There is Always a prime between n^{2} and $(\mathrm{n}+1)^{2}$

FAYEZ FOK AL ADEH

President of the Syrian Cosmological Society ${ }^{1}$
P.O.Box: 13187, Damascus, Syria

Corresponding Author *

ABSTRACT

I give an answer in the affirmative to the following unanswered question:
Is there always a prime between n^{2} and $(n+1)^{2}$ Where n is natural number?
The question represents a famous unsolved problem in Mathematics.
I employ some familiar ideas in Number Theory.
Mathematics Subject Classification: Number Theory, General Mathematics.

PROOF

Seeking for a contradiction, I assume that there exists a natural number n, such that there exist no prime numbers between n^{2} and $(\mathrm{n}+1)^{2}$

I apply the well-known theorem:
There is a constant A such that:
(1)
$\sum_{p \leq x} \frac{1}{p}=\log \log x+A+0\left(\frac{1}{\log x}\right)$ for all $x \geq 2$
O is the big oh notaion, The summation is taken over all primes
P less than or equal to x . The "log" is the natural logarithm.
According to formula (1)
(2) $\sum_{\mathrm{p} \leq \mathrm{n}^{2}} \frac{1}{\mathrm{p}}=\log \log \mathrm{n}^{2}+\mathrm{A}+\mathrm{o}\left(\frac{1}{\log n^{2}}\right)$
(3) $\sum_{\mathrm{p} \leq(\mathrm{n}+1)^{2}} \frac{1}{\mathrm{p}}=\log \log \left((\mathrm{n}+1)^{2}\right)+\mathrm{A}+\mathrm{o}\left(\frac{1}{\log (\mathrm{n}+1)^{2}}\right)$

Since I have assumed that there exist no prime numbers between
n^{2} and $(\mathrm{n}+1)^{2}$, we deduce that the left - hand sides of (2) and (3) are equal, hence.
(4) $\quad \log \log n^{2}+A+O\left(\frac{1}{\log n^{2}}\right)=\log \log \left((n+1)^{2}\right)+A+O\left(\frac{1}{\log (n+1)^{2}}\right)$

Hence we get
(5) $\quad \log \log \left((n+1)^{2}\right)-\log \log n^{2}=0\left(\frac{1}{\log n^{2}}\right)-O\left(\frac{1}{\log (n+1)^{2}}\right)$

We know that
(6) $\frac{\pi(X)}{x}=\mathrm{O}\left(\frac{1}{\log x}\right)$ for all $\mathrm{x} \geq 2$
$\pi(\mathrm{x})$ is the number of primes less than or equal to x

Now I assume that $(\mathrm{n}+1)$ is prime.
Thus
$\pi(\mathrm{n}+1)=\pi(\mathrm{n})+1$
We have that
(8) $\quad \frac{\pi\left(n^{2}\right)}{n^{2}}=\mathrm{O}\left(\frac{1}{\log n^{2}}\right)=\mathrm{O}\left(\frac{1}{2 \log n}\right)=\mathrm{O}\left(\frac{1}{\log n}\right)$
(9) $\quad \frac{\pi\left((n+1)^{2}\right)}{(n+1)^{2}}=\mathrm{O}\left(\frac{1}{\log (n+1) n^{2}}\right)=\mathrm{O}\left(\frac{1}{2 \log (n+1)}\right)=\mathrm{O}\left(\frac{1}{\log (n+1)}\right)$

Hence equation (5) becomes
(10) $\quad \log \log \left((\mathrm{n}+1)^{2}\right)-\log \log \mathrm{n}^{2}=\mathrm{O}\left(\frac{1}{\log n}\right)-\mathrm{O}\left(\frac{1}{\log (n+1)}\right)$

We know that, since log is the natural logarithm, and since the function $\left(\frac{1}{\log n}-\frac{1}{\log (n+1)}\right)$ is a decreasing function,
$\left(\frac{1}{\log n}-\frac{1}{\log (n+1)}\right)<\frac{1}{2(n+1)}$ for all $n>10$
we know also that

$$
\begin{equation*}
\mathrm{O}\left(\frac{1}{\log n}\right)=\frac{\pi(n)}{n} \tag{12}
\end{equation*}
$$

$\mathrm{O}\left(\frac{1}{\log (n+1)}\right)=\frac{\pi(n+1)}{(n+1)}$

Now using (11), (12), and (13), we can rewrite equation (10) in the form:
$\log \log \left((n+1)^{2}\right)-\log \log n^{2}=\frac{\pi(n)}{(n)}-\frac{\pi(n+1)}{(n+1)}+t($ for $n>10)$
where t is small number $\left(\mathrm{t}<\frac{1}{2(n+1)}\right)$
if we substitute from equation (7) we get:
$\log \log \left((n+1)^{2}-\log \log \mathrm{n}^{2}==\frac{\pi(n)}{(n)}-\frac{\pi(n)+1}{(n+1)}+\mathrm{t}==\frac{\pi(n)}{n(n+1)}-\frac{1}{(n+1)}+\mathrm{t}\right.$
that is
(16) $\quad \log \log \left((n+1)^{2}\right)-\log \log n^{2}=\frac{1}{(n+1)}\left(\frac{\pi(n)}{(n)}-1+t(n+1)\right)$
since
$\frac{\pi(n)}{(n)}<0.5$ for $\mathrm{n}>10$
and
$\mathrm{t}(\mathrm{n}+1)<\frac{1}{2(\mathrm{n}+1)} \times(\mathrm{n}+1)=0.5$
We conclude that the right - hand side of equation (16) is negative, and its left - hand side is positive. Hence we arrive at a contradiction.

Now I assume that $(\mathrm{n}+1)$ is a composite number. Let r be the greatest prime less than or equal to n .
According to a theorem in Number Theory, if k is a natural number, then there is a prime between k and 2 k .

Hence if n is even we have:
$\frac{n}{2} \leq \mathrm{r}<\mathrm{n}$
and if n is odd
$\frac{n-1}{2} \leq \mathrm{r} \leq \mathrm{n}$
In both cases we have
$\mathrm{O}\left(\frac{1}{\log r}\right)=\mathrm{O}\left(\frac{1}{\log (n+1)}\right)$
$\mathrm{O}\left(\frac{1}{\log (r-1)}\right)=\mathrm{O}\left(\frac{1}{\log n}\right)$
substituting in equation (10) we get
(23) $\quad \log \log \left((\mathrm{n}+1)^{2}\right)-\log \log \mathrm{n}^{2}=\mathrm{O}\left(\frac{1}{\log (r-1)}\right)-\mathrm{O}\left(\frac{1}{\log r}\right)$
we know that:
$\frac{\pi(r)}{r}=\mathrm{O}\left(\frac{1}{\log r}\right)$
$\frac{\pi(r-1)}{(r-1)}=\mathrm{O}\left(\frac{1}{\log (r-1}\right)$
we know that, since \log is the natural logarithm, and since the function:
$\left(\frac{1}{\log (r-1)}\right)-\left(\frac{1}{\log r}\right)$ is a decreasing function,
$\left(\frac{1}{\log (r-1)}\right)-\left(\frac{1}{\log r}\right)<\frac{1}{2 r}$ for all $\mathrm{r}>10$

Now using (24), (25), and (26), we can rewrite equation (23) in the form:
$\log \log \left((\mathrm{n}+1)^{2}\right)-\log \log \mathrm{n}^{2}=\frac{\pi(r-1)}{(r-1)}-\frac{\pi(r)}{(r)}+\mathrm{t}($ for $\mathrm{r}>10)$
where t is small number $\left(\mathrm{t}<\frac{1}{2 r}\right)$

But we know that
$\pi(\mathrm{r})=\pi(\mathrm{r}-1)+1$
hence equation (27) takes the form:
(29) $\quad \log \log \left((\mathrm{n}+1)^{2}\right)-\log \log \mathrm{n}^{2}=\frac{\pi(r-1)}{(r-1)}-\frac{\pi(r-1)+1}{r}+\mathrm{t}$
$=\frac{\pi(r-1)}{r(r-1)}-\frac{1}{r}+\mathrm{t}$
$=\frac{1}{r}\left(\frac{\pi(r-1)}{(r-1)}-1+\operatorname{tr}\right)$
that is
(30) $\quad \log \log \left((\mathrm{n}+1)^{2}-\log \log \mathrm{n}^{2}==\frac{1}{r}+\left(\frac{\pi(r-1)}{(r-1)}-1+\operatorname{tr}\right)\right.$
we know that
(31) $\quad\left(\frac{\pi(r-1)}{(r-1)}-<0.5\right.$ for $r>11$
and
(32) $\mathrm{t}<\frac{1}{2 r}$
that is
$\operatorname{tr}<0.5$
hence we conclude that the right - hand side of equation (30) is negative, and its left - hand side is positive. This is a contradiction.

This ends my proof.

References:

1. Apostol, Tom M. (1976) Introduction to Analytic Number Theory, New York: Springer - Verlag.
2. Ribenboim, Paulo (1988) The Book of prime Number Records, New York: Springer-Verlage.
3. Aigner, Martin/ Ziegler, Gunter M. (2002) Proofs from the book, Berlin: Srpinger - Verlag.
