Journal of Progressive Research in Mathematics

 www.scitecresearch.com/journals
On the Dihedral Cohomology of Graded Banach Algebras

Y. A. Alrashidi
The Higher Institute of Telecommunications and Navigation
PAAET, Kuwait

Abstract

. We are concerned with the dihedral cohomology of a unital $\mathbb{Z} / 2$-graded Banach algebra A over $K=\mathbb{C}$ with a graded involution and study some properties of it. It is considered the prototype example of graded algebras with topology.

Keywords: Graded Banach algebras - dihedral cohomology.

1 Z/2-graded Banach algebras with graded involutions.

In this section we introduce some basic concepts and facts concerning $\mathbb{Z} / 2$-graded Banach algebras.

Definition (1.1) [11]:

A norm on a vector space V is a map $\|\|:. V \rightarrow \mathbb{R}$, such that:
1- $\|x\| \geq 0$ for all $x \in V$, and $\|x\|=0 \Leftrightarrow x=0$;
2- $\|\alpha x\|=|\alpha|\|x\|$ for all $x \in V$ and $\alpha \in \mathbb{C}$;
3- $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in V$.
Then $(V,\| \| \|)$ is a normed space. A norm on V induces a metric d on V by $d(x, y)=\|x-y\|$. We say that $(V,\| \|)$ is complete if the metric space (V, d) is (Cauchy) complete. Complete normed vector spaces are called Banach spaces. For a normed space V and $\lambda \in \mathbb{R}$, we write

$$
V_{[\lambda]}=\{x \in V:\|x\| \leq \lambda\} .
$$

Thus $V_{[1]}$ is the closed unit ball of V.
The maps between Banach spaces are the maps which preserve both the linear structure and the topology. Such maps are bounded linear maps, or operators.

Lemma (1.2) [9]:
Let $T: V \rightarrow W$ be a linear map between Banach spaces, then :

1- T is continuous with respect to the norms on V and W;
$2-T$ is continuous at 0 ;
3- For some $\lambda \in \mathbb{R}$, we have $\|T(X)\| \leq \lambda\|x\|$ for all $x \in V . T$ is bounded such that :

$$
\lambda_{\min }=\|T\|=\sup \{\|T(x)\| /\|x\|: x \in V, x \neq 0\}
$$

Definition (1.3) [3]:

A Banach algebra is an algebra A with a norm $\|\|\|$ such that $(A,\| \|)$ is a Banach space with the property,
$\|a b\| \leq\|a\|\|b\|$ for all $a, b \in A$.

Definition (1.4) [2]:

A Banach algebra A is called a simplicially trivial if $H^{n}\left(A, *^{*} \neq\{ \}\right.$, for all $n=0,1, \ldots \ldots$, where $A^{*}=\operatorname{Hom}_{K}(A, K)$ is the topological dual space of $A . C *$-algebras can be thought of as special Banach algebras [1].

Definition (1.5) [1]:

Let A be an algebra. A map $*: A \rightarrow A, a \mapsto a^{*}$, is an involution if :
1- $(\lambda a+b)^{*}=\bar{\lambda} a^{*}+b^{*}$ for all $\lambda \in \mathbb{C}$ and $a, b \in A$;
2- $(a b)^{*}=b^{*} a^{*}$ for all $a, b \in A$;
3- $\left(a^{*}\right)^{*}=a$ for all $a \in A$.

Remark :

A map $*: A \rightarrow A ; a \mapsto a^{*}$, is an involution if $*^{2}=i d_{A}: A \rightarrow A$. For all
$a, b \in A$, we have $*(a)=b$ and $*(b)=a$, then $*^{2}(a)=*(*(a))=*(b)=a$,i.e.
$*^{2}=i d_{A}$.

Definition (1.6) [1]:

Let A be a Banach algebra. The pair $(A, *)$ is called a C^{*}-algebra if

$$
\left\|a^{*} a\right\|=\|a\|^{2} \text { for all } a \in A .
$$

Definition (1.7):

Let G be a finite group with unit e, and A be a unital complex Banach algebra. A G-graded structure for A is a decomposition $A=\underset{g \in G}{\oplus} A_{g}$, where $A_{g} \subseteq A$ and $A_{g} A_{h} \subseteq A_{g+h}$ for all $g, h \in G, \oplus$ is the direct sum.

An element $a \in A_{g}$ is a homogenous element of degree $|a|=g$, it is called nontrivial homogenous if $g \neq e$.

Example (1.8):

For the group $G=\mathbb{Z}_{2}=\{0,1\}$ and $A=A_{0} \oplus A_{1}$, we have $A_{g} A_{h} \subseteq A_{g+h} \bmod 2$, for all $g, h \in G$, and

$$
|a|=\left\{\begin{array}{lllll}
0 & \text { if } & a \in A_{0} & \left(\begin{array}{ll}
a & \text { even }
\end{array}\right) \\
1 & \text { if } & a \in A_{1} & (a & \text { odd })
\end{array} .\right.
$$

For the reflexive group $G=\mathbb{Z} / 2=\{-1,+1\}$ of order 2 and $A=A^{+} \oplus A^{-}$, we have $A_{g} A_{h} \subseteq A_{g+h}$, for all $g, h \in G$.

Remark :

A morphism $f: A \rightarrow A$ is a graded if $f\left(A_{g}\right) \subseteq A_{g}$, for all $g \in G$. Firstly, we recall some definitions and facts we need here. See [8]. We set up the theory of $\mathbb{Z} / 2$-graded Banach spaces, complexes and algebras. Let $K(K=\mathbb{C})$ be a field such that $\operatorname{ch}(K)=0$, and $\alpha \in\{+,-\}$ which we identify with $\{+1,-1\}$. A Banach space V is a complete normed vector space $(V,\| \|)$.

Definition (1.9) [8] :

A $\mathbb{Z} / 2$-graded Banach space is a K - Banach space V equipped with an involution \#:V $\rightarrow V$, defined by $x \rightarrow \alpha x,(x \in V, \alpha= \pm)$. It is also, a $K[\mathbb{Z} / 2]$-module V.

Lemma (1.10) [8]:

A $\mathbb{Z} / 2$-graded K - Banach space V is trivially graded if :
(a) V is a trivial $K[\mathbb{Z} / 2]$-module; or
(b) $V=V^{+}$or \# $=i d_{V}$.

Proof:
If $V=V^{+}$, then $x \in V^{+},|x|=0$ and $\alpha=+$, hence $\#(x)=\alpha x=x$, i.e. $\#=i d_{V}$.
If $\#=i d_{V}$, then $\#(x)=x$, hence $\#^{2}(x)=\#(\#(x))=\#(x)=x$, i.e. $\alpha=+$ or $V=V^{+}$

Remark:

A map of $\mathbb{Z} / 2$-graded Banach spaces is a bounded linear map (continuous) $f: V \rightarrow W$, i.e. $V^{\alpha} \mapsto W^{\alpha}, \alpha= \pm$, or commutes with \# or a map of $K[\mathbb{Z} / 2]$-modules.

Definition (1.11)[8]:

A positively graded complex of Banach spaces
$V_{*}=\left\{\cdots \longrightarrow V_{2} \xrightarrow{d} V_{1} \xrightarrow{d} V_{0} \longrightarrow 0\right\}$ is a $\mathbb{Z} / 2$-graded complex if all Banach spaces $V_{i}(i \geq 0)$ are $\mathbb{Z} / 2$-graded and all differentials $d: V_{i} \rightarrow V_{i-1}$ are maps of $\mathbb{Z} / 2$-graded spaces.
Now, we can define the $\mathbb{Z} / 2$-graded Banach algebra.

Definition (1.12) [8]:

A $\mathbb{Z} / 2$-graded Banach algebra is an associative unital K - Banach algebra A such that the multiplication is a map $\pi: A \otimes A \rightarrow A$ of
$\mathbb{Z} / 2$-graded Banach spaces. That is:
(a) the involution \#:A $\rightarrow A$ is a homomorphism of Banach algebras : $\#(a b)=\#(a) \#(b)$ for all $a, b \in A$, or
(b) $A^{\alpha} A^{\beta} \subset A^{\alpha \beta},(\alpha, \beta \in\{ \pm 1\})$.

Remark:

The multiplication $\pi: A \otimes A \rightarrow A$ is a bounded linear map (continuous) as $\|\pi(a \otimes b)\| \mapsto\|a b\| \leq\|a\|\|b\|$ for all $a, b \in A$.

Example (1.13) [8]:

Any \mathbb{Z}-graded Banach algebra $A=\underset{n \in \mathbb{Z}}{\oplus} A_{n}$ gives rise to a $\mathbb{Z} / 2$-graded Banach algebra B defined by $B=B^{+}+B^{-}$, where, $B^{+}=\underset{n}{\oplus} A_{2 n}$ and $B^{-}=\underset{n}{\oplus} A_{2 n+1}$.

Remark:

The involution given on $C_{n}(A)=A^{\otimes(n+1)}, n=0,1, .$. by the grading over $\mathbb{Z} / 2$ is given by: $\#: C_{n}(A) \rightarrow C_{n}(A)$, such that $\#\left(a_{0} \otimes \ldots . . \otimes a_{n}\right)=\#\left(a_{0}\right) \otimes \ldots . . \otimes \#\left(a_{n}\right)$, for all $a_{0}, \ldots ., a_{n} \in A$. It commutes with the differential $b_{n}: C_{n}(A) \rightarrow C_{n-1}(A)$, defined by

$$
\begin{aligned}
b_{n}\left(a_{0} \otimes \ldots \ldots \otimes a_{n}\right)= & \sum_{i=0}^{n-1}(-1)^{i} a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n} \\
& +(-1)^{\left.n+\left|a_{n}\right|\left|a_{0}\right|+\ldots \ldots\left|a_{n-1}\right|\right)} a_{n} a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n-1},
\end{aligned}
$$

and cyclic operator $t_{n}: C_{n}(A) \rightarrow C_{n}(A)$, defined by

$$
t_{n}\left(a_{0} \otimes \ldots \otimes a_{n-1} \otimes a_{n}\right)=(-1)^{\left|a_{n}\right|\left|a_{0}\right|+\ldots \ldots\left|a_{n-1}\right| \mid} a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1} .
$$

In other words, $\# b=b \#$ and $\# t=t \#$.
Now, we can define the reflexive operator r.

Definition (1.14):

Let $A=A^{+} \oplus A^{-}$be a $\mathbb{Z} / 2$-graded Banach K - algebra with a graded involution

$$
\#: A \rightarrow A \quad ; a \mapsto \alpha a, \alpha= \pm \quad \text {, for all } a \in A .
$$

The reflexive operator r acting on $C_{n}(A)=A^{\otimes(n+1)}, n=0,1, . .$, by the graded involution $\#$ is given by

$$
r: C_{n}(A) \rightarrow C_{n}(A)
$$

such that

$$
\begin{equation*}
r\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right)=\alpha(-1)^{\lambda(\lambda+1) / 2} a_{0}^{\#} \otimes a_{n}^{\#} \otimes \ldots \otimes a_{1}^{\#} \ldots \tag{1.1}
\end{equation*}
$$

where $\alpha= \pm 1, \quad a_{i}^{\#}=\operatorname{im}\left(a_{i}\right)$ under the involution \# and $\lambda=\left|a_{0}^{\#}\right| \sum_{i=1}^{n}\left|a_{i}^{\#}\right|=\left|a_{0}^{\#}\right|\left(\left|a_{n}^{\#}\right|+\ldots . .+\left|a_{1}^{\#}\right|\right)$. Since $\left|a_{i}^{\#}\right|=\left|\alpha a_{i}\right|=\alpha\left|a_{i}\right|, 0 \leq i \leq n$, then

$$
\begin{equation*}
\lambda=\left|a_{0}\right| \sum_{i=1}^{n}\left|a_{i}\right|=\left|a_{0}\right|\left(\left|a_{n}\right|+\ldots \ldots+\left|a_{1}\right|\right) \ldots \tag{1.2}
\end{equation*}
$$

Special cases:
(a) When $\alpha=+$, i.e. $a \in A=A^{+}$, we have $\left|a_{i}\right|=0$ and $\lambda=0$, in (1.1) we have

$$
r\left(a_{0} \otimes a_{1} \ldots \otimes a_{n}\right)=a_{0}^{\#} \otimes a_{n}^{\#} \otimes \ldots \otimes a_{1}^{\#} .
$$

(b) When $\alpha=-$, i.e. $a \in A=A^{-}$, we have $\left|a_{i}\right|=1$ and $\lambda=\left|a_{0}\right| \sum_{i=1}^{n} 1=n$, that is $\lambda(\lambda+1) / 2=n(n+1) / 2$, in (1.1) we have

$$
r\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right)=-(-1)^{n(n+1) / 2} a_{0}^{\#} \otimes a_{n}^{\#} \otimes \ldots \otimes a_{1}^{\#}
$$

For example, $r\left(a_{0} \otimes a_{1}\right)=\alpha(-1)^{\lambda(\lambda+1) / 2} a_{0}^{\#} \otimes a_{1}^{\#}$, where $\lambda=\left|a_{0}\right|\left|a_{1}\right|, \alpha= \pm$.

Lemma (1.15):

The reflexive operator r, defined above satisfies the relation :

$$
r^{2}=1,
$$

where $1=i d_{A}: A \rightarrow A$ is the identity map of A.
Proof:

$$
\begin{aligned}
& r^{2}\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right)=r\left(r\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right)\right) \\
& \quad=\alpha(-1)^{\lambda(\lambda+1) / 2} r\left(a_{0}^{\#} \otimes a_{n}^{\#} \otimes \ldots \otimes a_{1}^{\#}\right) \\
& \quad=\alpha^{2}(-1)^{\lambda(\lambda+1)} a_{0}^{\# \#} \otimes a_{1}^{\# \#} \otimes \ldots \otimes a_{n}^{\# \#} .
\end{aligned}
$$

Since $a_{i}^{\# \#}=\left(a_{i}^{\#}\right)^{\#}=a_{i}$ and $\alpha^{2}=1$ as $\alpha= \pm$, and also $(-1)^{\lambda(\lambda+1)}=1$ as $\lambda(\lambda+1)$ is always even if λ is even or odd.
Thus, we have $r^{2}\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right)=a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}$,i.e. $r^{2}=i d_{A}$.

2 Dihedral cohomology of $\mathbb{Z} / 2$-graded Banach algebras.

We use the references [4], [5], and [6]. For the basic concepts and constructions of dihedral homology and cohomology, see [10].

Let $A=A^{+} \oplus A^{-}$be a $\mathbb{Z} / 2$-graded Banach algebra over K. The topological dual space of $A, A^{*}=\operatorname{Hom}(A, K)$ will be given over the $\mathbb{Z} / 2$ - grading by $\left(A^{*}\right)^{\alpha}=\left(A^{\alpha}\right)^{*}, \alpha= \pm$.The associated involution on A^{*} is the transpose map of involution on A,that is

$$
\#: A \rightarrow A ; a \mapsto \alpha a \Rightarrow \#^{*}: A^{*} \rightarrow A^{*} ;(a)^{*} \mapsto(\alpha a)^{*}=\alpha a^{*}
$$

Let A be a unital $\mathbb{Z} / 2$-graded Banach algebra over K with a graded involution \#: $A \rightarrow A ; a \mapsto \alpha a, \alpha= \pm$. Consider the codihedral $K[\mathbb{Z} / 2]$-module $C(A)=\left(C^{n}(A), b^{n}, t^{n}, r^{n}\right)$, where $C^{n}(A)=\operatorname{Hom}_{K}\left(A^{\otimes n+1}, K\right), n \geq 0$, is the $\mathbb{Z} / 2$-graded Banach space of $(n+1)$-graded bounded linear maps (continuous) from A to K.These maps are called cochain maps $f: A^{\otimes n+1} \rightarrow K, C^{0}(A)=\operatorname{Hom}_{K}(A, K)=A^{*}$, where $b^{n}: C^{n}(A) \rightarrow C^{n+1}(A)$, given by:

$$
b^{n} f\left(a_{0} \otimes \ldots . . \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{i} f\left(a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n}\right)
$$

$$
\begin{equation*}
+(-1)^{\left.n+\left|a_{n}\right|\left|a_{0}\right|+\ldots \ldots\left|a_{n-1}\right|\right)} f\left(a_{n} a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n-1}\right) \tag{2.1}
\end{equation*}
$$

cyclic operator $t^{n}: C^{n}(A) \rightarrow C^{n}(A)$, given by

$$
\begin{equation*}
t^{n} f\left(a_{0} \otimes \ldots \otimes a_{n-1} \otimes a_{n}\right)=(-1)^{a_{n} \mid\left(a_{0}|+\ldots \ldots| a_{n-1} \mid\right)} f\left(a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1}\right) \tag{2.2}
\end{equation*}
$$

and reflexive operator $r^{n}: C^{n}(A) \rightarrow C^{n}(A)$, given by

$$
r^{n} f\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right)=\alpha(-1)^{\lambda(\lambda+1) / 2} f\left(a_{0}^{\#} \otimes a_{n}^{\#} \otimes \ldots \otimes a_{1}^{\#}\right),
$$

where $\alpha= \pm 1, a_{i}^{\#}=\operatorname{im}\left(a_{i}\right)$ under the involution \# and $\lambda=\left|a_{0}\right|\left(\left|a_{n}\right|+\ldots . .+\left|a_{1}\right|\right)$.
The complexes $C C^{n}(A),{ }_{\alpha} C R^{n}(A)$ and ${ }_{\alpha} C D^{n}(A)$ are called the cyclic, reflexive and dihedral complexes and their cohomologies give the cyclic reflexive and dihedral cohomology groups: $H C^{n}(A),{ }_{\alpha} H R^{n}(A)$ and, ${ }_{\alpha} H D^{n}(A)$ respectively. the relation between the cyclic and dihedral cohomologies of Banach algebra is given by the following assertion [6].
The following isomorphism holds :

$$
H C^{n}(A) \approx_{-} H D^{n}(A) \oplus_{+} H D^{n}(A) .
$$

Notes:

1- When $\alpha=+$, we have $\left|a_{i}\right|=0$, then $\varepsilon=\left|a_{n}\right|\left(\left|a_{0}\right|+\cdots \cdots+\left|a_{n-1}\right|\right)=0$, in (2.1), we have $b^{n} f\left(a_{0} \otimes \ldots . . \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{i} f\left(a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n}\right)+(-1)^{n} f\left(a_{n} a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n-1}\right)$ which \quad is \quad a trivially graded case $\left(A=A^{+}\right)$.See [9].

When $\quad \alpha=-,\left(A=A^{-}\right)$we have $\quad\left|a_{i}\right|=1$, then $\quad \varepsilon=\left|a_{n}\right|\left(\left|a_{0}\right|+\cdots \cdots+\left|a_{n-1}\right|\right)=n$, and $\quad \varepsilon+n=2 n$. Since $(-1)^{\varepsilon+n}=(-1)^{2 n}=1$ as $2 n$ is always even, in (2.1), we have
$b^{n} f\left(a_{0} \otimes \ldots \ldots \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{i} f\left(a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n}\right)+f\left(a_{n} a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n-1}\right)$.
2- When $\alpha=+,\left(A=A^{+}\right)$, we have $\left|a_{i}\right|=0$, then $\varepsilon=\left|a_{n}\right|\left(\left|a_{0}\right|+\cdots \cdots+\left|a_{n-1}\right|\right)=0$,
in (2.1), we have
$t^{n} f\left(a_{0} \otimes \ldots \otimes a_{n-1} \otimes a_{n}\right)=f\left(a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1}\right)$.
When $\alpha=-,\left(A=A^{-}\right)$we have $\left|a_{i}\right|=1$, then $\varepsilon=\left|a_{n}\right|\left(\left|a_{0}\right|+\cdots \cdots+\left|a_{n-1}\right|\right)=n$,
in (2.1), we have
$t^{n} f\left(a_{0} \otimes \ldots \otimes a_{n-1} \otimes a_{n}\right)=(-1)^{n} f\left(a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1}\right)$,
which is a trivially graded case .See [9].

2.1 Low-Dimensional Computations.

Example (2.1.1)[4]:

$H^{0}\left(A, A^{*}\right)$ is the space of all bounded graded traces, i.e.

$$
H^{0}\left(A, A^{*}\right)=\left\{\text { all } f \in \operatorname{Hom}_{K}(A, K) \mid f=0 \text { on }[A, A]_{g r}\right\},
$$

which is the dual space of $H_{0}(A, A)=A /[A, A]_{g r}$.

Proof :

Consider the Hochschild complex :

$$
\begin{gathered}
0 \longrightarrow C^{0}\left(A, A^{*}\right) \xrightarrow{b_{1}} C^{1}\left(A, A^{*}\right) \longrightarrow \cdots, \text { i.e. } \\
0 \longrightarrow \operatorname{Hom}_{K}(A, K) \xrightarrow{b_{1}} \operatorname{Hom}_{K}(A \otimes A, K) \longrightarrow \cdots .
\end{gathered}
$$

$H^{0}\left(A, A^{*}\right)=\operatorname{ker}\left(b_{1}\right)$,where
$b_{1} f\left(a_{0} \otimes a_{1}\right)=f\left(a_{0} a_{1}\right)+(-1)^{1+\left|a_{1}\right|\left|a_{0}\right|} f\left(a_{1} a_{0}\right)=f\left(a_{0} a_{1}-(-1)^{\left|a_{1}\right| a_{0} \mid} a_{1} a_{0}\right)=f\left(\left[a_{0}, a_{1}\right]_{g r}\right)$.
A cocycle $f \in \operatorname{Hom}_{K}(A, K)=A^{*}$ is inside $\operatorname{ker}\left(b_{1}\right)$ if

$$
0=b_{1} f\left(a_{0} \otimes a_{1}\right)=f\left(\left[a_{0}, a_{1}\right]\right),
$$

i.e. f vanishes on the subgroup $[A, A]_{g r}$ i.e. $f: A \rightarrow K$ is a bounded graded trace. Then

$$
\begin{aligned}
H^{0}\left(A, A^{*}\right)= & \operatorname{ker}\left(b_{1}\right)=\left\{\text { all } f \in \operatorname{Hom}_{K}(A, K) \mid f=0 \text { on }[A, A]_{g r}\right\} \\
& =C^{0}\left(A, A^{*}\right)=\operatorname{Hom}_{K}(A, K)
\end{aligned}
$$

where, $C^{q}\left(A, A^{*}\right)=\operatorname{Hom}_{K}\left(A^{\otimes q}, A^{*}\right)=\operatorname{Hom}_{K}\left(A^{\otimes(q+1)}, K\right)$.

Remark :

Since $f: A \rightarrow K$ is a bounded graded trace, then $[A, A]_{g r}=0$, so $\quad H_{0}(A, A)=A$ and $\operatorname{Hom}_{K}\left(H_{0}(A, A), K\right)=\operatorname{Hom}_{K}(A, K)=A^{*}=H^{*}\left(A, A^{*}\right)$.

More generally, Since K is a field, it is clear that $H^{n}\left(A, A^{*}\right)$ is the dual space of $H_{n}(A, A)$.Hence $H^{*}\left(A, A^{*}\right)=H_{*}(A, A)^{*}$.

Lemma (2.1.2) [5]:

For any unital $\mathbb{Z} / 2$-graded Banach algebra A,we show that $H^{1}\left(A, A^{*}\right)=\operatorname{Der}_{g r}\left(A, A^{*}\right) /\{$ Continuous graded inner derivations \}, where $\operatorname{Der}_{g r}\left(A, A^{*}\right)$ is the K-module of all continuous graded derivations from $A \otimes A$ to $K\left(f \in \operatorname{Hom}_{K}(A \otimes A, K)\right.$.

Proof :

Consider the Hochschild complex :

$$
0 \longrightarrow \operatorname{Hom}_{K}(A, K) \xrightarrow{b_{1}} \operatorname{Hom}_{K}(A \otimes A, K) \xrightarrow{b_{2}} \operatorname{Hom}_{K}(A \otimes A \otimes A, K) \longrightarrow \ldots
$$

We know that $H^{0}\left(A, A^{*}\right)=\frac{\operatorname{ker}\left(b_{2}\right)}{\operatorname{im}\left(b_{1}\right)}$, and $b_{1} f\left(a_{0} \otimes a_{1}\right)=f\left(\left[a_{0}, a_{1}\right]_{g r}\right)$.

The coboundaries in degree 1 are maps $f: A \otimes A \rightarrow K$, defined by $f\left(a_{0} \otimes a_{1}\right) \mapsto f\left(\left[a_{0}, a_{1}\right]_{g r}\right)$ or $a_{0} \otimes a_{1} \mapsto\left[a_{0}, a_{1}\right]_{g r}=a_{0} a_{1}-(-1)^{\left|a_{1}\right| a_{0} \mid} a_{1} a_{0} \in K$.

These functions are continuous graded K-derivations which are called continuous graded inner derivations.
Then:
$\operatorname{im}\left(b_{1}\right)=\left\{\right.$ all $\left.f: A \otimes A \rightarrow K: a_{0} \otimes a_{1} \mapsto\left[a_{0}, a_{1}\right]_{g r}\right\}=$
\{Continuous graded inner derivations \}.
$b_{2} f\left(a_{0} \otimes a_{1} \otimes a_{2}\right)=f\left(a_{0} a_{1} \otimes a_{2}\right)-f\left(a_{0} \otimes a_{1} a_{2}\right)+(-1)^{\left|a_{2}\right|\left|a_{0}\right|\left|a_{\mid}\right|} f\left(a_{2} a_{0} \otimes a_{1}\right)$, since f is a cocycle in degree 1 ,then $b_{2} f\left(a_{0} \otimes a_{1} \otimes a_{2}\right)=0$, i.e.

$$
\begin{equation*}
f\left(a_{0} \otimes a_{1} a_{2}\right)=f\left(a_{0} a_{1} \otimes a_{2}\right)+(-1)^{\left.\left|a_{2}\right|\left|a_{0}\right|+\left|a_{1}\right|\right\rangle} f\left(a_{2} a_{0} \otimes a_{1}\right) \tag{2.3}
\end{equation*}
$$

Hence, $f: A \otimes A \rightarrow K$ is a continuous graded derivation. Thus we have

$$
\begin{gathered}
\operatorname{ker}\left(b_{2}\right)=\left\{\text { all } f \in \operatorname{Hom}_{K}(A \otimes A, K): f \text { is a continuous graded derivation }\right\} \\
=\operatorname{Der}_{g r}(A \otimes A, K)=\operatorname{Der}_{g r}\left(A, A^{*}\right) \text {, as } \\
\operatorname{Der}_{g r}\left(A, A^{*}\right)=\operatorname{Der}_{g r}\left(A, \operatorname{Hom}_{K}(A, K)\right)=\operatorname{Der}_{g r}(A \otimes A, K),
\end{gathered}
$$

thus we get
$H^{1}\left(A, A^{*}\right)=\operatorname{Der}_{g r}\left(A, A^{*}\right) /\{$ Continuous graded inner derivations $\}$.
Note that all bounded linear maps, or operators are continuous.

Remark [2]:

A $\mathbb{Z} / 2$-graded Banach algebra A is weakly amenable if $H^{1}\left(A, A^{*}\right)=\{0\}$.
For any unital $\mathbb{Z} / 2$-graded Banach algebra A over K.
We expect that : $\quad H R^{0}(A) \cong H C^{0}(A) \cong H D^{0}(A) \cong H^{0}\left(A, A^{*}\right)$, the space of all bounded graded traces, i.e. $H^{0}\left(A, A^{*}\right)=\left\{\right.$ all $f \in \operatorname{Hom}_{K}(A, K) \mid f=0 \quad$ on $\left.[A, A]_{g r}\right\}, \quad$ which \quad is the dual space of $H_{0}(A, A)=A /[A, A]_{g r}$.

References

[1] Arveson, W., An invitation to C*-algebras, Springer-Verlag, New York-Heidelberg, 1976.
[2] Christensen, E. and Sinciair, A.M,. On the vanishing of $H^{n}\left(A, M^{*}\right)$ for certain \mathbb{C}^{*} - algebra, Pacific J. Math., 137 (1989), 55-63.
[3] Dales, H.G., Banach algebras and automatic continuity, Clarendon Press, Oxford, 2000.
[4] Gouda, Y.Gh., On the cyclic and dihedral cohomology of Banach spaces, Publ. Math. Debrecen 51/ 1-2 (1997), 67-80.
[5] Gouda, Y.Gh., The relative dihedral homology of involutive algebras, Internat. J. Math. \& Math. Sci. Vol.2, N0.4(1999) 807-815.
[6] Gouda, Y.Gh., On the dihedral cohomology of operator algebra, Int. J. of algebra. Vol.4, No. 23(2010),11341144.
[7] Johnson, B., Introduction to cohomology in Banach algebras. In: Algebras in Analysis. London, New York: Academic Press 1975
[8] Kassel, C., A Künneth formula for the cyclic cohomology of $\mathbb{Z} / 2$-graded algebras, Math. Ann., 257 (1986), 683-699.
[9] Kassel, C., Homology and cohomology of associative algebras, -A concise introduction to cyclic homologyAdvanced School on Non-commutative Geometry ICTP, Trieste, August 2004.
[10]Krasauskas, R.L., Lapin, S.V. and Solov'ev, Yu. P., Dihedral homology and cohomology. Basic concepts and constructions, Mat. Sb. (N.S.) 133 (175) (1987), no. 1, 25-48, (Russian).
[11]Megginson, R., An introduction to Banach space theory, (Springer-Verlag, New York, 1998).

