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ABSTRACT.  

The main aim of this paper is to study GV-semigroups whose full subsemigroups form distributive lattices. 
A sufficient and necessary condition for GV-semigroups to have distributive lattices of full subsemigroups 
is given. In particular, the structure of completely regular semigroups whose full subsemigroup lattices are 
distributive is characterized. 
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1. Introduction 

The subsemigroup lattices of semigroups have been the subject of continued investigation for many years. The main 

achievements in the area, accomplished by the mid-1990s,have been comprehensively reflected in the monograph 

[9]. Among the large fields of the investigation, much attention has been paid to the full regular subsemigroup 

lattices of regular semigroups. Recall that a subset of a semigroup is called full if it contains the set of all 

idempotents of the given semigroup. 

Johnston and Jones researched regular semigroups with their full regular subsemigroup lattices in [2], which 

provides some interesting results. It is well known that full regular subsemigroups of inverse semigroups are just 

their full inverse subsemigroups.Thus the theory concerning full regular subsemigroup lattices has been extensively 

explored in the case of inverse semigroups. A series of papers have been devoted to the theme of describing the 

structure of inverse semigroups with various types of full regular subsemigroup lattices (see [3, 4, 5, 6, 7, 11]). 

Moreover, Jones and Tian generalized to eventually regular semigroups the study of the full regular subsemigroup 

lattices of regular semigroups and characterized the structure of eventually regular semigroups whose full eventually 

regular subsemigroup lattices are distributive lattices or chains in [8]. Recently, a program of studying the 

interrelationships of inverse semigroups and their full subsemigroup lattices has been presented in [10] by Tian, who 

established the structure of inverse semigroups with various assumptions on their full subsemigroup lattices. 

In the present paper, the main purpose is to extend the study of the full subsemigroup lattices of inverse 

semigroups to that of GV-semigroups. We obtain a sufficient and necessary condition for GV-semigroups indicated 

in the title of the paper. Furthermore, completely regular semigroups with distributive full subsemigroup lattices are 

determined. 

http://www.scitecresearch.com/journals
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2. Preliminaries 

Recall that a lattice ( , , )L     is distributive, if for any , , , ( ) ( ) ( )a b c L a b c a b a c       . A semigroup S  is 

called eventually regular if some power of each element of S  is regular. If every regular element of an eventually 

regular semigroup S  is completely regular, then S  is called a GV-semigroup. For a completely regular semigroup 

S  , as we all know, every regular element a  of S  exists and only exists an inverse of a  which commutes with a   . 

We usually denote the unique inverse of a by 1a . Let S  be a semigroup. As usual, SE  denotes the set of all 

idempotents of S , and gSRe  denotes the set of all regular elements of S . In general, neither SE  nor gSRe  is a 

subsemigroup of S . If a GV-semigroup S  only has an idempotent, then it is called unipotent epigroup. Given 

SEe , eG denotes the maximal subgroup of a semigroup S containing e  and we put 

e
n

e GxSxK  :{ for some }Zn , 

then we define the relation )( eeEe KKk
S

  . As we all know, the relation k  is an equivalent relation on a GV-

semigroup and )( Se EeK   is called a unipotency class of S with *
ee HK  for any SEe . 

For any subset A of a semigroup S ,we denote by A the subsemigroup of S generated by A , AF the full 

subsemigroup of S generated by A , by 
*A  the set of all non-zero elements of A , by ubSS  the lattice of all 

subsemigroups (including the empty set) of S ,and by SSubf the lattice of all full subsemigroups of S .It is easy to 

show that the lattice SubfS  is a complete sublattice of the lattice SSub . In particular, for an inverse semigroup S

, we shall denote by ubfiSS  the lattice of full inverse subsemigroups of S .  

A semigroup S is called a U-semigroup, if  yxxy for any Syx , . If a semigroup S  is a U-semigroup as 

well as a nilsemigroup, then it is called a U-nilsemigroup. Let a semigroup S  be an ideal extension of a semigroup 

T  by a U-nilsemigroup, then S  is called a U-nilextension of T  . A band S is named a left(right) 

zero band if )( babaab   for any Sab .A GV-semigroup S  is called a FU-band of GV-semigroups )( YS 
 

if  SS Y   is a band of S and  yFxFyxxy,  for any Sx , Sy  with   . 

3. Main Results 

We are to investigate GV-semigroups whose full subsemigroups form distributive lattices in this section. We first 

formulate the main result in this section. 

Theorem 3.1 Let S be a  GV-semigroup  and SubfS  distributive  if  and  only  if S is a GU-band of unipotent 

 epigroups )( Se EeK   which are U-nilextensions of locally cyclic groups eG for all SEe . 

We shall prove Theorem 3.1 proceeded by a sequence of lemmas. 

Lemma 3.2 Let S be a GV-semigroup. If SSubf is distributive, then efe KKK   or ffe KKK   for any 

, Se f E  . 

Proof. First, we put  efFA , }{eeFB  , }{ ffFC   for any SEfe ,  with fe  . If assume 

 CABA , then  BAfeFefFCBA ,)(  by distributivity of SubfS . Obviously, it 

leads to a contradiction. Thus BA  or CA . 

Let BA . ..ei  efFe .And there exists  SEg  such that gKef   since S  is a GV-semigroup. We first 

assume eg  . It is clear that 

g, KefFeKefF g   and eKe , 

hence ge KKe  ,and so it contradicts the fact  ge KK .Whence eKefFefge  , , thus eKef 

.Similarly, let CA ,we have fKef  by the similar method. 
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Suppose there exist fe KbKa  ,  such that fe KKab  with feEfe S  ,, . Then there exists 

},{\ feEg S  such that gKab .Hence g
n Kab )( , fe

n KKab )(  for any Zn , and so 

 bFabFaFabF . 

Thus  baFabF ,  by distributivity of SubfS . Obviously, it is a contradiction and so fefe KKKK  . 

Symmetrically, we can prove feef KKKK   for any SEfe , . 

Let eKef   for any SEfe ,  with fe   and assume there exist fe KbKa  ,  such that fKab . Hence 

ffff
brbr GfafafKKKbbabaf   )(,)()( 1)(1)(  

and since there exists Zn  such that e
n Ga  , whence 

eaaaffaafa nnnnn  ,)( and f
nnn Kaffaefa  )( . 

Therefore  fe KK  by e
nn Kefaefa  )( .Thus efe KKK  .Dually, we have ffe KKK   if fKef   for 

any SEfe , with fe  . 

Suppose fe  , then the assertion of the lemma now follows without difficulty since any unipotency of a GV-

semigroup S is a subsemigroup of S . 

From the proof of this lemma, we have the following corollary easily. 

Corollary 3.3 Let S  be a GV-semigroup. If SubfS  is distributive, then 

(1) )( eeEe KKk
S

   is a congruence on S , that is, a band of  unipotent epigroups )( Se EeK  ; 

(2) },{ fe KK  is a left(right) zero band or chain for any SEfe , . 

Lemma 3.4 Let S  be a GV-semigroup. If SubfS  is distributive, then eGyFxFyxxy ,  for any  

Se EeKyx  ,, . 

Proof. Let S  be a GV-semigroup. Then eK  is a subsemigroup of S , hence eKxy  for any eKyx , . Thus we 

can prove the lemma from two cases. 

If ee GKxy \ . Then x , y both lie in ee GK \  since eG  is an ideal of eK . Next we denote by “ 

 ” the operation in ee GK / , denote by “  ” the operation in eK . Hence we have yxyx   since in ee GK /

the product of two elements in ee GK \  is the same as their product in eK  if the product is in ee GK \ . Whence 

 yxyxyx  

where x or y refers to the subsemigroup generated by x  or y under the operation“   ”. Obviously, 0yx 

, hence 

})0{\(})0{\(  yxyx where }0,,,{  xxxx   

 

the order of x  is )(xr  which denotes the nilindex of x , and so all elements of x  except 0 can be found  in 

x which is the subsemigroup generated by x  under the operation “  ”. Thus  

 yFxFyxyxyxyx })0{\(})0{\( . 

If eGxy , then eGyFxFxy  , clearly. That eGyFxFyx   can be proved dually.  
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 Therefore, we have eGyFxFyxxy ,  for any eKyx ,  with SEe . 

In view of Lemmas 3.2 and 3.4, we are to prove the following lemma, which takes an important role in proving 

the necessity of Theorem 3.1. 

Lemma 3.5 Let S  be a GV-semigroup. If SubfS  is distributive, then S  is a FU-band of unipotent epigroups  

)( Se EeK   and every eK  is a U-nilextension of a locally cyclic group eG  for any SEe . 

Proof. First by corollary 3.3, we have S is a band of unipotent epigroups )( Se EeK   every of which is a U-

nilextensions of a locally cyclic group eG for any SEe . Next we only need to prove  yFxFyxxy,  for any 

fe KyKx  ,  with SEfe ,  and fe  . Put  xxyFA ,  ,  xFB  and  yFC . Hence 

)(,,, CAxFxxyFyxFxxyF   
since SubfS is distributive. 

If },{ fe KK  is a left zero band, then efe KKKxy  , thus CA . Hence  xFxxyF , , and so  

 xFxy  , ..ei   yFxFxy . 

If },{ fe KK  is a right zero band, then ffe KKKxy  , thus CA . Put SubfSECA   and

DxyF  , then ExFxxyF  , , that is, DxFExFxyFxF   , hence  

DEBDDB  )()(  with DB  

and SubfS is distributive, and so 

DEDEDBDDDBDDB  )()()()( , 

therefore ED  , ..ei   yFExyF  , thus  yFxy . 

If },{ fe KK is a chain. It is easy to prove  yFxFxy . 

Lemma 3.6 Let S  be a GV-semigroup and  SS Y   a FU-band of GV-semigroups )( YS  , then 

BABAF ),(  for any SubfSA , SubfSB  where Y, with   . 

Proof. For any SAa  , SBb  , hence BAbFaFbaab ,  since S is a FU band of )( YS 

, and so BABA  , .  Let any )Re()Re(Re, gSBgSAgSBAa  ,  then BAa 1

 for SubfSBA , . Thus BABAF  , . 

Lemma 3.7 Let S  be a GV-semigroup and eK  a U-nilextension of eG for any SEe , then eSubfK

is embedded  into the direct product of ee GSubfK /  and eSubfG . 

Proof. We first make a map eeee SubfGGSubfKSubfK  /: , given by ),/)(()( eee GAGGAA  .For any

eSubfKBA , , we have ee SubfKGA  , ee SubfGGA  and   is injective, )()()( BABA   . Next 

we only need to prove )()()( BABA   . 

Notice  
),,/),(( eee GBAFGGBAFBA  ）（ , 

 
),,/)(,/)(()()(  eeeeee GBGAFGGBGGAFBA  . 

Clearly,  eeeeee GGBGGAFGGBAF /)(,/)(/),( since eK is a U-nilextension  of eG . Now we show 

 eee GBGAFGBAF ,, .For any eGBAx  , , then there exist )(,,, 21
 ZnBAxxx n  such 

that nxxxx 21 . Hence exxxxex n21 by eGx  and )( niGexex eii   by en Kxxx ,,, 21  , and so 

）（ exexexx n21 ))((  . And since 

)()()( eeei GBGAGBAex  for BAe  , 
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therefore  ee GBGAx , , ..ei  eee GBGAGBA ,, . Obviously eee GBAGBGA  ,, . 

Hence  eee GBGAGBA ,, , and so  eeee GBGAFGBAFGBAGV ,,),( . Thus we 

conclude that   is a monomorphism from eSubfK  to the direct product of ee GSubfK / and  eSubfG . 

Lemma 3.8 Let S be a GV-semigroup and  SS Y  a FU-band of GV-semigroups. )( YS  , then  

 Y SubfSSubfS   . 

Proof.  First  we  make  a  map  Y SubfSSubfS   :  and  define ),,()(   SAA   

for any SubfSBA , . Clearly,   is a injective and )()()( BABA   . Let any 

 Y SubfSH   ),,(  ,  SubfSH   and put  YHFA  / . 

 

By lemma 3.6, we get   HA Y , hence  ),,(),,()(   HSAA  , thus  is surjective. Next we 

prove )()()( BABA   . Notice  

 

),,,(),,(),,()()(    SBSAFSBSABA , 

 
),,,()(   SBAFBA  . From lemma 3.6, we get  

 

   SBSAFSBSAFSBSAFBAF YYY ,),,,()(),(,  , 
 

hence   SBSAFSBAF ,, , ..ei )()()( BABA   . Thus  Y SubfSSubfS   . 

From the above lemmas, we can prove the main result in the section. 

Proof. The necessity can be proved by lemma 3.5. To prove the sufficiency, suppose S  is a FU-band of unipotent 

epigroups )( Se EeK   and every eK is a U-nilextension of a locally cyclic group eG for any SEe . By lemma 3.7, 

we have eSubfK is  an  isomorphism  to  a  sublattice  of  the  direct  product of ee GSubfK /  and eSubfG

. And since ee SubfGSubgG   is distributive by eG  is a locally cyclic group and eeee GSubfKGSubK //   

is distributive, hence eSubfK is distributive. Thus we have SubfS   is distributive by lemma 3.8. 

The  following  result  for completely  regular  semigroups  follows  from Theorem 3.1 immediately. 

Theorem 3.9 Let S be a completely regular semigroup and SubfS  distributive if and only if S  is a FU-band of  

locally cyclic groups eG  for all SEe . 
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