

Volume 3, Issue 1 April 2, 2015

Journal of Progressive Research in Mathematics www.scitecresearch.com

There is Always a prime between n^2 and $(n+1)^2$

FAYEZ FOK AL ADEH

President of the Syrian Cosmological Society¹ P.O.Box: 13187, Damascus, Syria Corresponding Author *

ABSTRACT

I give an answer in the affirmative to the following unanswered question:

Is there always a prime between n^2 and $(n+1)^2$ Where n is natural number?

The question represents a famous unsolved problem in Mathematics.

I employ some familiar ideas in Number Theory.

Mathematics Subject Classification: Number Theory, General Mathematics.

PROOF

Seeking for a contradiction, I assume that there exists a natural number n, such that there exist no prime numbers between n^2 and $(n+1)^2$

I apply the well-known theorem:

There is a constant A such that:

(1)
$$\sum_{p \le x} \frac{1}{p} = \log \log x + A + O\left(\frac{1}{\log x}\right)$$
 for all $x \ge 2$

O is the big oh notaion, The summation is taken over all primes

P less than or equal to x. The "log" is the natural logarithm.

According to formula (1)

(2)
$$\sum_{p \le n^2} \frac{1}{p} = \log \log n^2 + A + O\left(\frac{1}{\log n^2}\right)$$

(3)
$$\sum_{p \le (n+1)^2} \frac{1}{p} = \log \log ((n+1)^2) + A + O \left(\frac{1}{\log (n+1)^2}\right)$$

Since I have assumed that there exist no prime numbers between

 n^2 and $(n+1)^2$, we deduce that the left – hand sides of (2) and (3) are equal, hence.

(4)
$$\log \log n^2 + A + O\left(\frac{1}{\log n^2}\right) = \log \log \left((n+1)^2\right) + A + O\left(\frac{1}{\log(n+1)^2}\right)$$

Hence we get

(5)
$$\log \log ((n+1)^2) - \log \log n^2 = 0 \left(\frac{1}{\log n^2}\right) - 0 \left(\frac{1}{\log(n+1)^2}\right)$$

We know that

(6)
$$\frac{\pi(x)}{x} = O\left(\frac{1}{\log x}\right)$$
 for all $x \ge 2$

 π (x) is the number of primes less than or equal to x

Now I assume that (n+1) is prime. Thus

(7)
$$\pi$$
 (n+1) = π (n) + 1

We have that

(8)
$$\frac{\pi(n^2)}{n^2} = O\left(\frac{1}{\log n^2}\right) = O\left(\frac{1}{2\log n}\right) = O\left(\frac{1}{\log n}\right)$$

(9)
$$\frac{\pi((n+1)^2)}{(n+1)^2} = O\left(\frac{1}{\log(n+1)n^2}\right) = O\left(\frac{1}{2\log(n+1)}\right) = O\left(\frac{1}{\log(n+1)}\right)$$

Hence equation (5) becomes

(10)
$$\log \log ((n+1)^2) - \log \log n^2 = O\left(\frac{1}{\log n}\right) - O\left(\frac{1}{\log(n+1)}\right)$$

We know that, since log is the natural logarithm, and since the function $\left(\frac{1}{\log n} - \frac{1}{\log(n+1)}\right)$ is a decreasing function,

(11)
$$\left(\frac{1}{\log n} - \frac{1}{\log(n+1)}\right) < \frac{1}{2(n+1)} \text{ for all } n > 10$$

we know also that

(12)
$$O\left(\frac{1}{\log n}\right) = \frac{\pi(n)}{n}$$

(13) O
$$\left(\frac{1}{\log(n+1)}\right) = \frac{\pi(n+1)}{(n+1)}$$

Now using (11), (12), and (13), we can rewrite equation (10) in the form:

(14) $\log \log ((n+1)^2) - \log \log n^2 = \frac{\pi (n)}{(n)} - \frac{\pi (n+1)}{(n+1)} + t \text{ (for } n > 10\text{)}$ where t is small number (t < $\frac{1}{2(n+1)}$)

if we substitute from equation (7) we get:

(15)
$$\log \log ((n+1)^2 - \log \log n^2 = = \frac{\pi (n)}{(n)} - \frac{\pi (n) + 1}{(n+1)} + t = = \frac{\pi (n)}{n (n+1)} - \frac{1}{(n+1)} + t$$

that is

(16)
$$\log \log ((n+1)^2) - \log \log n^2 = \frac{1}{(n+1)} \left(\frac{\pi (n)}{(n)} - 1 + t (n+1)\right)$$

since

(17)
$$\frac{\pi(n)}{(n)} < 0.5 \text{ for } n > 10$$

and

(18)
$$t(n+1) < \frac{1}{2(n+1)} \times (n+1) = 0.5$$

We conclude that the right – hand side of equation (16) is negative, and its left – hand side is positive. Hence we arrive at a contradiction.

Now I assume that (n+1) is a composite number. Let r be the greatest prime less than or equal to n. According to a theorem in Number Theory, if k is a natural number, then there is a prime between k and 2k.

Hence if n is even we have:

(19)
$$\frac{n}{2} \leq r < n$$

and if n is odd

$$(20) \quad \frac{n-1}{2} \le r \le n$$

In both cases we have

(21)
$$O\left(\frac{1}{\log r}\right) = O\left(\frac{1}{\log (n+1)}\right)$$

(22) $O\left(\frac{1}{\log (r-1)}\right) = O\left(\frac{1}{\log n}\right)$

substituting in equation (10) we get

(23)
$$\log \log ((n+1)^2) - \log \log n^2 = O\left(\frac{1}{\log (r-1)}\right) - O\left(\frac{1}{\log r}\right)$$

we know that:

(24)
$$\frac{\pi(r)}{r} = O\left(\frac{1}{\log r}\right)$$

(25)
$$\frac{\pi (r-1)}{(r-1)} = O\left(\frac{1}{\log(r-1)}\right)$$

we know that, since log is the natural logarithm, and since the function: $\left(\frac{1}{\log (r-1)}\right) - \left(\frac{1}{\log r}\right)$ is a decreasing function,

(26)
$$\left(\frac{1}{\log (r-1)}\right) - \left(\frac{1}{\log r}\right) < \frac{1}{2r}$$
 for all $r > 10$

Now using (24), (25), and (26), we can rewrite equation (23) in the form:

(27)
$$\log \log ((n+1)^2) - \log \log n^2 = \frac{\pi (r-1)}{(r-1)} - \frac{\pi (r)}{(r)} + t \text{ (for } r > 10\text{)}$$

where t is small number $(t < \frac{1}{2r})$

But we know that

(28)
$$\pi$$
 (r) = π (r-1) + 1

hence equation (27) takes the form:

(29)
$$\log \log ((n+1)^2) - \log \log n^2 = \frac{\pi (r-1)}{(r-1)} - \frac{\pi (r-1)+1}{r} + t$$
$$= \frac{\pi (r-1)}{r(r-1)} - \frac{1}{r} + t$$
$$= \frac{1}{r} \left(\frac{\pi (r-1)}{(r-1)} - 1 + tr \right)$$

that is

(30)
$$\log \log ((n+1)^2 - \log \log n^2 = = \frac{1}{r} + (\frac{\pi (r-1)}{(r-1)} - 1 + tr)$$

we know that

(31)
$$\left(\frac{\pi (r-1)}{(r-1)} - < 0.5 \text{ for } r > 11\right)$$

and

(32)
$$t < \frac{1}{2r}$$

that is

(33) tr < 0.5

hence we conclude that the right – hand side of equation (30) is negative, and its left – hand side is positive. This is a contradiction.

This ends my proof.

References:

- 1. Apostol, Tom M. (1976) Introduction to Analytic Number Theory, New York: Springer Verlag.
- 2. Ribenboim, Paulo (1988) The Book of prime Number Records, New York: Springer-Verlage.
- 3. Aigner, Martin/ Ziegler, Gunter M. (2002) Proofs from the book, Berlin: Srpinger Verlag.