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Abstract  

This study investigates the stagnation point flow of a MHD Powell-Eyring fluid over a nonlinearly 

stretching sheet in the presence of heat source/sink. Similarity transformations are used to convert highly 

non-linear partial differential equations into ordinary differential equations. The transformed nonlinear 

boundary layer equations are then solved numerically using Keller Box method. The effects of various 

physical parameters on the dimensionless velocity and temperature profiles are depicted graphically. 

Present results are compared with previously published work and the results are found to be in very good 

agreement. Numerical results for local skin-friction and local Nusselt number are tabulated for different 

physical parameters. 

Keywords: Velocity ratio parameter; Radiation parameter; Stagnation point; Non linear stretching 

parameter; heat source/sink; Powell-Eyring fluid. 

 

Introduction :    

The study of the boundary layer flow of non-Newtonian fluids on a stretching surface has become a 

popular research area for its commercial importance. Such fluid flows unremarkably appears in several 

technological process industries, for example, the continuous stretching of plastic films, coal-oil slurries, 

metal spinning, metal extrusion, continuous casting, glass blowing, extrusion of a polymer sheet from die 

etc. Due to the flow diversity in nature, the rheological features of non-Newtonian fluids cannot be 

captured by a single constitutive relationship between stress and shear rate. For this reason, a variety of 

non-Newtonian fluid models (exhibiting different rheological effects) are available in the literature [1-7]. 

Eyring-Powell model fluid is one of these models. Eyring-Powell model was first introduced by Powell 

and Eyring in1944 [8]. However, the literature survey indicates that very low energy has been devoted to 

the flows of Eyring-Powell model fluid with variable viscosity. It can be used to formulate the flows of 

modern industrial materials such as powdered graphite and ethylene glycol. Patel and Timol [9] 

numerically examined the flow past a wedge, using the Powell–Eyring model. The flow and heat transfer 

of the Powell–Eyring fluid over a continuously moving surface in the presence of a free-stream velocity 

was investigated by Hayat et al. [10]. The boundary layer flow of the Powell-Eyring fluid over a linearly 

stretching sheet was analyzed by Javed [11]. The flow and heat transfer of Powell-Eyring fluid over a 
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moving surface was examined by Jalil [12].  Many papers on the boundary layer flow of Powell–Eyring 

fluid [13–16] are investigated in different situations. 

The flow over a stretching plate was first considered by Crane [17] who found a closed form analytic 

solution of the self-similar equation for steady boundary layer flow of a Newtonian fluid. Wang [18] 

discussed the three-dimensional flow behavior due to the stretching surface. The uniqueness of the 

solution obtained by Crane [17] was presented by McLeod and Rajagopal [19]. On the other hand, Chiam 

[20] investigated the stagnation-point flow towards a stretching sheet and found no boundary layer 

structure near the sheet. Mahapatra and Gupta [21] reinvestigated the same stagnation-point flow towards 

a stretching sheet and found two kinds of boundary layer near the sheet depending on the ratio of the 

stretching and straining rates. Ishak et al.[22] studied the MHD stagnation point flow towards a stretching 

sheet. Pop et al. [23] studied theoretically the steady two-dimensional stagnation-point flow of an 

incompressible fluid over a stretching sheet by taking into account of radiation effect. Vajravelu [24] 

studied flow and heat transfer over a non-linear stretching sheet. Prasad et al.[25] investigated the effects 

of variable viscosity and variable thermal conductivity on the hydromagnetic flow and heat transfer over 

a nonlinear stretching sheet. Abel et al. [26] investigated the steady buoyancy-driven dissipative magneto 

convective flow from a vertical nonlinear stretching sheet. Hayat et al. [27] studied the problem of 

stagnation-point flow toward a nonlinearly stretching surface in a micropolar fluid. Several other studies 

have addressed various aspects of heat and flow characteristics[28–31]. 

In all these above studies, the flow and temperature fields are considered to be over linear and non-linear 

stretching sheet. An interesting extension to the problem of stretching sheet has been considered in the 

present paper is the effect of heat source/sink which is very important in cooling processes. Ibrahim and 

Shanker [32] have used Quasi-Linearization technique to investigate unsteady MHD boundary layer flow 

and heat transfer due to stretching sheet in the presence of heat source or sink. Khan [33] studied heat 

transfer in a viscoelastic fluid flow over a stretching surface with heat source/sink, suction/blowing and 

radiation. The analytical results were carried out by Vajravelu and Hadjinicolaou[34] who took the 

effects of viscous dissipation and internal heat generation into account. Veena et al.[35] obtained the 

solutions of heat transfer in a visco elastic fluid past a stretching sheet with viscous dissipation and 

internal heat generation. Effects of heat source/sink on the boundary layer flow over a stretching sheet 

were studied by several authors[36-38]. 

Motivated by the literature above, the present work aimed to study the stagnation point flow of a MHD 

Powell-Eyring fluid over a nonlinearly stretching sheet in the presence of heat source/sink To achieve 

this purpose, we used the well-known numerical technique called the Keller-Box method. 

Mathematical Formulation: 

Consider the steady laminar flow of a non-Newtonian fluid obeying Powell-Eyring model over a 

nonlinear stretching surface. For the flow problem, let the x-axis be taken along the surface and y-axis be 

normal to it. Two equal and opposite forces are applied along the x-axis, keeping the origin fixed. The 

surface is stretched in the x-direction such that the x-component of the velocity varies non-linearly along 

it, i.e. 𝑈𝑤  𝑥 = 𝑐𝑥𝑛  where c > 0 is constant of proportionality and n is a power index. A magnetic field 

of uniform strength 𝐵0 is applied perpendicular to the surface. The magnetic Reynolds number is taken to 

be small enough so that the induced magnetic field can be neglected in comparison to the applied 

magnetic field. It is also assumed that the ambient fluid is moved with a velocity 𝑈∞ 𝑥 = 𝑎𝑥𝑛 , where a 

> 0 is a constant. 

The Cauchy stress tensor in Powell-Eyring fluid is given by 
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where 𝜇 is the viscosity coefficient , 𝛽 and C are the material fluid parameters. 

 In this situation under the usual boundary layer approximation, the continuity, momentum, energy 

equations are : 
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where u, v are the velocity components in x, y direction respectively, 𝜈 is the kinematic viscosity, 𝜌 is the 

viscosity, 𝜅 is the thermal diffusivity of the fluid  , 𝐶𝑝  is the specific heat and 𝐵 =  𝐵0 𝑥
𝑛−1

2  is the 

magnetic parameter. 

Following Rosseland approximation, the radiative heat flux qr  is modelled as   

  𝑞𝑟 =  −(
4𝜎∗ 

3𝑘∗)
𝜕𝑇4

𝜕𝑦
           ( 5 ) 

where 𝜎∗ is the Stefan-Boltzmann constant and 𝑘∗ is the absorption coefficient. Assuming that the 

differences in temperature within the flow are such that 𝑇4 can be expressed as a linear combination of 

the temperature, we expand 𝑇4 in a Taylor’s series about T∞  as follows 

𝑇4 = 𝑇∞
4 + 4𝑇∞

3 T − T∞ + 6𝑇∞
2 T − T∞ 2 + ⋯,     ( 6 ) 

and neglecting the higher order terms beyond first degree in   T − T∞  we get 

𝑇4 ≅ −3𝑇∞
4 + 4𝑇∞

3 T         ( 7 ) 

substituting eq.(7) in eq.(5) we get 

∂qr
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         ( 8 ) 

using eq.(8) in eq.(4) we obtain 
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 The suitable boundary conditions are given by  

                                          𝑢 = 𝑈𝑤 = 𝑐𝑥𝑛 ,      𝑣 = 0,        𝑇 = 𝑇𝑤 ,   at  𝑦 = 0 

               𝑢 → 𝑈∞ ,          𝑇 → 𝑇∞            at   𝑦 → ∞ 
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                         Here, 𝑐 (𝑐 > 0) is the surface stretching sheet related parameter.  𝑇𝑤 ,  𝑇∞ are the 

uniform temperature at the sheet, free stream temperature respectively  and n is the power index 

related to the surface stretching speed.   

                       With the help of following similarity transformations  

                                   𝑢 = 𝑐𝑥𝑛𝑓 ′ 𝜂  ,    𝑣 =  𝑐 𝜈  
 𝑛+1 

2
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2  [ f ( 𝜂) +
𝑛−1
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                                 𝜃 𝜂 =
𝑇  − 𝑇∞

𝑇𝑊−𝑇∞
     ,        𝜂 = 𝑦 

𝑐 𝑛+1 

2𝜈 
𝑥

𝑛−1

2  

The equations (3) and (4) are transformed into coupled non linear ordinary differential equations 

as follows. 
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 2
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       (1 +
4𝑅

3
)  𝜃 ′′ + Pr⁡(𝑓𝜃 ′ +

2

𝑛 + 1
𝑄𝜃) = 0 

and the boundary conditions are transformed into 

𝑓 ′ 𝜂 = 1,   𝑓 𝜂 = 0,   𝜃 𝜂 = 1  𝑎𝑡  𝜂 = 0                                                                                                                                                                                

                                              𝑓 ′ 𝜂 → 𝜆,           𝜃 𝜂 → 0    𝑎𝑡  𝜂 = ∞                       

Where 𝑃𝑟 =
𝜇𝑐𝑝

𝜅
  is the Prandtl Number, 𝑄 =  

𝑄0𝑥

𝑈𝑤𝜌𝑐𝑝
        is the Heat source for 𝑄 > 0,  and 

for sink 𝑄 < 0 parameter and 𝑅 =
4𝜎∗ 𝑇∞

3

𝑘𝑘∗
     is the Radiation parameter, 𝜆 =

𝑎

𝑐
  is  the velocity 

ratio parameter, 𝛤 =
1

𝜇𝛽𝐶
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𝜌𝑈𝑤
3
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(𝑛+1)

2
 are dimensionless material fluid parameters 

Hence the dimensionless form of  Skin friction  𝐶𝑓  and the Local Nusselt number 𝑁𝑢𝑥  are given 

by  

 𝐶𝑓  (𝑅𝑒𝑥)1 2 =   1 + 𝛤 𝑓 ′′   0  −
𝛤

3
𝛽𝑓 ′′ 3  0   ,            (𝑅𝑒𝑥)

−1 2 
𝑁𝑢𝑥 =  −(1 +

4𝑅

3
)  𝜃′(0) 

where  𝑅𝑒𝑥 =  
𝑈𝑤 𝑥

𝜈
  is the local Reynolds number. 

Results and Discussion : 

The stagnation point flow of a magnetohydrodyanamic Powell-Eyring fluid over a nonlinearly 

stretching sheet in the presence of heat source/sink were solved by applying Keller Box method. 

In this section, we concentrate for the variations of emerging parameters on the velocity and 

temperature, the skin friction and the local Nusselt number. In particular, the variations of 

parameters  like Magnetic parameter(M), Velocity Ratio parameter ( λ ), Prandtl number (Pr) , 
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Radiation parameter (R), Heat source 𝑄 and the nonlinear stretching parameter(n), 

dimensionless material fluid parameters ( Γ and β ) are analyzed. The values of the parameters 

are fixed as β = 0.5, λ = R = Q = Γ = 0.2, Pr  = 0.71, n = 2, M = 1, unless otherwise specified. 

 

Fig 1: Effect of λ on velocity profile                          Fig 2 : Effect of nonlinear stretching parameter on  

                                                                                               velocity profile          

 

Figure 1 illustrates the influence of velocity ratio parameter λ on velocity graph. When λ > 1 i.e., 

the  free stream velocity exceeds the stretching sheet velocity , the flow velocity increases and 

the boundary layer thickness decreases with increase in λ. Moreover for λ < 1, when the free 

stream velocity less than stretching velocity, the flow field velocity increases and boundary layer 

thickness also increases. When λ = 1 (the  velocity of the stretching sheet equals to free stream 

velocity) there is no flow near the sheet. 

Figure 2 shows the influence of n on the velocity profile. Increasing the value of n decreases 

velocity of the fluid. The boundary layer thickness also decreases as n increases. 

 

Fig 3: Effect of  M on velocity profile                          Fig 4 : Effect of  Γ on velocity profile          
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Fig. 3 exhibits the effect of magnetic parameter on the dimensionless velocity. It is observed that 

the velocity profile is reduced with increasing values of M .An increase in magnetic parameter 

M results in a strong reduction in dimensionless velocity. This is due to the fact that magnetic 

field introduces a retarding body force which acts transverse to the direction of the applied 

magnetic field. This body force, known as the Lorentz force, decelerates the boundary layer 

flow. 

 Figures 4 and 5 shows the influence of fluid parameter Γ for velocity and temperature profiles 

Variation in the x-component of velocity with an increase in the fluid parameter Γ can be 

described from Fig. 4. Here, the velocity field  increases with an increase in Γ. 

Temperature profiles for different values of Γ are shown in Fig 5. It is seen that temperature 

profile is an decreasing function of  Γ. 

Variation in temperature profile with an increase in β can be seen from Fig. 6. It is noticed that 

the temperature decreases and boundary layer thins when β is increased.  

 

Fig 5 : Effect of  Γ on temperature profile                      Fig 6 : Effect of β on temperature profile 

 

Fig 7 : Effect of Pr on temperature profile                       Fig 8 : Effect of R on temperature profile 
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a higher Prandtl number fluid has relatively low thermal conductivity, which reduces conduction and 

thereby the thermal boundary layer thickness; and as a result, temperature decreases. Increasing Pr is to 

increase the heat transfer rate at the surface because the temperature gradient at the surface increases.  

The influence of the thermal radiation on temperature is depicted in Fig. 8. It is interesting to note that 

thermal radiation has a major influence on the temperature distribution in the fluid. We observed that the 

fluid temperature increases by increasing thermal radiation. This is due to the fact that increase in the 

values of the thermal radiation parameter increases radiation in the boundary layer, and hence increases 

the values of the temperature profiles in the thermal boundary layer. 

Fig. 9 shows the variation of temperature with respect to heat source/ sink When heat sink (Q < 0) 

increases more heat removed from the sheet which reduce the thermal boundary-layer thickness. This 

reduce the temperature of the sheet. It is observed that when heat source (Q > 0 ) increases the 

temperature increases. This due to the fact that heat source can add more heat to the stretching sheet 

which increases its temperature. This increases the thermal boundary layer thickness.  

 

Fig 9 : Effect of Q on temperature profile 

 

Table 1: Comparison of Wall temperature gradient −𝜃′(0) for different values of Pr 

Pr 

Grubka and 

Bobba [39] Chen[40] K.V.Prasad et.al [41] 

Present 

Work 

0.72 0.4631 0.46315 0.463146 0.46314 

1 0.587 0.58199 0.58267 0.58198 

3 1.1652 1.16523 1.165171 1.1652 

5 -  -  1.568008 1.5681 

10 2.308 2.30796 2.308028 2.3081 

100 7.7657  - 7.769666 7.7697 
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Table 2: Computed values of Local Nusselt number −𝜃 ′  0    for  various values of Pr, R and Q 

Pr R Q −(1 +
4𝑅

3
)  𝜃′(0)  

1     0.50037 

2     0.80778 

3     1.05467 

  0.1   0.37951 

  0.5   0.422 

  1   0.4619 

    -0.2 0.63234 

    -0.1 0.58097 

    0.1 0.46236 

    0.2 0.39148 

 

Table 3 : Computed values of skin friction coefficient  𝑅𝑒𝑥

1

2𝐶𝑓    for  various parameters 

 

 

 

 

 

 

 

 

 

 

 

In order to find the accuracy of our work, a comparison has been made with the previous results 

of Grubka and Bobba [39], Chen[40] , K.V.Prasad et.al [41] and we obtained excellent agreement 

which are displayed in Table 1.Table 2 presents the variation in Local Nusselt number with 

respect to various flow parameters. It shows that heat transfer rate − 𝜃′  0     increases for 

radiation parameter R and Prandtl number but for heat source/sink  − 𝜃′  0    decreases.Table 3 

shows the variations of  skin friction coefficient 𝑅𝑒𝑥

1

2𝐶𝑓    for  various parameters. It can be 

Γ β λ M n 𝑅𝑒𝑥

1

2𝐶𝑓   

0.2         1.4021 

0.4         1.50607 

0.6         1.60573 

  0.2       1.41146 

  0.6       1.39885 

  0.8       1.39212 

    0.2     1.4021 

    0.4     1.3294 

    0.6     0.80611 

      1   1.4021 

      2   1.64117 

      3   1.84599 

        1 1.3189 

        3 1.44181 

        5 1.4804 
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observed from the table that the values of skin friction coefficient increases for all parameters 

except for  velocity ratio parameter λ and dimensionless fluid parameter β.  

Conclusion: 

The stagnation point flow of a MHD Powell-Eyring fluid over a nonlinearly stretching sheet in 

the presence of heat source/sink has been analyzed. The transformed nonlinear ordinary 

differential equations are solved by using the well-known Keller Box method. The numerical 

results obtained are in excellent agreement with the previously published data available in the 

literature in limiting condition for some particular cases of the present study. The following 

important observations can be derived from the numerical results: 

 For the free stream velocity dominating the  stretching velocity ( λ > 1), the velocity field 

increases and momentum boundary layer thickness decreases; however, the boundary 

layer thickness and flow field  velocity increases for λ < 1. 

 Influence of both magnetic  and nonlinear stretching parameters decreases the velocity 

profile. 

 As the fluid parameter Γ increases, the velocity profile increases whereas the temperature 

profile decreases. 

 The thermal boundary layer thickness decreases with the effect of Prandtl number but 

quite opposite effect is observed for radiation parameter. 

 The thermal boundary layer thickness decreases for heat sink (Q < 0) and increases for  heat 

source (Q > 0 ). 

References: 

[1] Harris J (1977) Rheology and non-Newtonian flow, Longman. 

[2] Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Wiley.  

[3] K. R. Rajagopal, “A note on unsteady unidirectional flows of a non-Newtonian fluid,” 

International Journal of Non-Linear Mechanics,vol.17,no.5-6,pp.369–373,1982. 

[4] K.R.Rajagopal and R.K.Bhatnagar,“Exact solutions for some simple flows of an Oldroyd-B 

fluid,” Acta Mechanica, vol. 113, no. 1–4, pp. 233–239, 1995. 

[5] K. R. Rajagopal, “On the creeping flow of the second-order fluid,” Journal of Non-Newtonian 

Fluid Mechanics,vol.15,no. 2, pp. 239–246, 1984. 

[6] T. Hayat, S. Asghar, and A. M. Siddiqui, “Periodic unsteady flows of a non-Newtonian fluid,” 

Acta Mechanica,vol.131,no.3-4, pp. 169–175, 1998. 

[7] T. Hayat, S. Asghar, and A. M. Siddiqui, “Some unsteady unidirectional flows of a non-

Newtonian fluid,” International Journal of Engineering Science,vol.38,no.3,pp.337–346,2000. 

[8] R. E. Powell and H. Eyring, “Mechanism for Relaxation Theory of Viscosity,” Nature 154, 

427–428 (1944) 

[9] M. Patel and M. G. Timol, “Numerical Treatment of Powell–Eyring Fluid Flow Using Method 

of Asymptotic Boundary Conditions,” Appl. Numer. Math. 59, 2584–2592 (2009). 

[10] T. Hayat, Z. Iqbal, M. Qasim, and S. Obaidat, “Steady Flow of an Eyring–Powell Fluid over a 

Moving Surface with Convective Boundary Conditions,” Int. J. Heat Mass Transfer. 55, 1817–

1822 (2012). 



                                                                      Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                               

ISSN: 2395-0218   

 
Volume 8, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm                                                1299| 

[11] T. Javed, N. Ali, Z. Abbas, M. Sajid, Flow of an Eyring-Powell Non-Newtonian Fluid over a 

Stretching Sheet Chemical Engineering Communications 200 (2013) 327-336. 

[12] M. Jalil, S. Asghar, S. M. Imran, Self similar solutions for the flow and heat transfer of Powell-

Eyring fluid over a moving surface in a parallel free stream, International Journal of Heat and 

Mass Transfer 65 (2013) 73-79. 

[13] Mushtaq A, Mustafa M, Hayat T, Rahi M, Alsaedi A (2013) Exponentially stretching sheet in a 

Powell-Eyring fluid: Numerical and series solutions. Z.Naturforsch. 68a: 791–798. 

[14]  Khader MM, Megahed AM (2013) Numerical studies for flow and heat transfer of the Powell-

Eyring fluid thin film over an unsteady stretching sheet with internal heat generation using the 

chebyshev finite difference method. J. Applied Mechanics Technical Phys, 54: 440–450. 

[15] V. Sirohi, M. G. Timol, and N. L. Kalathia, “Numerical Treatment of Powell–Eyring Fluid 

Flow Past a 90 degree Wedge,” Reg. J. Energy Heat Mass Transfer 6 (3), 219–228 (1984). 

[16] Zaman H (2013) Unsteady Incompressible Couette Flow Problem for the Eyring-Powell Model 

with Porous Walls. American J. Computational Math, 3:313–325. 

[17] Crane L J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik, 

1970, 21(4): 645–647 

[18] Wang C Y. The three dimensional flow due to a stretching flat surface. Physics of Fluids, 1984, 

27(8): 1915–1917 

[19] McLeod J B, Rajagopal K R. On the uniqueness of flow of a Navier–Stokes fluid due to a 

stretching boundary. Archive for Rational Mechanics and Analysis, 1987, 98(4): 385–393 

[20] Chiam TC. Stagnation-point flow towards a stretching plate. J Phys Soc Jpn 1994;63:2443–4. 

[21] Mahapatra TR, Gupta AS. Magnetohydrodynamic stagnation-point flow towards a stretching 

sheet. Acta Mech 2001;152:191–6. 

[22] A. Ishak, K. Jafar, R. Nazar, I. Pop, MHD stagnation point flow towards a stretching sheet, 

Physics A 388 (2009) 3377–3383. 

[23]  S.R. Pop, T. Grosan, I. Pop, Radiation effects on the flow near the stagnation point of a 

stretching sheet, Tech. Mech. 29 (2004) 100–106. 

[24] K. Vajravelu, Viscous flow over a nonlinearly stretching sheet, Appl. Math. Comput. 124 

(2001) 281–288. 

[25] K.V. Prasad, K. Vajravelu, P.S. Dattri, Mixed convection heat transfer over a non-linear 

stretching surface with variable fluid properties, Int. J. Non-linear Mech. 45 (2010) 320–330.  

[26] M.S. Abel, K.A. Kumar, R. Ravikumara, MHD flow and heat transfer with effects of buoyancy, 

viscous and joule dissipation over a nonlinear vertical stretching porous sheet with partial slip, 

Engineering 3 (2011) 285–291. 

[27] T. Hayat, T. Javed, and Z. Abbas, “MHD flow of a micropolar fluid near a stagnation-point 

towards a non-linear stretching surface,” Nonlinear Analysis: Real World Applications, vol.10, 

no.3,  pp. 1514–1526, 2009. 

[28] P. Rana, R. Bhargava, Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: 

a numerical study, Commun.Nonlinear Sci. Numer. Simul. 17 (2012) 212–226. 

[29] Z. Abbas,T. Hayat, Stagnation Slip Flow and Heat Transfer over a Nonlinear Stretching Sheet.   

[30] T. Hayat,T. Javed, Z. Abbas  MHD flow of a micropolar fluid near a stagnation-point towards a 

non-linear   stretching surface Volume 10, Issue 3, June 2009, Pages 1514–1526 

[31] Mabood, F., Khan, W.A. and Ismail, A.I.M. (2015) MHD Boundary Layer Flow and Heat 

Transfer of Nanofluids over a Nonlinear Stretching Sheet: A Numerical Study. Journal of 

Magnetism and Magnetic Materials, 374, 569-576. 

http://www.sciencedirect.com/science/article/pii/S1468121808000291
http://www.sciencedirect.com/science/article/pii/S1468121808000291
http://www.sciencedirect.com/science/article/pii/S1468121808000291
http://www.sciencedirect.com/science/journal/14681218/10/3


                                                                      Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                               

ISSN: 2395-0218   

 
Volume 8, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm                                                1300| 

[32] W Ibrahim and B. Shanker Int. J. Appl. Math. Mech. 8 18 (2012) 

[33] Khan, S.K.: Heat transfer in a viscoelastic fluid flow over a stretching surface with heat 

source/sink, suction/blowing and radiation. Int. J. Heat Mass Tran. 49, 628–639 (2006). 

[34] Vajravelu, K. and Hadjinicolaou, A. Heat transfer in a viscous fluid over a stretching sheet with 

viscous dissipation and internal heat generation. International Communications in Heat and 

Mass Transfer, 20(3), 417–430 (1993) 

[35] Veena, P. H., Subhas-Abel, M., Rajagopal, K., and Pravin, V. K. Heat transfer in a visco-elastic 

fluid past a stretching sheet with viscous dissipation and internal heat generation. Zeitschrift f ur 

Angewandte Mathematik und Physik (ZAMP), 57(3), 447–463 (2006) 

[36] Abo-Eldahab Emad, M., El Aziz Mohamed, A., 2004. Blowing suction effect on hydro 

magnetic heat transfer by mixed convection from an inclined continuously stretching surface 

with internal heat generation/absorption. Int. J. Therm. Sci. 43, 709–719. 

[37] Sharma, P.  R. and Singh, G. 2008. Effect of variable thermal conductivity and heat source/sink 

on Magnetohydrodynamic flow near a stagnation point on a linearly stretching sheet. Journal of 

Applied Fluid Mechanics, 1: 13-21. 

[38] Mohamed RA, Abo-Dahab SM. Influence of chemical reaction and thermal radiation on the 

heat and mass transfer in MHD micropolar flow over a vertical moving porous plate in a porous 

medium with heat generation. Int J Thermal Science 2009;48:1800–13. 

[39] Grubka LG, and Bobba KM (1985). Heat transfer characteristics of a continuous stretching  

surface with variable temperature. ASME J. Heat Transfer. 107, pp. 248–250. 

[40] Chen CK, and Char MI (1988). Heat transfer of a continuous stretching surface with suction or 

blowing. J. Math. Anal. Appl.135, pp. 568–580. 

[41] K. V. Prasad , P. S. Datti and B. T. Raju,  "Momentum and Heat transfer of a Non-Newtonian 

Eyring-Powell fluid over a non-isothermal stretching sheet". International Journal of 

Mathematical Archive- 4(1), 2013, 230-241. 

 

 

 

 


