

The Spectrum and The Numerical Range of $W_{f,\varphi} W_{f,\psi}^*$ and $W_{f,\psi}^* W_{f,\varphi}$

Abood E. H. and Mohammed A. H.

Department of Mathematics, College of science, University of Baghdad, Jadirya, Baghdad, Iraq.

Abstract: In this paper we study the spectrum and the numerical range of weighted composition operator with the adjoint of weighted composition operator $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ and $\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi}$ induced by linear –fractional self- maps φ and ψ of \mathbb{U} on Hardy space \mathbb{H}^2 .

1. Introduction

Let U denote the open unite disc in the complex plan ,let \mathbb{H}^{∞} denote the collection of all holomorphic function on U and let \mathbb{H}^2 is consisting of all holomorphic self-map on U such that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ whose Maclaurin coefficients are square summable (i.e) $f(z) = \sum_{n=0}^{\infty} |a_n|^2 < \infty$. More precisely $f(z) = \sum_{n=0}^{\infty} a_n z^n$ if and only if $||f|| = \sum_{n=0}^{\infty} |a_n|^2 < \infty$. The inner product inducing the \mathbb{H}^2 norm is given by $\langle f, g \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}$. Given any holomorphic self-map φ on U, recall that the composition operator

Is called the composition operator with symbol φ , is necessarily bounded.Let

 $f \in \mathbb{H}^{\infty}$, the operator $T_f \colon \mathbb{H}^2 \to \mathbb{H}^2$ defined by

$$T_f(h(z)) = f(z)h(z), \quad for all z \in U, h \in \mathbb{H}^2$$

is called the Toeplitz operator with symbol f. Since $f \in \mathbb{H}^{\infty}$, then we call T_f a holomorphic Toeplitz operator. If T_f is a holomorphic Toeplitz operator, then the operator $T_f C_{\varphi}$ is bounded and has the form

$$T_f C_{\varphi} g = f(g o \varphi) \qquad (g \in \mathbb{H}^2).$$

We call it the weighted composition operator with symbols f and φ [1] and [3], the linear operator

$$\mathcal{W}_{f,\varphi} g = f(go\varphi) \qquad (g \in \mathbb{H}^2).$$

We distinguish between the two symbols of weighted composition operator $\mathcal{W}_{f,\varphi}$, by calling f the multiplication symbol and φ composition symbol.

For given holomorphic self-maps f and φ of U, $\mathcal{W}_{f,\varphi}$ is bounded operator even if $f \notin \mathbb{H}^{\infty}$. To see a trivial example, consider $\varphi(z) = p$ where $p \in U$ and $f \in \mathbb{H}^2$, then for all $g \in \mathbb{H}^2$, we have

 $\left\| \mathcal{W}_{f,\varphi} g \right\|_{2} = \|g(p)\| \|f\|_{2} = \|f\|_{2} |\langle g, K_{p} \rangle| \le \|f\|_{2} \|g\|_{2} \|K_{p}\|_{2}.$

In fact, if $f \in \mathbb{H}^{\infty}$, then $\mathcal{W}_{f,\varphi}$ is bounded operator on \mathbb{H}^2 with norm

$$\| \mathcal{W}_{f,\varphi} \| = \| T_f C_{\varphi} \| \le \| f \|_{\infty} \| C_{\varphi} \| = \| f \|_{\infty} \sqrt{\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|}}.$$

2. Basic Concepts

We start this section, by giving the following results which are collect some properties of Toeplitz and composition operators.

Lemma (2.1):[4, 6] Let φ be a holomorphic self-map of U, then

(a)
$$C_{\varphi}T_f = T_{fo\varphi}C_{\varphi}$$

(b)
$$T_g T_f = T_{gf}$$
.

(c)
$$T_{f+\gamma g} = T_f + \gamma T_g$$
.

(d)
$$T_f^* = T_{\bar{f}}$$
.

Proposition (2.2):[1] Let φ and ψ be two holomorphic self-map of U, then

1. $C_{\varphi}^n = C_{\varphi_n}$ for all positive integer n.

- **2.** C_{φ} is the identity operator if and only if φ is the identity map.
- **3.** $C_{\varphi} = C_{\psi}$ if and only if $\varphi = \psi$.
- 4. The composition operator cannot be zero operator.

For each $\alpha \in U$, the reproducing kernel at α , defined by $K_{\alpha}(z) = \frac{1}{1 - \overline{\alpha} z}$

It is easily seen for each $\alpha \in U$ and $f \in H^2$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$ that

$$\langle f, K_{\alpha} \rangle = \sum_{n=0}^{\infty} a_n \, \alpha^n = f(\alpha).$$

When $\varphi(z) = (az + b)/cz + d$ is linear-fractional self-map of U, Cowen in [2] establishes $C_{\varphi}^* = T_g C_{\sigma} T_h^*$, where the Cowen auxiliary functions g, σ and h are defined as follows: $g(z) = \frac{1}{-\overline{bz}+\overline{d}}$, $\sigma(z) = \frac{\overline{az}-\overline{c}}{-\overline{bz}+\overline{d}}$ and h(z) = cz + d.

If φ is linear fractional self-map U, then $W_{f,\varphi}^* = (T_f C_{\varphi})^* = C_{\varphi}^* T_f^* = T_g C_{\sigma} T_h^*$.

Proposition (2.4):[5] Let each of $\varphi_1, \varphi_2, ..., \varphi_n$ be holomorphic self-maps of U and $f_1, f_2, ..., f_n \in \mathbb{H}^{\infty}$, then

$$\mathcal{W}_{f_1,\varphi_1}.\mathcal{W}_{f_2,\varphi_2}\ldots\mathcal{W}_{f_n,\varphi_n}=T_hC_{\phi}$$

Volume 8, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm

Where $T_h = f_1 \cdot (f_2 o \varphi_1) \cdot (f_3 o \varphi_2 o \varphi_1) \cdot \dots (f_2 o \varphi_{n-1} o \varphi_{n-2} o \dots o \varphi_1)$ and $C_{\phi} = \varphi_n o \varphi_{n-1} o \dots o \varphi_1.$

Corollary (2.5): Let φ be a holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$ then

$$\mathcal{W}_{f,\varphi}^n = T_{f \ (f \ o\varphi \)(f \ o\varphi_2)\dots(f \ o\varphi_{n-1})}C_{\varphi_n}$$

The following lemma discuss the adjoint of weighted composition operator.

Lemma (2.6):[3] If the operator $\mathcal{W}_{f,\omega} \colon \mathbb{H}^2 \to \mathbb{H}^2$ is bounded, then for each $\alpha \in U$

$$\mathcal{W}_{f,\varphi}^* K_{\alpha} = \overline{f(\alpha)} K_{\varphi(\alpha)}.$$

3- The Spectrum and The Numerical Range of $W_{f,\varphi}W_{f,\psi}^*$ and $W_{f,\psi}^*W_{f,\varphi}$

In this section, we consider the operators $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ and $\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi}$ induced by linear –fractional self- maps φ and ψ of \mathbb{U} . We completely characterize the shape of the spectrum and numerical rang of these operators.

Recall that [6] *the spectrum* of an operator T, denoted by $\sigma(T)$, is the set of all complex numbers λ for which T- λ I is not invertible.

Recall that [6] *the numerical range* of an operator T on Hilbert space H is the set of complex numbers,

$$W(T) = \{ \langle Tf, f \rangle : f \in \mathcal{H}, ||f|| = 1 \}.$$

The following proposition collects some properties of the numerical range of an operator, for more details we refer the reader to [2].

Proposition (3.1):[2],[4]

- (1) W(T) lies in the disc of center 0 and radius ||T||.
- (2) $\sigma_p(T) \subseteq W(T)$.
- (3) $\sigma(T) \subseteq \overline{W(T)}$. $(\overline{W(T)})$ denotes the closure of W(T)).
- (4) If T is the identity, then $W(T) = \{1\}$. More generally, if α, β are complex numbers, then $W(\alpha T + \beta) = \alpha W(T) + \beta$.
- (5) If T is normal operator, then $Conv \sigma(T) \subseteq \overline{W(T)}$.

(*Conv* $\sigma(T)$ denotes the convex hull of $\sigma(T)$).

- (6) W(T) is convex set of C.
- (7) If \hat{T} is the compression of T to the closed subspace M, $W(\hat{T}) \subseteq W(T)$.

Lemma (3.2): Suppose that φ and ψ be two linear- fractional self-maps of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. then, $\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^*$ is a weighted composition operator on Hardy space \mathbb{H}^2 .

Proof: Since each of φ and ψ is linear fractional, then put

where $a, b, c, d, a_1, b_1, c_1$ and d_1 are complex constants, such that $cz + d \neq 0$ and $c_1z + d_1 \neq 0$.

Thus, $C_{\psi}^* = T_g C_{\sigma} T_h^*$, where the Cowen auxiliary functions, g, σ and h of ψ are defined as follows :

$$g(z) = \frac{1}{-\overline{b}z + \overline{d}}$$
, $\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}$ and $h(z) = cz + d$

Note that,

$$\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^* = T_f C_{\varphi} \cdot \left(T_f C_{\psi}\right)^*$$
$$= T_f C_{\varphi} C_{\psi}^* T_f^*$$
$$= T_f C_{\varphi} T_g C_{\sigma} T_h^* T_f^*$$
$$= T_f C_{\varphi} T_{g \cdot [\overline{hf} \circ \sigma]} C_{\sigma}$$
$$= T_{f \cdot [(g \cdot [\overline{hf} \circ \sigma])\varphi]} C_{\sigma \circ \varphi}$$

 $= T_k C_{\sigma \circ \varphi}$

$$= \mathcal{W}_{k,\sigma \circ \varphi}$$

Where $k = f \cdot [(g \cdot [\overline{hf} \circ \sigma])\varphi]$.

Since each of h, f and g are in \mathbb{H}^{∞} , then it is clear that $k \in \mathbb{H}^{\infty}$. In addition that

$$\sigma \circ \varphi = \frac{Az+B}{Cz+D}$$
,

Where $A = \overline{a}a_1 - \overline{c}c_1$, $B = \overline{a}b_1 - \overline{c}d_1$, $C = \overline{d}b_1 - \overline{b}a_1$ and $D = \overline{d}d_1 - \overline{b}b_1$.

Lemma (3.3): Suppose that φ and ψ be two linear fractional self-maps of \mathbb{U} and $f \in \mathbb{H}^{\infty}$, then $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ is a weighted composition operator on Hardy space \mathbb{H}^2 .

Proof: Since ψ be linear fractional, then the Cowen auxiliary functions g, σ and h are defined as above. Thus,

$$\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi} = (T_f C_{\psi})^* T_f C_{\varphi}$$

$$= C_{\psi}^* T_f^* T_f C_{\varphi}$$

$$= T_g C_{\sigma} T_h^* T_f^* T_f C_{\varphi}$$

$$= T_g C_{\sigma} T_{\overline{h}|f|^2} C_{\varphi}$$

$$= T_g (\overline{h}|f|^2 \circ \sigma) C_{\varphi \circ \sigma}$$

$$= T_L C_{\varphi \circ \sigma}$$

$$= \mathcal{W}_{L,\varphi\circ\sigma}$$

Where $L = g(\bar{h}|f|^2 \circ \sigma)$.

Since each of h, f and g are in \mathbb{H}^{∞} , then it is clear that $L \in \mathbb{H}^{\infty}$. In addition that

$$\varphi \circ \sigma = rac{A_1 z + B_1}{C_1 z + D_1}$$
 ,

Where $A_1 = \bar{a}a_1 - \bar{b}b_1$, $B_1 = \bar{d}b_1 - \bar{c}a_1$, $C_1 = \bar{a}c_1 - \bar{b}d_1$ and $D_1 = \bar{d}d_1 - \bar{c}c_1$.

We begin this section with $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ such that $\sigma \circ \varphi$ is a rational rotation of \mathbb{U} .

Remark (3.4): If B = C = 0 and |A| = |D|, then it is clear that $\sigma \circ \varphi$ is rotation. Put $(\sigma \circ \varphi)(z) = \mu z$, $\mu = A/D = e^{i\theta}$ where θ is rational number

Now, put $\mu = e^{2\pi i/n}$, where *n* is a positive integer number.

Suppose that *j* is a fixed integer number such that $0 \le j < n$. If

$$\phi(z) = \sum_{k=0}^{\infty} a_k z^{kn+j} = z^j \sum_{k=0}^{\infty} a_k (z^n)^k = z^j \zeta(z^n)$$

where $\zeta(z) = \sum_{k=0}^{\infty} a_k z^k \in \mathbb{H}^{\infty}$. Note that ,

=

$$C_{\sigma \circ \varphi}(\phi(z)) = \sum_{k=0}^{\infty} a_k ((\sigma \circ \varphi)(z))^{kn+j}$$
$$= \sum_{k=0}^{\infty} a_k (e^{2\pi i/n} z)^{kn+j}$$
$$= \sum_{k=0}^{\infty} a_k e^{2\pi ik} (e^{2\pi i/n})^j z^{kn+j}$$
$$= (e^{2\pi i/n})^j \sum_{k=0}^{\infty} a_k z^{kn+j}$$
$$\mu^j \phi(z)$$
(1)

Clearly μ^j is the eigenvalue of $C_{\sigma \circ \varphi}$, for each $0 \le j < n$. Therefore, it is natural to look at the subspace H_j of functions that have such Maclaurin series.

Definition (3.5):[7] Let $n \ge 2$ and $0 \le j < n$, and let H_j be the set defined by

$$H_j = \{ \phi : \phi(z) = z^j \zeta(z^n) , \zeta \in \mathbb{H}^2 \}.$$

It is clear that H_j is a closed subspace of \mathbb{H}^2 . Let P_j denote the orthogonal projection onto H_j .

Now, we compute the spectrum of the operator $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ where $\sigma \circ \varphi$ a rational rotation of \mathbb{U} . First we need the following lemma.

Lemma (3.6):[7] Let n > 1. Suppose $(z) = g(z^n)$ where $g \in \mathbb{H}^\infty$. If $0 \le l < n$, then $\sigma(T_{\psi}|H_l) = \overline{\psi(\mathbb{U})}$.

Theorem (3.7): Suppose that φ and ψ be two automorphism of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. If σ is Cowen auxiliary function of ψ such that $\sigma \circ \varphi$ is a rational rotation of \mathbb{U} and $k(z) = \zeta(z^n)$ where $\zeta \in \mathbb{H}^2$, then

$$\sigma(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = \overline{\bigcup_{l=0}^{n-1} \mu^l k(\mathbb{U})}$$

where $\mu = e^{2\pi i/n}$, where *n* is a positive integer number.

Proof: Put $T_l = T_{\psi} | H_l$ for fixed $0 \le l < n$. If $\phi \in H_l$, then by (1) we have $C_{\sigma \circ \varphi}(\phi) = \mu^l \phi$, and so by lemma(3.2) we get

$$\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*(\phi) = T_k C_{\sigma \circ \varphi}(\phi) = \mu^l k \cdot \phi$$
$$= \mu^l T_l(\phi) \in H_l$$
(2)

Note that, it is easily seen that H_0, H_1, \dots, H_{n-1} are pairwise orthogonal. Put

 $\mathcal{W}_l = \mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^* | H_l$, so by (2) we have $\mathcal{W}_l = A^l T_l$. Thus,

$$\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^* = \mathcal{W}_0 \oplus \mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_{n-1} \tag{3}$$

Hence, $\sigma(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = \sigma(\mathcal{W}_0) \cup \sigma(\mathcal{W}_1) \cup ... \cup \sigma(\mathcal{W}_{n-1})$.

Therefore, by spectral mapping theorem and lemma (3.5) we get

$$\sigma(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = \overline{\bigcup_{l=0}^{n-1} \mu^l k(\mathbb{U})}.$$

Next, we compute the numerical rang of $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ where $\sigma \circ \varphi$ is a rational rotation of \mathbb{U} . Before this, we establish the following lemma.

Lemma (3.8):[7] Let $\psi \in \mathbb{H}^{\infty}$. If H_i is an invariant subspace of T_{ψ} , then

$$W(T_{\psi}\big|H_j)=conv(\psi(\mathbb{U}))$$

Theorem (3.9): Suppose that φ and ψ be two automorphism of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. If σ is Cowen auxiliary function of ψ such that $\sigma \circ \varphi$ is a rational rotation of \mathbb{U} and $k(z) = \zeta(z^n)$ where $\zeta \in \mathbb{H}^2$, then

$$W(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = conv \left(\bigcup_{l=0}^{n-1} \mu^l k(\mathbb{U}) \right)$$

where $\mu = e^{2\pi i/n}$, where *n* is a positive integer number.

Proof: Put $T_l = T_{\psi} | H_l$ an $\mathcal{W}_l = \mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^* | H_l$ for fixed $0 \le l < n$. Thus, by (3)

we have that

$$W(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = conv\left(\bigcup_{l=0}^{n-1}W(\mathcal{W}_l)\right)$$
(4)

If $\phi \in H_l$, then by (2) we have

$$\langle \mathcal{W}_l(\phi), \phi \rangle = \langle \mu^l T_l(\phi), \phi \rangle = \mu^l \langle T_l(\phi), \phi \rangle$$

It follows by lemma(3.8) that $W(\mathcal{W}_l) = \mu^l conv(k(U))$. Thus , by (4) we have $W(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = conv(\bigcup_{l=0}^{n-1}\mu^l k(\mathbb{U})).$

Recall that [] an operator T on a Hilbert space H is called convexied if $conv \sigma(T) = \overline{W(T)}$. Note that by proposition (3.1) (5) we have every normal operator is convexied.

Therefore, by theorem (3.7) and (3.9) we get the following consequence.

Corollary (3.10): Suppose that φ and ψ be two automorphism of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. If σ is Cowen auxiliary function of ψ such that $\sigma \circ \varphi$ is a rational rotation of \mathbb{U} and $k(z) = \zeta(z^n)$ where $\zeta \in \mathbb{H}^2$, then $\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^*$ is convexied operator.

Remark (3.11): If *A* is a primitive n^{th} root of unity our previous results still holds in fact, if $A = e^{2\pi i m/n}$ where *n* and *m* are relatively prime and $0 \le m < n$.

Let $\lambda = e^{2\pi i m / n}$ and $\mu = e^{2\pi i / n}$. If P_k denotes $m_{jk} \pmod{n}$, then $\lambda^{jk} = \mu^{P_k}$.

Suppose that $\phi \in H_j$, for some $0 \le j < n$. Then, it is easily see that

 $C_{\sigma \circ \varphi}(\phi) = \mu^{P} \phi$ where $P \equiv m_{i} \pmod{n}$. Then,

 $\langle \mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^*(\phi), \phi \rangle = \langle T_k C_{\sigma \circ \varphi}(\phi), \phi \rangle = \mu^P \langle K \phi, \phi \rangle.$

Therefore, by lemma(3.8) we have

 $W(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^{*}|H_{j}) = \mu^{P}conv(k(\mathbb{U}))$.

But, $\mathcal{W}_{f,\omega}\mathcal{W}_{f,\psi}^* = \mathcal{W}_0 \oplus \mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_{n-1}$ this implies that

 $W(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = conv\left(\mu^{P_0}k(\mathbb{U}) \cup \mu^{P_1}k(\mathbb{U}) \cup \dots \cup \mu^{P_{n-1}}k(\mathbb{U})\right).$

If $0 \le j_1 < j_2 < n$, then it is easily to see that $m_{j_1} \not\equiv m_{j_2} \pmod{n}$ and thus

 $\{P_0,P_1,\ldots,P_{n-1}\}=\{0,1,2,\ldots,n-1\} \ .$

In what follows we study the numerical rang of the operator $(\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^*)$ where $\sigma \circ \varphi$ is an irrational rotation of \mathbb{U} , i.e. $(\sigma \circ \varphi)(z) = Az$, $A = e^{2\pi i \theta}$

such that θ is irrational number .

Lemma (3.12): Suppose that φ and ψ be two automorphism of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. If σ is Cowen auxiliary function of ψ such that $\sigma \circ \varphi$ is an irrational rotation of \mathbb{U} and

 $k(z) = 1 + \hat{K}_1 z + \hat{K}_2 z^2 + \cdots$ Assume that n is a non-negative integer and m is a positive integer, Then $W(\mathcal{W}_{f,\varphi}, \mathcal{W}_{f,\psi}^*)$ contains the ellipse with foci μ^n and μ^{n+m} whose major axis is $\sqrt{|\mu^n - \mu^{n+m}|^2 + |\hat{K}_m|^2}$ and minor axis is $|\hat{K}_m|$.

Proof: Let $Q = span\{e_1, e_2\}$ where $e_1(z) = z^n$ and $e_2(z) = z^{n+m}$. Then, we have

$$\begin{aligned} \mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^*(e_1)(z) &= T_k C_{\sigma \circ \varphi}(e_1)(z) \\ &= k(z). e_1(\sigma \circ \varphi \varphi(z)) \\ &= (1 + \widehat{K}_1 z + \widehat{K}_2 z^2 + \cdots) A^n z^n \\ &= \mu^n z^n + \mu^n \widehat{K}_1 z^{n+1} + \mu^n \widehat{K}_2 z^{n+2} + \cdots + \mu^n \widehat{K}_m z^{n+m} + \cdots \end{aligned}$$

Similarly, we have

$$\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*(e_2)(z) = \mu^{n+m}z^{n+m} + \mu^{n+m}\widehat{K}_1z^{n+m+1} + \cdots$$

Thus, the matrix that represents $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is

$$T = \begin{bmatrix} \mu^n & 0\\ \mu^n \widehat{K}_m & \mu^{n+m} \end{bmatrix}$$

Therefore, W(T) is the ellipse with $\text{foci}\mu^n$ and μ^{n+m} that described in (see[]). But $W(T) \subseteq W(\mathcal{W}_{f,\omega}\mathcal{W}_{f,\psi}^*)$, as desired.

Now, we are ready to discuss the numerical rang of $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ when it is an isometry operator.

Recall that [] an operator T on Hilbert space \mathcal{H} is said to be shift operator if T is an isometry and $(T^*)^n \to 0$ strongly. Gunatillake G. in [] described the numerical range of weighted composition operator $\mathcal{W}_{f,\varphi}$ when each of φ and ψ is inner function.

Lemma (3.13): Suppose that φ be a holomorphic self-map of U and $\in \mathbb{H}^{\infty}$. If $\mathcal{W}_{f,\varphi}$ is an isometry, then φ must be inner function and ||f|| = 1.

Proof: Let the operator $\mathcal{W}_{f,\varphi}$ is an isometry, then $\mathcal{W}_{f,\varphi}^*$. $\mathcal{W}_{f,\varphi} = I$. Thus for each $p \in U$, we have

 $\left\|\mathcal{W}_{f,\varphi}K_p\right\| = \left\|K_p\right\| \text{ , then } \left\|T_fC_{\varphi}K_p\right\| = \left\|K_p\right\|.$

This implies that $||f(K_p \circ \varphi)|| = ||K_p||$. Hence, by taking p = 0, then $K_0 = 1$

and thus $||f(1 \circ \varphi)|| = ||1||$, then ||f|| = 1

In addition that, if g(z) = z, then it is clear that ||g|| = 1. Therefore

 $\left\| \mathcal{W}_{f,\varphi}g \right\| = \left\| g \right\|$, and then $\left\| T_f C_{\varphi}g \right\| = \left\| g \right\|$.

Thus, $||f(go\varphi)|| = ||g||$, then $||f.\varphi|| = 1$.

Since $|\varphi(e^{it})| \le 1$ a.e. $t \in [0,2\pi)$

and both ||f|| and $||f.\varphi||$ are 1. Then, by the integral representation of $||f||_{\mathbb{H}^2}$

$$\|f\|_{\mathbb{H}^2}^2 = \frac{1}{2\pi} \int_{0}^{2\pi} |f(e^{it})|^2 dt$$

So that $|\varphi(e^{it})| = 1$ a.e. on U, then φ is an inner function.

Theorem (3.14):[] Let φ be an inner function that fixes the origin .If ψ is also a nonconstant inner function, then $\mathcal{W}_{\psi,\varphi}$ is a shift operator such that $W(\mathcal{W}_{\psi,\varphi}) = \mathbb{U}$.

Corollary (3.15): Suppose that φ and ψ be two linear- fractional self-maps of \mathbb{U} and $f \in \mathbb{H}^{\infty}$ such that each of φ and σ fixes the origin, then $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is a shift operator and $\mathcal{W}(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = \mathbb{U}$.

Proof: Since $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is an isometry operator, then by lemma (3.2) and lemma (3.13) $\sigma \circ \varphi$ is an inner function and $||k||_{\infty} = 1$. But by our assumption that each of φ and σ fixes the origin, then $\sigma \circ \varphi$ is also. In addition that since $||k||_{\infty} = 1$, then we have |k(0)| < 1, hence k is a non-constant inner function. Therefore by theorem (3.2.13) $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is shift operator such that $\mathcal{W}(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = \mathbb{U}$.

Next, we study the numerical rang of $\mathcal{W}_{f,\varphi}\mathcal{W}^*_{f,\psi}$ when it is an isometry that is not unitary.

Theorem (3.16):[] Let $\mathcal{W}_{\psi,\varphi}$ be an isometry on \mathbb{H}^2 . If $\mathcal{W}_{\psi,\varphi}$ is not a unitary operator, then $W(\mathcal{W}_{\psi,\varphi}) = \mathbb{U} \cup \sigma_p(\mathcal{W}_{\psi,\varphi})$.

Corollary (3.17): Let φ and ψ be two linear- fractional self-maps of U and $f \in \mathbb{H}^{\infty}$ such that either φ or ψ is not automorphism of U. If $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is an isometry, then $W(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = \mathbb{U} \cup \sigma_p(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*)$.

Proof : Assume that $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is isometry operator, then by lemma(3.2) and lemma (3.13), $||k||_{\infty} = 1$. Since either φ or ψ is not automorphism of \mathbb{U} , then $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is not unitary, Therefore, by theorem(3.15) we have $W(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = \mathbb{U} \cup \sigma_p(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*)$.

The following result describe the spectra of unitary weighted composition operator.

Theorem (3.16):[] Suppose $\mathcal{W}_{\psi,\varphi}$ is unitary. If φ is elliptic with fixed point p, then $|\phi(p)| = 1$

and the spectrum of $\mathcal{W}_{\psi,\varphi}$ is the closure of the set $\{\psi(p)\phi(p)^n: n = 0, 1, 2, ...\}$.

If φ is parabolic or hyperbolic, then the spectrum is the unit circle.

Theorem (3.19): Suppose that φ and ψ be two automorphism self-maps of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. If $K(z) = \frac{r K_p(z)}{\|K_p\|}$ where |r| = 1 such that $\varphi(p) = \psi(p) = 0$, then we have the following statements :

1- If $\sigma \circ \varphi$ is hyperbolic or parabolic, then $W(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = \mathbb{U}$.

2- If $\sigma \circ \varphi$ is elliptic with fixed point $p \in U$. Then, if $(\sigma \circ \varphi)'(p)$ is a root of unity, we have $W(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = U$. Otherwise, $W(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*)$ is a polygon with vertices $k(p), k(p). (\sigma \circ \varphi)'(p), \dots, k(p). ((\sigma \circ \varphi)'(p))^{n-1}$.

Proof: Since each of φ and ψ is automorphism with above hypotheses, therefore $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is unitary operator. Therefore, $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is convexied, thus

$$conv \,\sigma(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = \overline{W(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*)}$$
(5)

Therefore we can get the following cases :

(1) If $\sigma \circ \varphi$ is hyperbolic then by theorem(3.18) we have $W(\mathcal{W}_{f,\varphi}, \overset{*}{f,\psi}) = \mathbb{U}$. On the other hand, if $\sigma \circ \varphi$ is parabolic, then by theorem(3.18) we have $W(\mathcal{W}_{f,\varphi}, \mathcal{W}_{f,\psi}^*) = \mathbb{U}$.

(2) If $\sigma \circ \varphi$ is elliptic with fixed point $p \in \mathbb{U}$, then by theorem(3.18) we have $|(\psi^{-1}o\varphi)'(p)| = 1$ and

 $\sigma(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*) = \{k(p) . ((\sigma \circ \varphi)'(p))^n : n = 0, 1, 2, \dots \}.$ Thus two cases which are appeared a. If $(\sigma \circ \varphi)'(p)$ is a root of unity.

Therefore it is clear that

$$\sigma\big(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*\big) = \{ k(p), k(p). (\sigma \circ \varphi)'(p), \dots, k(p). ((\sigma \circ \varphi)'(p))^{n-1} \}$$

Hence it is clear that by (5) we have $W(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*)$ is a polygon with vertices $k(p), k(p). (\sigma \circ \varphi)'(p), ..., k(p). ((\sigma \circ \varphi)'(p))^{n-1}$.

b. If $(\sigma \circ \varphi)'(p)$ is not a root of unity.

Since $||k||_{\infty} = 1$, then |k(p)| = 1, therefore we have by [] that the set $\{k(p), (\sigma \circ \varphi)'(p)\}^n$: $n = 0, 1, 2, ...\}$ is dense in $\sigma(\mathcal{W}_{f,\varphi}, \mathcal{W}_{f,\psi}^*)$. But $(\sigma \circ \varphi)'(p)$ is not a root of unity, then $\sigma(\mathcal{W}_{f,\varphi}, \mathcal{W}_{f,\psi}^*) = \partial \mathbb{U}$. This implies by (5) that $W(\mathcal{W}_{f,\varphi}, \mathcal{W}_{f,\psi}^*) = \mathbb{U}$.

References

- [1] AboodE.H., " The composition operator on Hardy space H^2 ", Ph.D. Thesis, University of Baghdad, (2003).
- [2] Abood E. H., The numerical rang and normal operator, Mc. S. Thesis, University of Baghdad, 1996.
- [3] Bourdon Paul S. and Narayan S., "Normal weighted composition operators on the Hardy space", J.Math.Anal. Appl.,367(2010),5771-5801.

- [4] CowenC. C. and Ko E., "Hermitian weighted composition operator on H^2 " Trans.Amer.Math.Soc., 362(2010), 5771-5801.
- [5] Deddnes J. A., "Analytic Toeplitz and Composition Operators", Con. J. Math., vol(5), 859-865, (1972).
- [6] Gunatillake G., "invertible weighted composition operator ",J. Funct. Anal., 261(2011), 831-860.
- [7] Gunatillake, G. ,Jovovic, M. and Smith, W. ,Numerical range of weighted composition operators ,J. of Mat. Anal., (2014) .
- [8] Halmos P. R., "A Hilbert space problem book", Sprinrer- Verlag, NewYork, (1974).
- [9] Shapiro J.H., "Composition Operators and Classical Function Theory", Springer-Verlage, New York, (1993).