SCITECH
Volume 8, Issue 2
RESEARCH ORGANISATION|
Published online: July 04, 2016|

Journal of Progressive Research in Mathematics

www.scitecresearch.com/journals

The Spectrum and The Numerical Range of $w_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ and $\mathcal{W}_{f, \psi}^{*} \mathcal{W}_{f, \varphi}$

Abood E. H. and Mohammed A. H.

Department of Mathematics, College of science, University of Baghdad, Jadirya, Baghdad, Iraq.

Abstract

In this paper we study the spectrum and the numerical range of weighted composition operator with the adjoint of weighted composition operator $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ and $\mathcal{W}_{f, \psi}^{*} \mathcal{W}_{f, \varphi}$ induced by linear -fractional self- maps φ and ψ of \mathbb{U} on Hardy space \mathbb{H}^{2}.

1. Introduction

Let U denote the open unite disc in the complex plan ,let \mathbb{H}^{∞} denote the collection of all holomorphic function on U and let \mathbb{H}^{2} is consisting of all holomorphic self-map on U such that $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ whose Maclaurin coefficients are square summable (i.e)
$f(z)=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty$. More precisely $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ if and only if $\|f\|=$ $\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty$. The inner product inducing the \mathbb{H}^{2} norm is given by $\langle f, g\rangle=\sum_{n=0}^{\infty} a_{n} \overline{b_{n}}$.
Given any holomorphic self-map φ on U , recall that the composition operator

Is called the composition operator with symbol φ, is necessarily bounded.Let $f \in \mathbb{H}^{\infty}$, the operator $T_{f}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ defined by

$$
T_{f}(h(z))=f(z) h(z), \quad \text { for all } z \in U, h \in \mathbb{H}^{2}
$$

is called the Toeplitz operator with symbol f.Since $f \in \mathbb{H}^{\infty}$, then we call T_{f} a holomorphic Toeplitz operator. If T_{f} is a holomorphic Toeplitz operator, then the operator $T_{f} C_{\varphi}$ is bounded and has the form

$$
T_{f} C_{\varphi} g=f(g \circ \varphi) \quad\left(g \in \mathbb{H}^{2}\right)
$$

We call it the weighted composition operator with symbols f and φ [1] and [3], the linear operator

$$
\mathcal{W}_{f, \varphi} g=f(g \circ \varphi) \quad\left(g \in \mathbb{H}^{2}\right)
$$

We distinguish between the two symbols of weighted composition operator $\mathcal{W}_{f, \varphi}$, by calling f the multiplication symbol and φ composition symbol.
For given holomorphic self-maps f and φ of $\mathrm{U}, \mathcal{W}_{f, \varphi}$ is bounded operator even if $f \notin \mathbb{H}^{\infty}$. To see a trivial example, consider $\varphi(z)=p$ where $p \in \mathrm{U}$ and $f \in \mathbb{H}^{2}$, then for all $g \in \mathbb{H}^{2}$, we have

$$
\left\|\mathcal{W}_{f, \varphi} g\right\|_{2}=\|g(p)\|\|f\|_{2}=\|f\|_{2}\left|\left\langle g, K_{p}\right\rangle\right| \leq\|f\|_{2}\|g\|_{2}\left\|K_{p}\right\|_{2} .
$$

In fact, if $f \in \mathbb{H}^{\infty}$, then $\mathcal{W}_{f, \varphi}$ is bounded operator on \mathbb{H}^{2} with norm

$$
\left\|\mathcal{W}_{f, \varphi}\right\|=\left\|T_{f} C_{\varphi}\right\| \leq\|f\|_{\infty}\left\|C_{\varphi}\right\|=\|f\|_{\infty} \sqrt{\frac{1+|\varphi(0)|}{1-|\varphi(0)|}} .
$$

2. Basic Concepts

We start this section, by giving the following results which are collect some properties of Toeplitz and composition operators.
Lemma (2.1):[4, 6] Let φ be a holomorphic self-map of U, then
(a) $C_{\varphi} T_{f}=T_{f o \varphi} C_{\varphi}$.
(b) $T_{g} T_{f}=T_{g f}$.
(c) $T_{f+\gamma g}=T_{f}+\gamma T_{g}$.
(d) $T_{f}^{*}=T_{\bar{f}}$.

Proposition (2.2):[1] Let φ and ψ be two holomorphic self-map of U , then

1. $C_{\varphi}^{n}=C_{\varphi_{n}}$ for all positive integer n .
2. C_{φ} is the identity operator if and only if φ is the identity map.
3. $C_{\varphi}=\mathrm{C}_{\psi}$ if and only if $\varphi=\psi$.
4. The composition operator cannot be zero operator.

For each $\alpha \in U$,the reproducing kernel at α, defined by $K_{\alpha}(z)=\frac{1}{1-\bar{\alpha} z}$
It is easily seen for each $\alpha \in U$ and $f \in H^{2}, f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ that

$$
\left\langle f, K_{\alpha}\right\rangle=\sum_{n=0}^{\infty} a_{n} \alpha^{n}=f(\alpha) .
$$

When $\varphi(z)=(a z+b) / c z+d)$ is linear-fractional self-map of U , Cowen in [2] establishes $C_{\varphi}^{*}=T_{g} C_{\sigma} T_{h}^{*}$,where the Cowen auxiliary functions g, σ and h are defined as follows: $g(z)=\frac{1}{-\bar{b} z+\bar{d}}, \sigma(z)=\frac{\bar{a} z-\bar{c}}{-\bar{b} z+\bar{d}} \quad$ and $\quad h(z)=c z+d$.

If φ is linear fractional self-map U , then $W_{f, \varphi}^{*}=\left(T_{f} C_{\varphi}\right)^{*}=C_{\varphi}^{*} T_{f}^{*}=T_{g} C_{\sigma} T_{h}^{*}$.
Proposition (2.4):[5] Let each of $\varphi_{1}, \varphi_{2}, \ldots \varphi_{n}$ be holomorphic self-maps of U and $f_{1}, f_{2}, \ldots f_{n} \in \mathbb{H}^{\infty}$, then

$$
\mathcal{W}_{f_{1}, \varphi_{1}} \cdot \mathcal{W}_{f_{2}, \varphi_{2}} \ldots . \mathcal{W}_{f_{n}, \varphi_{n}}=T_{h} C_{\phi}
$$

Where $T_{h}=f_{1} \cdot\left(f_{2} o \varphi_{1}\right) \cdot\left(f_{3} O \varphi_{2} O \varphi_{1}\right) . \ldots\left(f_{2} O \varphi_{n-1} o \varphi_{n-2} O \ldots . . \Delta \varphi_{1}\right)$ and $C_{\phi}=\varphi_{n} o \varphi_{n-1} O \ldots . \Delta \varphi_{1}$.

Corollary (2.5): Let φ be a holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$ then

$$
\mathcal{W}_{f, \varphi}^{n}=T_{f(f \quad o \varphi)\left(f o \varphi_{2}\right) \ldots\left(f o \varphi_{n-1}\right) C_{\varphi_{n}},}
$$

The following lemma discuss the adjoint of weighted composition operator.
Lemma (2.6):[3] If the operator $\mathcal{W}_{f, \varphi}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ is bounded, then for each $\alpha \in U$

$$
\mathcal{W}_{f, \varphi}^{*} K_{\alpha}=\overline{f(\alpha)} K_{\varphi(\alpha)} .
$$

3- The Spectrum and The Numerical Range of $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \varphi}^{*}$ and $\mathcal{W}_{f, \psi}^{*} \mathcal{W}_{f, \varphi}$

In this section, we consider the operators $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ and $\mathcal{W}_{f, \psi}^{*} \mathcal{W}_{f, \varphi}$ induced by linear -fractional self- maps φ and ψ of \mathbb{U}. We completely characterize the shape of the spectrum and numerical rang of these operators.

Recall that [6] the spectrum of an operator T, denoted by $\sigma(\mathrm{T})$, is the set of all complex numbers λ for which $T-\lambda I$ is not invertible.

Recall that [6] the numerical range of an operator T on Hilbert space H is the set of complex numbers,

$$
W(T)=\{\langle T f, f\rangle: f \in \mathcal{H},\|f\|=1\} .
$$

The following proposition collects some properties of the numerical range of an operator, for more details we refer the reader to [2].

Proposition (3.1):[2],[4]
(1) $W(T)$ lies in the disc of center 0 and radius $\|T\|$.
(2) $\quad \sigma_{p}(T) \subseteq W(T)$.
(3) $\quad \sigma(T) \subseteq \overline{W(T)} .(\overline{W(T)}$ denotes the closure of $W(T))$.
(4) If T is the identity, then $W(T)=\{1\}$. More generally, if α, β ara complex numbers, then $W(\alpha T+\beta)=\alpha W(T)+\beta$.
(5) If T is normal operator, then $\operatorname{Conv} \sigma(T) \subseteq \overline{W(T)}$.
(Conv $\sigma(T)$ denotes the convex hull of $\sigma(T)$).
(6) $W(T)$ is convex set of C .
(7) If T is the compression of T to the closed subspace $\mathrm{M}, W(\underset{T}{\prime}) \subseteq W(T)$.

Lemma (3.2): Suppose that φ and ψ be two linear- fractional self-maps of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. then, $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ is a weighted composition operator on Hardy space \mathbb{H}^{2}.

Proof : Since each of φ and ψ is linear fractional, then put
where $a, b, c, d, a_{1}, b_{1}, c_{1}$ and d_{1} are complex constants, such that $c z+d \neq 0$ and $c_{1} z+d_{1} \neq 0$.

Thus, $C_{\psi}^{*}=T_{g} C_{\sigma} T_{h}^{*}$, where the Cowen auxiliary functions, g, σ and h of ψ are defined as follows :
$g(z)=\frac{1}{-\bar{b} z+\bar{d}} \quad, \sigma(z)=\frac{\bar{a} z-\bar{c}}{-\bar{b} z+\bar{d}} \quad$ and $\quad h(z)=c z+d$
Note that,

$$
\begin{aligned}
\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*} & =T_{f} C_{\varphi} \cdot\left(T_{f} C_{\psi}\right)^{*} \\
& =T_{f} C_{\varphi} C_{\psi}{ }^{*} T_{f}{ }^{*} \\
& =T_{f} C_{\varphi} T_{g} C_{\sigma} T_{h}^{*} T_{f}^{*} \\
& =T_{f} C_{\varphi} T_{g \cdot[\overline{h f} \circ \sigma]} C_{\sigma} \\
& =T_{f \cdot[[g \cdot[\overline{h f} \circ \sigma]) \varphi]} C_{\sigma \circ \varphi}
\end{aligned}
$$

$=T_{k} C_{\sigma \circ \varphi}$
$=\mathcal{W}_{k, \sigma \circ \varphi}$
Where $k=f \cdot[(g \cdot[\overline{h f} \circ \sigma]) \varphi]$.
Since each of h, f and g are in \mathbb{H}^{∞}, then it is clear that $k \in \mathbb{H}^{\infty}$. In addition that $\sigma \circ \varphi=\frac{A z+B}{C z+D}$,

Where $A=\bar{a} a_{1}-\bar{c} c_{1}, B=\bar{a} b_{1}-\bar{c} d_{1}, C=\bar{d} b_{1}-\bar{b} a_{1}$ and $D=\bar{d} d_{1}-\bar{b} b_{1}$.
Lemma (3.3): Suppose that φ and ψ be two linear fractional self-maps of \mathbb{U} and $f \in \mathbb{H}^{\infty}$, then $\mathcal{W}_{f, \psi}^{*} \mathcal{W}_{f, \varphi}$ is a weighted composition operator on Hardy space \mathbb{H}^{2}.

Proof : Since ψ be linear fractional, then the Cowen auxiliary functions g, σ and h are defined as above . Thus,

$$
\begin{aligned}
\mathcal{W}_{f, \psi}^{*} \mathcal{W}_{f, \varphi} & =\left(T_{f} C_{\psi}\right)^{*} T_{f} C_{\varphi} \\
& =C_{\psi}{ }^{*} T_{f}{ }^{*} T_{f} C_{\varphi} \\
& =T_{g} C_{\sigma} T_{h}^{*} T_{f}{ }^{*} T_{f} C_{\varphi} \\
& =T_{g} C_{\sigma} T_{\bar{h}|f|^{2}} C_{\varphi} \\
& =T_{g\left(\bar{h}|f|^{2} \circ \sigma\right)} C_{\varphi o \sigma} \\
& =T_{L} C_{\varphi \circ \sigma}
\end{aligned}
$$

$$
=\mathcal{W}_{L, \varphi \circ \sigma}
$$

Where $L=g\left(\bar{h}|f|^{2} \circ \sigma\right)$.
Since each of h, f and g are in \mathbb{H}^{∞}, then it is clear that $L \in \mathbb{H}^{\infty}$. In addition that $\varphi \circ \sigma=\frac{A_{1} z+B_{1}}{C_{1} z+D_{1}}$,

Where $A_{1}=\bar{a} a_{1}-\bar{b} b_{1}, B_{1}=\bar{d} b_{1}-\bar{c} a_{1}, C_{1}=\bar{a} c_{1}-\bar{b} d_{1}$ and $D_{1}=\bar{d} d_{1}-\bar{c} c_{1}$.

We begin this section with $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ such that $\sigma \circ \varphi$ is a rational rotation of \mathbb{U}.
Remark (3.4): If $B=C=0$ and $|A|=|D|$, then it is clear that $\sigma \circ \varphi$ is rotation. Put $(\sigma \circ \varphi)(z)=\mu z, \mu=A / D=e^{i \theta}$ where θ is rational number

Now, put $\mu=e^{2 \pi i / n}$, where n is a positive integer number .
Suppose that j is a fixed integer number such that $0 \leq j<n$. If

$$
\phi(z)=\sum_{k=0}^{\infty} a_{k} z^{k n+j}=z^{j} \sum_{k=0}^{\infty} a_{k}\left(z^{n}\right)^{k}=z^{j} \zeta\left(z^{n}\right)
$$

where $\zeta(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \in \mathbb{H}^{\infty}$. Note that,

$$
\begin{align*}
& \begin{aligned}
& C_{\sigma \circ \varphi}(\phi(z))= \sum_{k=0}^{\infty} a_{k}((\sigma \circ \varphi)(z))^{k n+j} \\
&= \sum_{k=0}^{\infty} a_{k}\left(e^{2 \pi i / n} z\right)^{k n+j} \\
&= \sum_{k=0}^{\infty} a_{k} e^{2 \pi i k}\left(e^{2 \pi i / n}\right)^{j} z^{k n+j} \\
&=\left(e^{2 \pi i / n}\right)^{j} \sum_{k=0}^{\infty} a_{k} z^{k n+j} \\
&=\mu^{j} \phi(z)
\end{aligned}
\end{align*}
$$

Clearly μ^{j} is the eigenvalue of $C_{\sigma \circ \varphi}$, for each $0 \leq j<n$. Therefore, it is natural to look at the subspace H_{j} of functions that have such Maclaurin series.

Definition (3.5):[7] Let $n \geq 2$ and $0 \leq j<n$, and let H_{j} be the set defined by

$$
H_{j}=\left\{\phi: \phi(z)=z^{j} \zeta\left(z^{n}\right), \zeta \in \mathbb{H}^{2}\right\} .
$$

It is clear that H_{j} is a closed subspace of \mathbb{H}^{2}. Let P_{j} denote the orthogonal projection onto H_{j}.

Now, we compute the spectrum of the operator $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ where $\sigma \circ \varphi$ a rational rotation of \mathbb{U}. First we need the following lemma.

Lemma (3.6):[7] Let $n>1$. Suppose $(z)=g\left(z^{n}\right)$ where $g \in \mathbb{H}^{\infty}$. If $0 \leq l<n$, then $\sigma\left(T_{\psi} \mid H_{l}\right)=\overline{\psi(\mathbb{U})}$.

Theorem (3.7): Suppose that φ and ψ be two automorphism of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. If σ is Cowen auxiliary function of ψ such that $\sigma \circ \varphi$ is a rational rotation of \mathbb{U} and $k(z)=$ $\zeta\left(z^{n}\right)$ where $\zeta \in \mathbb{H}^{2}$, then

$$
\sigma\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\overline{\bigcup_{l=0}^{n-1} \mu^{l} k(\mathbb{U})}
$$

where $\mu=e^{2 \pi i / n}$, where n is a positive integer number.
Proof : Put $T_{l}=T_{\psi} \mid H_{l}$ for fixed $0 \leq l<n$. If $\phi \in H_{l}$, then by (1) we have $C_{\sigma \circ \varphi}(\phi)=$ $\mu^{l} \phi$, and so by lemma(3.2) we get

$$
\begin{align*}
\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}(\phi)=T_{k} C_{\sigma \circ \varphi}(\phi) & =\mu^{l} k \cdot \phi \\
& =\mu^{l} T_{l}(\phi) \in H_{l} \tag{2}
\end{align*}
$$

Note that , it is easily seen that $H_{0}, H_{1}, \ldots, H_{n-1}$ are pairwise orthogonal. Put
$\mathcal{W}_{l}=\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*} \mid H_{l}$, so by (2) we have $\mathcal{W}_{l}=A^{l} T_{l}$. Thus,

$$
\begin{equation*}
\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}=\mathcal{W}_{0} \oplus \mathcal{W}_{1} \oplus \ldots \oplus \mathcal{W}_{n-1} \tag{3}
\end{equation*}
$$

Hence, $\sigma\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\sigma\left(\mathcal{W}_{0}\right) \cup \sigma\left(\mathcal{W}_{1}\right) \cup \ldots \cup \sigma\left(\mathcal{W}_{n-1}\right)$.
Therefore, by spectral mapping theorem and lemma (3.5) we get
$\sigma\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\overline{\bigcup_{l=0}^{n-1} \mu^{l} k(\mathbb{U})}$.
Next, we compute the numerical rang of $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ where $\sigma \circ \varphi$ is a rational rotation of \mathbb{U}. Before this, we establish the following lemma.

Lemma (3.8):[7] Let $\psi \in \mathbb{H}^{\infty}$. If H_{j} is an invariant subspace of T_{ψ}, then

$$
W\left(T_{\psi} \mid H_{j}\right)=\operatorname{conv}(\psi(\mathbb{U}))
$$

Theorem (3.9): Suppose that φ and ψ be two automorphism of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. If σ is Cowen auxiliary function of ψ such that $\sigma \circ \varphi$ is a rational rotation of \mathbb{U} and $k(z)=$ $\zeta\left(z^{n}\right)$ where $\zeta \in \mathbb{H}^{2}$, then

$$
W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\operatorname{conv}\left(\bigcup_{l=0}^{n-1} \mu^{l} k(\mathbb{U})\right)
$$

where $\mu=e^{2 \pi i / n}$, where n is a positive integer number .
Proof: Put $T_{l}=T_{\psi} \mid H_{l}$ an $\mathcal{W}_{l}=\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*} \mid H_{l}$ for fixed $0 \leq l<n$. Thus, by (3)
we have that

$$
\begin{equation*}
W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\operatorname{conv}\left(\bigcup_{l=0}^{n-1} W\left(\mathcal{W}_{l}\right)\right) \tag{4}
\end{equation*}
$$

If $\phi \in H_{l}$, then by (2) we have
$\left\langle\mathcal{W}_{l}(\phi), \phi\right\rangle=\left\langle\mu^{l} T_{l}(\phi), \phi\right\rangle=\mu^{l}\left\langle T_{l}(\phi), \phi\right\rangle$
It follows by lemma(3.8) that $W\left(\mathcal{W}_{l}\right)=\mu^{l} \operatorname{conv}(k(U))$. Thus, by (4) we have $W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\operatorname{conv}\left(\cup_{l=0}^{n-1} \mu^{l} k(\mathbb{U})\right)$.

Recall that [] an operator T on a Hilbert space H is called convexiod if $\operatorname{conv} \sigma(T)=$ $\overline{W(T)}$. Note that by proposition (3.1) (5) we have every normal operator is convexiod.

Therefore, by theorem(3.7) and (3.9) we get the following consequence .
Corollary (3.10): Suppose that φ and ψ be two automorphism of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. If σ is Cowen auxiliary function of ψ such that $\sigma \circ \varphi$ is a rational rotation of \mathbb{U} and $k(z)=$ $\zeta\left(z^{n}\right)$ where $\zeta \in \mathbb{H}^{2}$, then $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ is convexiod operator.

Remark (3.11): If A is a primitive $n^{\text {th }}$ root of unity our previous results still holds in fact, if $A=e^{2 \pi i m / n}$ where n and m are relatively prime and $0 \leq m<n$.

Let $\lambda=e^{2 \pi i m / n}$ and $\mu=e^{2 \pi i / n}$. If P_{k} denotes $m_{j k}(\bmod n)$, then $\lambda^{j k}=\mu^{P_{k}}$.
Suppose that $\phi \in H_{j}$, for some $0 \leq j<n$. Then, it is easily see that
$C_{\sigma \circ \varphi}(\phi)=\mu^{P} \phi$ where $P \equiv m_{j}(\bmod n)$. Then ,
$\left\langle\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}(\phi), \phi\right\rangle=\left\langle T_{k} C_{\sigma \circ \varphi}(\phi), \phi\right\rangle=\mu^{P}\langle K \phi, \phi\rangle$.
Therefore, by lemma(3.8) we have
$W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*} \mid H_{j}\right)=\mu^{P} \operatorname{conv}(k(\mathbb{U}))$.
But, $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}=\mathcal{W}_{0} \oplus \mathcal{W}_{1} \oplus \ldots \oplus \mathcal{W}_{n-1}$ this implies that
$W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\operatorname{conv}\left(\mu^{P_{0}} k(\mathbb{U}) \cup \mu^{P_{1}} k(\mathbb{U}) \cup \ldots \cup \mu^{P_{n-1}} k(\mathbb{U})\right)$.
If $0 \leq j_{1}<j_{2}<n$, then it is easily to see that $m_{j_{1}} \not \equiv m_{j_{2}}(\bmod n)$ and thus $\left\{P_{0}, P_{1}, \ldots, P_{n-1}\right\}=\{0,1,2, \ldots, n-1\}$.

In what follows we study the numerical rang of the operator $\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)$ where $\sigma \circ \varphi$ is an irrational rotation of \mathbb{U}, i.e. $(\sigma \circ \varphi)(z)=A z, A=e^{2 \pi i \theta}$
such that θ is irrational number .
Lemma (3.12): Suppose that φ and ψ be two automorphism of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. If σ is Cowen auxiliary function of ψ such that $\sigma \circ \varphi$ is an irrational rotation of \mathbb{U} and
$k(z)=1+\widehat{K}_{1} z+\widehat{K}_{2} z^{2}+\cdots$. Assume that n is a non-negative integer and m is a positive integer, Then $W\left(\mathcal{W}_{f, \varphi} . \mathcal{W}_{f, \psi}^{*}\right)$ contains the ellipse with foci μ^{n} and μ^{n+m} whose major axis is $\sqrt{\left|\mu^{n}-\mu^{n+m}\right|^{2}+\left|\widehat{K}_{m}\right|^{2}}$ and minor axis is $\left|\widehat{K}_{m}\right|$.

Proof: Let $Q=\operatorname{span}\left\{e_{1}, e_{2}\right\}$ where $e_{1}(z)=z^{n}$ and $e_{2}(z)=z^{n+m}$. Then, we have

$$
\begin{aligned}
\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\left(e_{1}\right)(z) & =T_{k} C_{\sigma \circ \varphi}\left(e_{1}\right)(z) \\
& =k(z) \cdot e_{1}(\sigma \circ \varphi \varphi(z)) \\
& =\left(1+\widehat{K}_{1} z+\widehat{K}_{2} z^{2}+\cdots\right) A^{n} z^{n} \\
& =\mu^{n} z^{n}+\mu^{n} \widehat{K}_{1} z^{n+1}+\mu^{n} \widehat{K}_{2} z^{n+2}+\cdots+\mu^{n} \widehat{K}_{m} z^{n+m}+\cdots
\end{aligned}
$$

Similarly, we have

$$
\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\left(e_{2}\right)(z)=\mu^{n+m} z^{n+m}+\mu^{n+m} \widehat{K}_{1} z^{n+m+1}+\cdots
$$

Thus, the matrix that represents $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ is

$$
T=\left[\begin{array}{cc}
\mu^{n} & 0 \\
\mu^{n} \widehat{K}_{m} & \mu^{n+m}
\end{array}\right]
$$

Therefore, $W(T)$ is the ellipse with foci μ^{n} and μ^{n+m} that described in (see[]). But $W(T) \subseteq W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)$, as desired.

Now, we are ready to discuss the numerical rang of $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ when it is an isometry operator.

Recall that [] an operator T on Hilbert space \mathcal{H} is said to be shift operator if T is an isometry and $\left(T^{*}\right)^{n} \rightarrow 0$ strongly. Gunatillake G. in [] described the numerical range of weighted composition operator $\mathcal{W}_{f, \varphi}$ when each of φ and ψ is inner function .

Lemma (3.13): Suppose that φ be a holomorphic self-map of U and $\in \mathbb{H}^{\infty}$. If $\mathcal{W}_{f, \varphi}$ is an isometry, then φ must be inner function and $\|f\|=1$.

Proof : Let the operator $\mathcal{W}_{f, \varphi}$ is an isometry, then $\mathcal{W}_{f, \varphi}^{*} . \mathcal{W}_{f, \varphi}=I$. Thus for each $p \in U$, we have
$\left\|\mathcal{W}_{f, \varphi} K_{p}\right\|=\left\|K_{p}\right\|$, then $\left\|T_{f} C_{\varphi} K_{p}\right\|=\left\|K_{p}\right\|$.
This implies that $\left\|f\left(K_{p} \circ \varphi\right)\right\|=\left\|K_{p}\right\|$. Hence, by taking $p=0$, then $K_{0}=1$
and thus $\|f(1 \circ \varphi)\|=\|1\|$, then $\|f\|=1$
In addition that, if $g(z)=z$, then it is clear that $\|g\|=1$. Therefore
$\left\|\mathcal{W}_{f, \varphi} g\right\|=\|g\|$, and then $\left\|T_{f} C_{\varphi} g\right\|=\|g\|$.
Thus, $\|f(g \circ \varphi)\|=\|g\|$, then $\|f . \varphi\|=1$.

Since $\left|\varphi\left(e^{i t}\right)\right| \leq 1 \quad$ a.e. $\quad t \in[0,2 \pi)$
and both $\|f\|$ and $\|f . \varphi\|$ are 1 .Then, by the integral representation of $\|f\|_{\mathbb{H}^{2}}$

$$
\|f\|_{\mathbb{H}^{2}}^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right|^{2} d t
$$

So that $\left|\varphi\left(e^{i t}\right)\right|=1 \quad$ a.e. on U, then φ is an inner function.
Theorem (3.14):[] Let φ be an inner function that fixes the origin .If ψ is also a nonconstant inner function , then $\mathcal{W}_{\psi, \varphi}$ is a shift operator such that $W\left(\mathcal{W}_{\psi, \varphi}\right)=\mathbb{U}$.

Corollary (3.15): Suppose that φ and ψ be two linear- fractional self-maps of \mathbb{U} and $f \in \mathbb{H}^{\infty}$ such that each of φ and σ fixes the origin, then $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ is a shift operator and $W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\mathbb{U}$.

Proof : Since $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ is an isometry operator, then by lemma (3.2) and lemma (3.13) $\sigma \circ \varphi$ is an inner function and $\|k\|_{\infty}=1$. But by our assumption that each of φ and σ fixes the origin, then $\sigma \circ \varphi$ is also. In addition that since $\|k\|_{\infty}=1$, then we have $|k(0)|<$ 1 , hence k is a non-constant inner function. Therefore by theorem (3.2.13) $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ is shift operator such that $W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\mathbb{U}$.

Next, we study the numerical rang of $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ when it is an isometry that is not unitary .

Theorem (3.16):[] Let $\mathcal{W}_{\psi, \varphi}$ be an isometry on \mathbb{H}^{2}. If $\mathcal{W}_{\psi, \varphi}$ is not a unitary operator, then $W\left(\mathcal{W}_{\psi, \varphi}\right)=\mathbb{U} \cup \sigma_{p}\left(\mathcal{W}_{\psi, \varphi}\right)$.

Corollary (3.17): Let φ and ψ be two linear- fractional self-maps of U and $f \in \mathbb{H}^{\infty}$ such that either φ or ψ is not automorphism of \mathbb{U}. If $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ is an isometry, then $W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\mathbb{U} \cup \sigma_{p}\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)$.

Proof : Assume that $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ is isometry operator, then by lemma(3.2) and lemma (3.13), $\|k\|_{\infty}=1$. Since either φ or ψ is not automorphism of \mathbb{U}, then $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ is not unitary, Therefore, by theorem(3.15) we have $W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\mathbb{U} \cup \sigma_{p}\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)$.

The following result describe the spectra of unitary weighted composition operator.
Theorem (3.16):[] Suppose $\mathcal{W}_{\psi, \varphi}$ is unitary. If φ is elliptic with fixed point p, then $|\dot{\varphi}(p)|=1$
and the spectrum of $\mathcal{W}_{\psi, \varphi}$ is the closure of the set $\left\{\psi(p) \dot{\varphi}(p)^{n}: n=0,1,2, \ldots\right\}$.
If φ is parabolic or hyperbolic, then the spectrum is the unit circle.

Theorem (3.19): Suppose that φ and ψ be two automorphism self-maps of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. If $K(z)=\frac{r K_{p}(z)}{\left\|K_{p}\right\|}$ where $|r|=1$ such that $\varphi(p)=\psi(p)=0$, then we have the following statements :

1- If $\sigma \circ \varphi$ is hyperbolic or parabolic, then $W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\mathbb{U}$.
2- If $\sigma \circ \varphi$ is elliptic with fixed point $\mathrm{p} \in \mathbb{U}$. Then, if $(\sigma \circ \varphi)^{\prime}(p)$ is a root of unity, we have $W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\mathbb{U}$. Otherwise, $W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)$ is a polygon with vertices $k(p), k(p) .(\sigma \circ$ $\varphi)^{\prime}(p), \ldots, k(p) \cdot\left((\sigma \circ \varphi)^{\prime}(p)\right)^{n-1}$.

Proof: Since each of φ and ψ is automorphism with above hypotheses, therefore $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ is unitary operator .Therefore, $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}$ is convexiod, thus

$$
\begin{equation*}
\operatorname{conv} \sigma\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\overline{W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)} \tag{5}
\end{equation*}
$$

Therefore we can get the following cases:
(1) If $\sigma \circ \varphi$ is hyperbolic then by theorem(3.18) we have $W\left(\mathcal{W}_{f, \varphi \cdot f, \psi}\right)=\mathbb{U}$. On the other hand, if $\sigma \circ \varphi$ is parabolic, then by theorem(3.18) we have $W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\mathbb{U}$.
(2) If $\sigma \circ \varphi$ is elliptic with fixed point $\mathrm{p} \in \mathbb{U}$, then by theorem(3.18) we have $\left|\left(\psi^{-1} O \varphi\right)^{\prime}(p)\right|=1$ and
$\sigma\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\left\{k(p) \cdot\left((\sigma \circ \varphi)^{\prime}(p)\right)^{n}: n=0,1,2, \ldots\right\}$. Thus two cases which are appeared a. If $(\sigma \circ \varphi)^{\prime}(p)$ is a root of unity.

Therefore it is clear that

$$
\sigma\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\left\{k(p), k(p) \cdot(\sigma \circ \varphi)^{\prime}(p), \ldots, k(p) \cdot\left((\sigma \circ \varphi)^{\prime}(p)\right)^{n-1}\right\}
$$

Hence it is clear that by (5) we have $W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)$ is a polygon with vertices $k(p), k(p) \cdot(\sigma \circ \varphi)^{\prime}(p), \ldots, k(p) \cdot\left((\sigma \circ \varphi)^{\prime}(p)\right)^{n-1}$.
b. If $(\sigma \circ \varphi)^{\prime}(p)$ is not a root of unity.

Since $\|k\|_{\infty}=1$, then $|k(p)|=1$, therefore we have by [] that the set $\{k(p) .(\sigma$ 。 $\left.\left.\varphi)^{\prime}(p)\right)^{n}: n=0,1,2, \ldots\right\}$ is dense in $\sigma\left(\mathcal{W}_{f, \varphi} . \mathcal{W}_{f, \psi}^{*}\right)$. $\operatorname{But}(\sigma \circ \varphi)^{\prime}(p)$ is not a root of unity, then $\sigma\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\partial \mathbb{U}$. This implies by (5) that $W\left(\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^{*}\right)=\mathbb{U}$.

References

[1] AboodE.H., " The composition operator on Hardy space $H^{2 "}$, Ph.D. Thesis, University of Baghdad, (2003).
[2] Abood E. H., The numerical rang and normal operator, Mc. S. Thesis, University of Baghdad, 1996.
[3] Bourdon Paul S. and Narayan S., "Normal weighted composition operators on the Hardy space ", J.Math.Anal. Appl.,367(2010),5771-5801.
[4] CowenC. C. and Ko E.,"Hermitian weighted composition operator on Trans.Amer.Math.Soc., 362(2010), 5771-5801.
[5] Deddnes J. A. , "Analytic Toeplitz and Composition Operators", Con. J. Math., vol(5), 859-865, (1972).
[6] Gunatillake G.,"invertible weighted composition operator ",J. Funct. Anal., 261(2011), 831-860.
[7] Gunatillake, G. ,Jovovic, M. and Smith, W. ,Numerical range of weighted composition operators ,J. of Mat. Anal., (2014) .
[8] Halmos P. R.,"A Hilbert space problem book", Sprinrer- Verlag, NewYork,(1974).
[9] Shapiro J.H., "Composition Operators and Classical Function Theory", Springer-Verlage,New York, (1993).

