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Abstract. In this paper we study the product of a weighted composition operator W, With the
adjoint of a weighted composition operator W, on the Hardy space H?. The order of the product give

rise to different cases . We will try to completely describe when the operator W, , Wy, is invertible,
isometric and unitary and when the operator Wy, W , is isometric and unitary.

1. Introduction

Let U denote the open unite disc in the complex plan, let H* denote the collection of all
holomorphic function on U and let H? is consisting of all holomorphic self-map on U such that
f(2) =Yr_ya,z" whose Maclaurin coefficients are square summable (i.e) f(2) = ¥7_ola,|? < .
More precisely f(z) = ¥7_ya,z" if and only if ||f]| = Xv_ola,|? < «.The inner product inducing
the H? norm is given by {f,g) = ¥*_, a,, b, .

Given any holomorphic self-map ¢ on U, recall that the composition operator

is called the composition operator with symbol ¢, is necessarily bounded. Let f € H>, the operator
Tr: H? — H2defined by

Tr(h(2)) = f(2)h(z), forallz€ U,h€ H?

is called the Toeplitz operator with symbol f. Since f € H®, then we call Ty a holomorphic Toeplitz
operator. If Ty is a holomorphic Toeplitz operator,then the operator T C,, is bounded and has the form

T;Cpg = f(go9) (g € H?).
We call it the weighted composition operator with symbols f and ¢ [1] and [3], the linear operator
Wy g = f(go9) (g € H?).

We distinguish between the two symbols of weighted composition operator W , , by calling f the
multiplication symbol and ¢ composition symbol.
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For given holomorphic self-maps f and ¢ of U, W , is bounded operator even if f ¢ H”. To see a
trivial example, consider ¢(z) = p where p € U and f € H? then for all g € H?, we have

| W gll, = lg@IIfllz = 1Ifll2[¢a, Kp)| < If 12 Nlgll2||K I,

In fact, if f € H” then W, is bounded operator on H? with norm

lp (0)]
I W | = 1TrColl < Fllea|Co ]l = 1Nl /—:Z(ﬁ)l-

2. Basic Concepts

We start this section, by giving the following results which are collect some properties of Toeplitz
and composition operators.

Lemma (2.1):[4, 6] Let ¢@be a holomorphic self-map of U, then
@) CpTr =Tfop Cy.
(b) T, Ty = Tyf.
©) Trayg =T + 7T,
(d) T =Tf.
Proposition (2.2):[1] Let ¢ and y be two holomorphic self-map of U, then
1. ¢y =C,, forallpositive integer n.
2. C, isthe identity operator if and only if ¢ is the identity map.
3. C,=C, ifandonly if g=y.
4.  The composition operator cannot be zero operator.

For each a € U ,the reproducing kernel at « ,defined by K, (z) = L

1-az

It is easily seen for each @ € U and f € H?, f(z) = Y-y a,z" that

(FK) =) ana® = f(@).
n=0

When ¢(z) = (az + b)/cz + d) is linear-fractional self-map of U,Cowen in [2] establishes C, =
T, C; Ty, where the Cowen auxiliary functions g, o and h are defined as follows:

az—

9@) =57 0@ =5

and h(z)=cz+d .
If ¢ is linear fractional self-map U, then Wy, = (T;C,)" = C; Ty = T,C, Ty,

Proposition (2.4):[5] Leteach of ¢¢, ¢, ... ¢, be holomorphic self-mapsof Uand f, f5, ... f, € H™,
then

Wf1,¢1'wf2r€02 ""anxﬂn = ThC¢>

WhereTy, = fi.(f2001). (f30902001). ... (f2090,_10¢0y 70 ....090;) and
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Cp = Pno@y—10....001.
Corollary (2.5): Let ¢ be a holomorphic self-map of U and f € H* then
Wi =T ¢ 00 YF 002)-f 0pu-1)Cop
The following lemma discuss the adjoint of weighted composition operator .

Lemma (2.6):[3] If the operator W ,: H* — H? is bounded,then for each a € U
Wf*,goKa = f(a)K(p(a).
3- Invertible Weighted Composition Operator

In this section, we study the product of a weighted composition operator W ,with the adjoint of
a weighted composition operator Wy, on the Hardy space H?. The order of the product give rise to

different cases. We will try to completely describe when the operator Wf,q,w;ﬂp is invertible,
isometric and unitary and when the operator Wy, W , is isometric and unitary. First we try to obtain
some properties of the operator fopW]Z"l,,

Proposition (3.1):  Suppose ¢ and 1 be two holomorphic self-map of U and f € H*, such that 0
is not a fixed point of U thean,(pW/;“'lp is self-adjoint if and only if

Y(z) =Ap(z) ,forallz e U.

Proof : LetB € U ,then foreachz € U, we have
(Wro Wy y) Ky (2) = Wy, Wy, K5 (2)
=TrCy (W&J(m(z))
=f(B) f(DK () @(2))

On the other hand , for each z € U, we have
Wr o Wr y Ks (2) = Tf C, ( f (ﬁ)Kw(ﬂ)(Z))

= f(B) f(@DKyp)(@(2) .
Therefore, Wy , Wy, is self-adjoint if and only if for each z € U

K, W(2)) = Ky (9(2))

Hence,
1 1
— = ——— (1)
1-eB)(2) 1-y(B)e(2)
In particular letting 8 = 0 inequation (3.1), we get
Y(z) = Ap(z) where A= (%) (note that ¢(0) #0 ) . [
Recall that [2] an operator T is anisometry if ||Tx|| = ||x]|| forall x orequivalently T*T = 1I.
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Nordgren E.M [7 ] characterized the isometry composition operator as follows .

Theorem (3.2): A composition operator C, is an isometry if and only if ¢ is an inner function and
(0)=0.

Now , to characterize the inevitability of Wr o W;‘,l,, , we need the following results .

Lemma (3.3): Suppose that ¢ be a holomorphic self-map of U and € H™. If W, is an isometry,
then ¢ must be inner functionand ||f]| = 1.

Proof : Let the operator Wy, is an isometry, then Wy ,. Wy , =1 . Thus for each p e U , we
have

W Kol = (11| then (|7, Co || = [ |

This implies that || f (K, e @)|| = ||K,|| - Hence, by taking p = 0, then K, = 1
and thus [[f(1e @)l =11l ,then |If|l=1

In addition that, if g(z) = z,then itis clear that ||g|| = 1 . Therefore

[Wyp gl = llgll, and then [|T:C, g | = llgll -

Thus, |If(gop)ll = llgll, then |If.oll=1.
Since [p(e®)| <1  a.e. te[02m)

and both ||f|| and ||f.@l| are1.Then, by the integral representation of || f || ;2
2n
L2
171 = o [ 1 et
0

Sothat |p(e*)| =1 a.e. onU,then ¢ isan inner function. U

Gunatillake G. [5] studied the invertible weighted composition operator on Hardy space H?Z. He give
the following result .

Theorem (3.4):[5] The operatorW ,on H? is invertible if and only if f is both bounded and
bounded away from zero on the unit disc and ¢ is an automorphism of the unit disc. The inverse

operator is the weighted composition operator Wffq} =W

_1 .
oo~ 1%

We are ready to discuss the inevitability of the operator of the operator W , Wy, .

Theorem (3.5): Suppose that ¢ and ¥ be two holomorphic self-map of U and f € H*. Then
W , Wy, is invertible if and only if each of Wy, and W, is invertible operator.

Proof : Suppose that Wy , Wy, is invertible, then the operator W , Wy, is one-to-one and onto.
Hence, Wf,q, is onto. Therefore it is clear that, ¢ is non- constant map.

Thus, W , is one-to-one . Hence W , is invertible.

Now, since each of W, Wy, and Wy, is invertible, then we have W, , must be invertible
operator.
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The reverse induction follows immediately. [
A straightforward consequence can obtained from theorem (3.4).

Corollary (3.6): Suppose that ¢ and Y be two holomorphic self-map of U and f € H* . Then
W W, is invertible if and only if £ is bounded and bounded away from zero on U and each of
¢ and is an automorphism of U.

Corollary (3.7): Let @ and 1 be two holomorphic self-map of Uand f € H* . If W, Wy, is

invertible , then (Wf,(p.Wf"w)‘l = CIZ—l.W[l/W)(fD(p—l)],(p—l -

Proof : Since by theorem (3.1.3) we have

wol=w and Wil =w . Then
o e e e ’

W) = W) =W o' = 1 Gy

Fov~ Ty oy~ D
= CIZAT 1
(fov=D

* -1 * — —
Hence y (Wf,(pwf,l[}) = (Wf,l/}) I(fop) 1

=(Cy-T_1 )(T 1 C, 1)
v ) Foo D) ¥

—_ *
= C¢—1 T 1 _ C<p—1
(fov Dfop—1)

= Clz—l.w 1 1 .H

Gov Dfoo 17

In the following , we give the necessary and sufficient condition to the operator W, , Wy, to be
isometry first we need the next lemma .

Lemma (3.8)[9]: If T isisometry operator and S is unitary operator , then TS™is an isometry .

Theorem (3.9):  Suppose that ¢ and ¥ be two holomorphic self-maps of U and f € H® such
that ||fllg> =1 . Then Wy, Wr , is an isometry if and only if W , is an isometry and W, is
an unitary operator .

Proof :  Suppose that Wy , W¢ ,, is an isometry , therefore
(Wf’(pW;‘lp)* Wf,(pW;,l[J = I . ThUS
WrwWr .o Wy oWry =1 . Hence one can easily see that W ,, is onto .

This it is clear that, i is non- constant map. Therefore by lemma (2.4.3) we have W, is one-to-
one.

Thus W, invertible. Therefore by theorem (3.1.5) and corollary (3.1.6) iy must be an
automorphismof U. So that there existsn € dU and p € U, that for each z € U
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p—2z
1-pz

b@) =1 (1), wherep@) =0 .

But Wy , Wr ,, is an isometry, then for every p € U, we conclude that

Wy Wiy Kol = [1Ko |

Thus , Wro CF@EKp)l = (1K | -
Hence , 7o ( F@KO)| = || K || -
Then, If @) Cp (K| = [|K | -
Therefore, IF @) £ (Ko o )| = [[Ko | -
But (Kpegp =109 =1) , |[f®fl=[K]| -
Hence, [F@|Il f1l = [|K, |

Then, [ KoM = (K, || = NI |

Thus, by Cauchy —Schwartz inequality , we have

a
f(2) = ak,(2) =17z for some a € C
But || f]l = 1 , then it easily see that f(z) = rﬁwherelrl =1 and Y(p) = 0
14

Hence by theorem (2.9) we have W ,, is unitary operator .
Conversely , if W, is anisometry and W, is unitary , then
WroWro = WryWry = Wry Wry =1(2)
Hence from (3.2) we have
Wr o Wr)™ Wy oWy = Wry Wrp Wrp Wy =1

Therefore Wy , Wy, is an isometry ,as desired . [

Corollary (3.10): Suppose @ and i be two holomorphic self-map of U and f e H*such
that||f{lg> = 1. Then W , Wy, is unitary if and only if each of W, and W;, is an unitary
operator .

Proof :  Suppose that Wy , Wr , is an unitary operator , then it is isometry. Therefore by theorem
(3.9) we have W, is unitary operator . But since Wy , Wy, is unitary, then W , Wy, is also
unitary , thus by theorem (3.9) we have W ,, is unitary operator .

The converse is clear .

Now , the corollary (3.9) and theorem (2.9) we get the following consequence .
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Corollary (3.11): Suppose ¢ and Y be two holomorphic self-map of U and f e H*such
that||f Iz~ = 1. Then Wy , W, is unitary if and only if each of ¢ and ¥ is an automorphism of

Uandf(z) = r”I;—””such thatp € U where |r| =1 and
14

@) =yv@E) =0 .

We are in a position to examine when Wy, Wy , dose admit characterization analogous to the
operator Wy, Wy, , we first record result regarding norm .

Theorem (3.12): Suppose ¢ and  be two holomorphic self-map of U and f € H” such that
Ifllw= = 1f(0)[* = 1. Then ||[Wf, W, || =1 ifand only if

Y(0) =¢p(0)=0.
Proof : If ||{Wf, W, || = 1, then for each a,z € U we get that
Wiy Wrp Ko (2) = Wy, (f (2) Ko (9(2))
Thus by letting @ = 0 and z = 0, yields
Wf*,lpwf,qﬂ Ka (Z) = Wf*’wch'w KO (0)
=Wy, (f (0) Ko o ¢(0))
= f(O)Wr,, (Ko)
= f(0)f(0) Ky (0)
= |f(0)*Ky (o)
= Ky (o) -
Hence , we have
Ky [l < W7y Wy || = 1 (3.3)

Thus ,

2 1
K, =— <
” 1/;(0)” 1— |ll’(0)|2

1
which implies that ¥ (0) = 0 . But we know that ,

Wy Wroll = W Wyl =1
Therefore , similarly we obtain that ¢(0) = 0, as desired .

Conversely , assume that ¢ (0) =¥ (0) =0 . Thus,

7.0 Wro | < W7 197 |

< I EelICy II1IC ||
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, 1510111 +$(0)]
< IIfIIijl —lp(O)[11 = p(0)]

And the hypothesis@(0) = 1 (0) = 0 and ||f]| = 1 implies that

| W7y Wy, || < 1. Moreover, from (3) we have

W Wroll = Ky ll =1 -
Hence , [|[ W, W, || =1.m

Corollary (3.13): Suppose ¢ and 1 be two holomorphic self-map of U and f € H™such that
Ifllg= = If(O)?=1.If W;l,,wf,q, is an isometry, then ¥ (0) = @(0) =0.

Proof : If Wy, W, is an isometry, then its norm is one .Thus by theorem(3.1.12) we conclude that
P(0) =¢(0)=0. u
Now, consider the case Wy, W, , is an isometry . We will require some preliminary results.

Proposition (3.14)[9]: Let S and T be contractive operators on a Hilbert space . If S*T is an
isometry , then T is an isometry and we have T = SS*T .

Lemma (3.15)[9]: Suppose ¢ and y are holomorphic self-maps of U such that ¢ is non-constant
and C, =CyT for some T € B(H?). Thus there is a holomorphic self -map « of U such that

T=C,and p=ao°y .
Corollary (3.16):

Suppose ¢ and  are holomorphic self-maps of U such that f € H*/{0}. If ¢ is non-
constant map and Wy, = W, S for some S € B(H?). Then there is a holomorphic self -map a of
U suchthatS =C,and o =aoip .

Proof : It follows from Wr o =W yS that for each z € U , g € H?

f(2)C,9(2) = f(2)CyS g(2). Hence , C, = C,S . Hence the consequence follows immediately by
lemma(3.15). [

We are now in a position to analyze W ,, W ,, in the case where the product is isometry.

Theorem (3.17): Suppose ¢ and Y be two holomorphic self-map of U and f e H” such
that || fllg= = |f(0)|> = 1. If Wr Wy, is an isometry, each of ¢ and 1 is an inner function with
Y(0)=¢(0)=0 and ¢ = a oy where a:U — U isinner with a(0) =0 .

Proof :  Suppose Wy, Wy, is an isometry . By corollary (3.1.13) we have (0) = ¢(0) =0 .
This implies that ,

1+1p()|
[Wrall < IF=llcy | < Wl 750 =1 -

Similarly ||[W, || < 1, therefore each of W, and Wy, is contractive on HZ. Now, applying
corollary (3.1.16) with S =W, and T =W, , we get that Wy, s isometry and Wy, =
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W Wt Ws,, - Therefore , by lemma (3.3) we get that ¢ is an inner function . Thus it is clear that
@ Is non-constant.

Now , by corollary (3.16) there exists a holomorphic self-map a of U such that
Co =WryWsr, and g =ao .

Now , C, is an isometry , then by theorem (3.2) we have « is inner function such that «(0) =0 .
Since each of ¢ and « is inner function , then vy is also .

Conversely , if each of ¢ and v is inner function such that ¢(0) = ¥ (0) =0

@ =aoy where a:U — U is inner with a(0) =0 . Using the identity C, = ngpwf@ , We
obtain by theorem (3.2) that C, is an isometry , as desired .m

Now, we are ready to use the isometric characterization to describe precisely when w;,l,,wf,q,
is a unitary operator.

Corollary (3.18): Suppose ¢ and Y be two holomorphic self-map of U and f e H™such
that||f ||g= = |f(0)|> = 1. Then wgwwf@ is unitary if and only if each of ¢ and vy is an inner
function with ¥(0) = ¢(0) = 0 and there exists inner function a with a(0) =0 such that
p=ayp.

Proof : Suppose W]f’lpwf,(p is unitary , then by theorem (3.17) both ¢ and  is an inner function
with ¥ (0) = ¢(0) = 0 and there exists inner function a@ with a(0) =0 suchthat g = aoy) .

As in theorem (3.17) we have Wy, W , = C, , and so C, is unitary. This implies a(z) =1z for

some A with || =1. Therefore  ¢@(z) = AY(z). The reverse induction is clear.
|

Now , we are ready to recover the inevitability of the operator Wfiwwf,w . We need the following
lemma.

Lemma (3.19)[10]: Suppose ¢ be univalent , holomorphic self-map of U. Then C, has closed
range on H? if and only if ¢ is an automorphism of U .

Theorem (3.20): Suppose ¢ and ¥ be two holomorphic self-map of U such that  is univalent
and f e H2which is bounded and bounded away from zero . Then Wr W, is invertible if and
only if each of ¢ and 1 are automorphism of U.

Proof : Suppose that w;l,,wf,w is invertible, then Wf*,z/} = CIZTf* is onto. Therefore, it is clear that

Cy isonto . This implies that C,, is bounded from below and so the range of C,, is closed. Thus by
lemma (3.19) we have v is an automorphism . Therefore by applying theorem (3.4) we have that
W, is invertible operator. Hence W, is invertible and then W , is invertible.

Therefore again by theorem (3.4) that ¢ is an automorphism.
The converse is follows immediately by theorem (3.4). ]
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