

trivially graded case $(A = A^+)$. See [9].

When $\alpha = -, (A = A^{-})$ we have $|a_i| = 1$, then $\varepsilon = |a_n| (|a_0| + \dots + |a_{n-1}|) = n$, and $\varepsilon + n = 2n$. Since $(-1)^{\varepsilon + n} = (-1)^{2n} = 1$ as 2n is always even, in (2.1), we have

$$b^{n}f(a_{0}\otimes\ldots\otimes a_{n}) = \sum_{i=0}^{n-1} (-1)^{i}f(a_{0}\otimes\ldots\otimes a_{i}a_{i+1}\otimes\ldots\otimes a_{n}) + f(a_{n}a_{0}\otimes a_{1}\otimes\ldots\otimes a_{n-1}).$$

2- When $\alpha = +, (A = A^+)$, we have $|a_i| = 0$, then $\mathcal{E} = |a_n| (|a_0| + \dots + |a_{n-1}|) = 0$,

in (2.1), we have

$$t^{n}f(a_{0}\otimes...\otimes a_{n-1}\otimes a_{n})=f(a_{n}\otimes a_{0}\otimes...\otimes a_{n-1})$$

When
$$\alpha = -, (A = A^{-})$$
 we have $|a_i| = 1$, then $\mathcal{E} = |a_n| (|a_0| + \dots + |a_{n-1}|) = n$,

in (2.1), we have

$$t^{n}f(a_{0}\otimes\ldots\otimes a_{n-1}\otimes a_{n})=(-1)^{n}f(a_{n}\otimes a_{0}\otimes\ldots\otimes a_{n-1}),$$

which is a trivially graded case .See [9].

2.1 Low-Dimensional Computations.

Example (2.1.1)[4]:

 $H^{0}(A, A^{*})$ is the space of all bounded graded traces, i.e.

$$H^{0}(A,A^{*}) = \{ \text{ all } f \in Hom_{K}(A,K) | f = 0 \text{ on } [A,A]_{gr} \}$$

which is the dual space of $H_0(A,A) = A / [A,A]_{gr}$.

Proof :

Consider the Hochschild complex :

$$0 \longrightarrow C^{0}(A, A^{*}) \xrightarrow{b_{1}} C^{1}(A, A^{*}) \longrightarrow \cdots, \text{ i.e.}$$
$$0 \longrightarrow Hom_{K}(A, K) \xrightarrow{b_{1}} Hom_{K}(A \otimes A, K) \longrightarrow \cdots.$$

 $H^{0}(A, A^{*}) = \ker(b_{1})$, where

$$b_{1}f(a_{0}\otimes a_{1}) = f(a_{0}a_{1}) + (-1)^{1+|a_{1}||a_{0}|}f(a_{1}a_{0}) = f(a_{0}a_{1} - (-1)^{|a_{1}||a_{0}|}a_{1}a_{0}) = f([a_{0},a_{1}]_{gr}).$$

A cocycle $f \in Hom_{K}(A, K) = A^{*}$ is inside ker (b_{1}) if

$$0 = b_1 f(a_0 \otimes a_1) = f([a_0, a_1])$$

i.e. f vanishes on the subgroup $[A, A]_{gr}$, i.e. $f : A \to K$ is a bounded graded trace. Then

$$H^{0}(A,A^{*}) = \ker(b_{1}) = \{ \text{ all } f \in Hom_{K}(A,K) | f = 0 \text{ on } [A,A]_{gr} \}$$
$$= C^{0}(A,A^{*}) = Hom_{K}(A,K)$$

where, $C^{q}(A, A^{*}) = Hom_{K}(A^{\otimes q}, A^{*}) = Hom_{K}(A^{\otimes (q+1)}, K).$

Remark :

Since $f: A \to K$ is a bounded graded trace, then $[A,A]_{gr} = 0$, so , $H_0(A,A) = A$ and $Hom_K(H_0(A,A),K) = Hom_K(A,K) = A^* = H^*(A,A^*)$. More generally, Since K is a field, it is clear that $H^n(A,A^*)$ is the dual space of $H_n(A,A)$. Hence

$$H^{*}(A,A^{*}) = H_{*}(A,A)^{*}.$$

Lemma (2.1.2) [5]:

For any unital $\mathbb{Z}/2$ -graded Banach algebra A, we show that $H^1(A, A^*) = Der_{gr}(A, A^*)/\{$ Continuous graded inner derivations $\}$, where $Der_{gr}(A, A^*)$ is the K-module of all continuous graded derivations from $A \otimes A$ to K ($f \in Hom_K(A \otimes A, K)$).

Proof :

Consider the Hochschild complex :

$$0 \longrightarrow Hom_{K}(A,K) \xrightarrow{b_{1}} Hom_{K}(A \otimes A,K) \xrightarrow{b_{2}} Hom_{K}(A \otimes A \otimes A,K) \longrightarrow \dots$$

We know that $H^{0}(A, A^{*}) = \frac{\ker(b_{2})}{im(b_{1})}$, and $b_{1}f(a_{0} \otimes a_{1}) = f([a_{0}, a_{1}]_{gr})$.

The coboundaries in degree 1 are maps $f : A \otimes A \to K$, defined by $f(a_0 \otimes a_1) \mapsto f([a_0, a_1]_{ar})$ or

$$a_0 \otimes a_1 \mapsto [a_0, a_1]_{gr} = a_0 a_1 - (-1)^{|a_1||a_0|} a_1 a_0 \in K$$

These functions are continuous graded K -derivations which are called continuous graded inner derivations. Then:

 $im(b_1) = \{ all f : A \otimes A \to K : a_0 \otimes a_1 \mapsto [a_0, a_1]_{gr} \} =$

{Continuous graded inner derivations }.

 $b_2 f(a_0 \otimes a_1 \otimes a_2) = f(a_0 a_1 \otimes a_2) - f(a_0 \otimes a_1 a_2) + (-1)^{|a_2|(|a_0|+|a_1|)} f(a_2 a_0 \otimes a_1)$, since f is a cocycle in degree 1, then $b_2 f(a_0 \otimes a_1 \otimes a_2) = 0$, i.e.

$$f(a_0 \otimes a_1 a_2) = f(a_0 a_1 \otimes a_2) + (-1)^{|a_2|(|a_0| + |a_1|)} f(a_2 a_0 \otimes a_1)$$
(2.3)

Hence, $f : A \otimes A \rightarrow K$ is a continuous graded derivation. Thus we have

 $\ker(b_2) = \{ \text{ all } f \in Hom_K(A \otimes A, K) : f \text{ is a continuous graded derivation } \}$

 $= Der_{gr}(A \otimes A, K) = Der_{gr}(A, A^*)$, as

$$Der_{gr}(A, A^*) = Der_{gr}(A, Hom_K(A, K)) = Der_{gr}(A \otimes A, K),$$

thus we get

 $H^{1}(A, A^{*}) = Der_{gr}(A, A^{*}) / \{ \text{ Continuous graded inner derivations } \}.$

Note that all bounded linear maps ,or operators are continuous.

Remark [2]:

A $\mathbb{Z}/2$ -graded Banach algebra A is weakly amenable if $H^{1}(A, A^{*}) = \{0\}$.

For any unital $\mathbb{Z}/2$ -graded Banach algebra A over K.

We expect that : $HR^{0}(A) \cong HC^{0}(A) \cong HD^{0}(A) \cong H^{0}(A, A^{*})$, the space of all bounded graded traces, i.e. $H^{0}(A, A^{*}) = \{ \text{ all } f \in Hom_{K}(A, K) | f = 0 \text{ on } [A, A]_{gr} \}, \text{ which is the dual space of } H_{0}(A, A) = A / [A, A]_{gr}.$

References

- [1] Arveson, W., An invitation to C*-algebras, Springer-Verlag, New York-Heidelberg, 1976.
- [2] Christensen, E. and Sinciair, A.M. On the vanishing of $H^n(A, M^*)$ for certain \mathbb{C}^* algebra, Pacific J. Math., 137 (1989), 55-63.
- [3] Dales, H.G., Banach algebras and automatic continuity, Clarendon Press, Oxford, 2000.
- [4] Gouda, Y.Gh., On the cyclic and dihedral cohomology of Banach spaces, Publ. Math. Debrecen 51/1-2 (1997), 67-80.
- [5] Gouda, Y.Gh., The relative dihedral homology of involutive algebras, Internat. J. Math. & Math. Sci. Vol.2, N0.4(1999) 807-815.

- [6] Gouda, Y.Gh., On the dihedral cohomology of operator algebra, Int. J. of algebra. Vol.4, No. 23(2010),1134-1144.
- [7] Johnson, B., Introduction to cohomology in Banach algebras. In: Algebras in Analysis. London, New York: Academic Press 1975
- [8] Kassel, C., A Künneth formula for the cyclic cohomology of $\mathbb{Z}/2$ -graded algebras, Math. Ann.,257 (1986), 683-699.
- [9] Kassel, C., Homology and cohomology of associative algebras, -A concise introduction to cyclic homology-Advanced School on Non-commutative Geometry ICTP, Trieste, August 2004.
- [10] Krasauskas, R.L., Lapin, S.V. and Solov'ev, Yu. P., Dihedral homology and cohomology. Basic concepts and constructions, Mat. Sb. (N.S.) 133 (175) (1987), no. 1, 25–48, (Russian).
- [11] Megginson, R., An introduction to Banach space theory, (Springer-Verlag, New York, 1998).