

Volume 8, Issue 2

Published online: July 04, 2016

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

New types of generalizations of θ -closed sets

Y. Gh. Gouda¹, M. M. El-Sharkasy², S. M. El-Sayed³

¹ Aswan University, faculty of science, Mathematics department, Aswan, Egypt

² Tanta University, faculty of science, Mathematics department, Tanta, Egypt

³ Aswan University, faculty of science, Mathematics department, Aswan, Egypt

Abstract

The aim of this paper is to introduce and study the class of T-closed sets as a generalization of θ closed sets, which is properly placed between θ -closed sets and closed sets. A generalization of Tclosed sets, namely, generalized T-closed sets is introduced and studied, which is properly placed between T-closed sets and g-closed sets.

Keywords: T-closed sets; generalized *T*-closed sets; θ -closed sets.

1. INTRODUCTION

In 1968, N. V. Veli^{\sim}cko [1] introduced the definition of θ -closed sets via θ -closure operator. In 1970, Norman Levine [3] introduced a generalization of closed sets and studied their basic properties. In 1982, W. Dunham [4] introduced a new closure operator based on g-closed sets. In 1999, J. Dontchev and H. Maki [2] introduced a generalization of θ -closed sets, namely, θ -generalized closed sets. In this paper, we introduce a generalization of θ -closed sets via T-closure operator which is based on Dunham's closure operator, also we introduce a generalization of T-closed sets which is stronger than g-closed sets.

2. PRELIMINARIES

Throughout this paper (X, τ) , (Y, σ) and (Z, η) (briefly, X, Y and Z) represent topological spaces on which no separation axioms are assumed unless otherwise stated. For a subset A of a topological space (X, τ) , cl(A) and int(A) denote the closure and the interior of A, respectively.

We recall the following definitions, which are useful in the sequel.

Definition 2.1 A subset A of a space (X, τ) is called.

(1) θ -closed [1] if $A = cl_{\theta}(A)$, Where $cl_{\theta}(A) = \{x \in X: cl(U) \cap A \neq \varphi, \forall U \in \tau, x \in U\}$.

- (2) generalized closed (briefly, g-closed) [3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- (3) θ -generalized closed (briefly, θ -g-closed) [2] if $cl_{\theta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- (4) semi-generalized closed (briefly, sg-closed) [7] if $cl_{s}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open.

(5) generalized α -closed (briefly, $g\alpha$ -closed) [8] if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open.

(6) generalized semi-closed (briefly, gs-closed) [9] if $cl_s(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

(7) α -generalized closed (briefly, α g-closed) [10] if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

(8) generalized semi-preclosed (briefly, gsp-closed) [11] if $cl_{sp}(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

(9) regular generalized closed (rg-closed) [12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open.

(10) α -closed [13] if cl (int (cl (A))) \subseteq A. The intersection of all α -closed sets containing A is called α -closure [16] and is denoted by $cl_{\alpha}(A)$.

(11) semi-closed [14] if int (cl (A)) \subseteq A. The intersection of all semi-closed sets containing A is called semi-closure [17] and is denoted by $cl_s(A)$.

(12) semi-preclosed [15] if $int(cl(int(A))) \subseteq A$. The intersection of all semi-preclosed sets containing A is called semipre-closure [15] and is denoted by $cl_{sp}(A)$.

(13) regular open [23] if A = int(cl(A)).

Definition 2.2 [4] For a subset A of a topological space (X, τ) , $cl^*(A) = \cap \{F: A \subseteq F, F \text{ is g-closed}\}$.

Lemma 2.1 [4] If $A \subseteq X$, then $A \subseteq cl^*(A) \subseteq cl(A)$.

Definition 2.3 [6] In a space X, A is equivalent to B (written $A \equiv B$) iff for each open set U, $A \subseteq U$ iff $B \subseteq U$.

Definition 2.4 [3] A topological space X is called $T_{1/2}$ -space iff every g-closed set is closed.

Theorem 2.1 [22] X is $T_{1/2}$ -space iff for each $x \in X$, either $\{x\}$ is open or $\{x\}$ is closed.

3. T-CLOSED SETS

In this section, we introduce a new class of sets, namely, T-closed sets as a generalization of θ -closed sets and study their fundamental properties.

Definition 3.1 A subset A of a topological space X is called T-closed set if $A = cl_T(A)$, where $cl_T(A) = \{x \in X: cl^*(U) \cap A \neq \varphi, \forall U \in \tau \text{ and } x \in U\}$. The complement of a T-closed set is called T-open set. The family of all T-closed (resp. T-open) sets is denoted by TC(X) (resp. TO(X)).

Proposition 3.1 For a subset $A \subseteq X$, $A \subseteq cl_{T}(A)$.

Proof: Let $x \in A$. Then for every open set U containing x, we have $cl^*(U) \cap A \neq \phi$ which means that $x \in cl_T(A)$. Hence $A \subseteq cl_T(A)$.

Definition 3.2 A subset A of a topological space X is called T-open set if $A = int_T(A)$, where $int_T(A) = \{x \in X: cl^*(U) \subseteq A, U \in \tau \text{ and } x \in U\}$.

Proposition 3.2 For a subset $A \subseteq X$, $int_T(A) \subseteq A$.

Proof: Let $x \in int_T(A)$, then there exists an open set U containing x such that $cl^*(U) \subseteq A$ and since $U \subseteq cl^*(U)$, we have $x \in A$. Thus $int_T(A) \subseteq A$.

Proposition 3.3 $int_T(A) = \bigcup \{ U \in \tau : cl^*(U) \subseteq A \}.$

Proof: Let $x \in int_T(A)$, then there exists an open set U containing x such that $cl^*(U) \subseteq A$ and then $x \in \cup \{U \in \tau: cl^*(U) \subseteq A\}$. Thus $int_T(A) \subseteq \cup \{U \in \tau: cl^*(U) \subseteq A\}$. Conversely, let $x \in \cup \{U \in \tau: cl^*(U) \subseteq A\}$, then there exists an open set U containing x such that $cl^*(U) \subseteq A$ and then $x \in int_T(A)$. Therefore, $\cup \{U \in \tau: cl^*(U) \subseteq A\} \subseteq int_T(A)$ and hence $int_T(A) = \cup \{U \in \tau: cl^*(U) \subseteq A\}$.

We give an example of T-closed sets.

Example 3.1 X = {a, b, c}, $\tau = \{X, \phi, \{a\}\}$. $TC(X) = \{X, \phi, \{b, c\}\}$.

Proposition 3.4 For a subset A of a topological space X, $cl_{\tau}(A) \subseteq cl_{\theta}(A)$.

Proof: Let $x \in cl_T(A)$, then for every open U containing $x cl^*(U) \cap A \neq \varphi$. But $cl^*(U) \subseteq cl(U)$. Therefore, $cl(U) \cap A \neq \varphi$. Thus $x \in cl_{\beta}(A)$.

Proposition 3.5 For a subset A of a topological space X, cl (A) $\subseteq cl_T(A)$.

Proof: Let $x \in cl(A)$, then for every open set U containing $x \cup A \neq \phi$. Then $cl^*(U) \cap A \neq \phi$ and hence $x \in cl_{\tau}(A)$. Thus $cl(A) \subseteq cl_{\tau}(A)$.

Proposition 3.6 Every θ -closed set is T-closed.

Proof: Let A be θ -closed set. Then A = $cl_{\theta}(A)$, and we have $cl_{\theta}(A) = A \subseteq cl_{T}(A)$. Thus A = $cl_{T}(A)$ and hence A is T-closed set.

Proposition 3.7 Every T-closed set is closed.

Proof: Let A be *T*-closed set. Then $A = cl_T(A)$. We want to show that $cl(A) = A = cl_T(A)$. We know that $cl(A) \subseteq cl_T(A) = A$. Therefore A = cl(A) and hence A is closed.

We have the following implications.

 θ -closed \longrightarrow T-closed \longrightarrow closed

Implications in the previous Fig. can't be reversed as shown from the following examples.

Example 3.2 Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}, \{b, c\}$ is T-closed but not θ -closed.

Example 3.3 Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a, c\}\}, \{b\}$ is closed but not T-closed.

Proposition 3.8 For two subsets A, B of a topological space X, if $A \subseteq B$, then $cl_T(A) \subseteq cl_T(B)$.

Proof: Let $x \in cl_T(A)$, then for every U open containing x, $cl^*(U) \cap A \neq \varphi$. But, $A \subseteq B$ then, $cl^*(U) \cap B \neq \varphi$. Thus $x \in cl_T(B)$ and therefore, $cl_T(A) \subseteq cl_T(B)$.

Proposition 3.9 For two subsets A, B of a topological space X, $cl_T(A \cup B) = cl_T(A) \cup cl_T(B)$.

Proof: $A \subseteq A \cup B$ then, $cl_T(A) \subseteq cl_T(A \cup B)$. Similarly, $cl_T(B) \subseteq cl_T(A \cup B)$ and then, $cl_T(A) \cup cl_T(B) \subseteq cl_T(A \cup B)$. Now, we want to show that $cl_T(A \cup B) \subseteq cl_T(A) \cup cl_T(B)$. Let $x \notin cl_T(A) \cup cl_T(B)$ which leads to

 $cl^*(U) \cap A = \phi$, $cl^*(U) \cap B = \phi$ for every open set U containing x and therefore, $cl^*(U) \cap (A \cup B) = \phi$ for every open set U containing x. Thus, $cl_T(A \cup B) \subseteq cl_T(A) \cup cl_T(B)$ and hence, $cl_T(A \cup B) = cl_T(A) \cup cl_T(B)$.

Proposition 3.10 For two subsets A, B of a topological space X, $cl_T(A \cap B) \subseteq cl_T(A) \cap cl_T(B)$.

Proof: Let $x \in cl_T(A \cap B)$ then, $cl^*(U) \cap (A \cap B) \neq \varphi$ for every open set U containing x. Therefore, $cl^*(U) \cap A \neq \varphi$, $cl^*(U) \cap B \neq \varphi$ for every open set U containing x. Thus, $x \in cl_T(A) \cap cl_T(B)$ and therefore, $cl_T(A \cap B) \subseteq cl_T(A) \cap cl_T(B)$.

Inclusion can't be replaced by equality in the previous proposition as shown from the following example.

Example 3.4 Let X = {a, b, c, d}, $\tau = \{X, \varphi, \{a, b\}, \{b, c\}, \{b\}, \{a, b, c\}\}$. Let A = {a, c}, B = {b, c} and we have, $cl_{T}(A) = \{a, c, d\}, cl_{T}(B) = X$. But, $cl_{T}(A \cap B) = cl_{T}(\{c\}) = \{c, d\} \neq \{a, c, d\} = cl_{T}(A) \cap cl_{T}(B)$.

Proposition 3.11 The union of two T-closed sets, is T-closed.

Proof: Let A, B be T-closed sets. We want to show that $cl_T(A \cup B) = A \cup B$. $cl_T(A \cup B) = cl_T(A) \cup cl_T(B) = A \cup B$ and therefore, $A \cup B$ is T-closed set.

Proposition 3.12 The intersection of two T-closed sets, is T-closed.

Proof: Let A, B be T-closed sets. We want to show that $cl_T(A \cap B) = A \cap B$. We have, $A \cap B \subseteq cl_T(A \cap B)$ and $cl_T(A \cap B) \subseteq cl_T(A) \cap cl_T(B) = A \cap B$. Thus, $cl_T(A \cap B) = A \cap B$.

4. GENERALIZED T-CLOSED SETS

In this section, we introduce a generalization of sets which introduced in section 3 and study their basic properties.

Definition 4.1 A subset A of a topological space X is called generalized T-closed set (briefly, gT-closed) if $cl_T(A) \subseteq U$ whenever $A \subseteq U$ and U is open. The complement of gT-closed set is called gT-open.

The family of all gT-closed (resp. gT-open) sets is denoted by GTC(X) (resp. GTO(X)).

Lemma 4.1 For a subset A of a topological space X, $(cl_T(A))^c = int_T(A^c)$.

Proof. Let $x \in (cl_T(A))^c$ which means that $x \notin cl_T(A)$. Then, there exists at least one open set U containing x such that $cl^*(U) \cap A = \phi$ which implies $cl^*(U) \subseteq A^c$. Thus, $x \in int_T(A^c)$ and therefore, $(cl_T(A))^c \subseteq int_T(A^c)$. Now, we want to show that $int_T(A^c) \subseteq (cl_T(A))^c$. Let $x \notin (cl_T(A))^c$ which means that $x \in cl_T(A)$. Then, for every open set U containing x, we have $cl^*(U) \cap A \neq \phi$. Thus $x \notin int_T(A^c)$ and therefore $int_T(A^c) \subseteq (cl_T(A))^c$. Hence $(cl_T(A))^c = int_T(A^c)$.

Proposition 4.1 A subset A of a topological space X is generalized T-open (briefly, gT-open) iff $F \subseteq int_T(A)$ whenever $F \subseteq A$ and F is closed.

Proof. Let A be a gT-open set and $F \subseteq A$ where F is closed. Then, $A^c \subseteq F^c = U$, and since U is open and A^c is gT-closed and from lemma 4.1 we have, $cl_T(A^c) \subseteq U$ and $F \subseteq (cl_T(A^c))^c = int_T(A)$. Conversely, Let $A^c \subseteq U$ where U is open, then $F = U^c \subseteq A$ and from the assumption we have, $F \subseteq int_T(A)$ and from lemma 4.1 $(int_T(A))^c = cl_T(A^c) \subseteq U$. Thus A^c is gT-closed set and hence, A is gT-open.

Proposition 4.2 Every T-closed set is g*T*-closed set.

Proof: Let A be a *T*-closed set and $A \subseteq U$, U open. Then, $cl_T(A) = A \subseteq U$ and therefore A is gT-closed set.

The converse of the previous proposition is not true in general as shown from the following example.

Example 4.1 Let $X = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$. We can see that $\{a, b\}$ is g*T*-closed set but not T-closed set.

Proposition 4.3 Every gT-closed set is g-closed set.

Proof: Let A be a gT-closed set and $A \subseteq U$, U is open. Then $cl_T(A) \subseteq U$, but cl $(A) \subseteq cl_T(A)$ and then, cl $(A) \subseteq U$. Thus A is g-closed set.

The converse of the previous proposition is not true in general as shown from the following example.

Example 4.2 Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$. We have $\{a, d\}$ is g-closed set but not g*T*-closed.

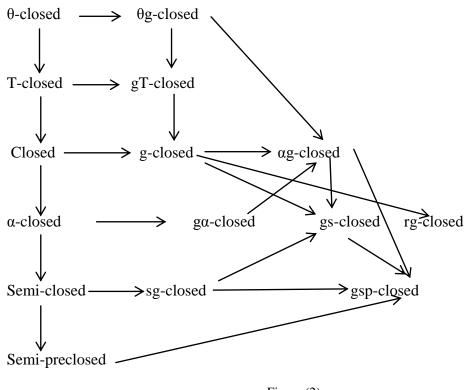
Proposition 4.4 Every θ -g-closed set is gT-closed.

Proof: Let A be a θ -g-closed set where $A \subseteq U$ and U is open. Then $cl_{\theta}(A) \subseteq U$. But $cl_{\tau}(A) \subseteq cl_{\theta}(A)$, hence $cl_{\tau}(A) \subseteq U$. Thus A is gT-closed.

The converse of the previous proposition is not true in general as shown from the following example.

Example 4.3 Let X = {a, b, c, d, e}, $\tau = \{X, \phi, \{a, b, c\}, \{c, d, e\}, \{c\}\}$. We have {a} is gT-closed but not θ -g-closed.

From propositions 4.2, 4.3, and 4.4 the diagram in [2] can be extended to the following one.



Proposition 4.4 If $A \subseteq X$ is gT-closed, then $cl_T(A) - A$ does not contain a non-empty closed set.

Proof: Let $F \subseteq cl_{T}(A) - A$ be a closed set. Then, $A \subseteq F^{c}$ and since A is gT-closed, we have $cl_{T}(A) \subseteq F^{c}$. Thus, $F \subseteq cl_{T}(A) \cap (cl_{T}(A))^{c} = \varphi$ which means that F is empty.

Proposition 4.5 A subset A of a topological space X is gT-closed iff $A \equiv cl_{T}(A)$.

Proof. Let A be a gT-closed set. Then, $A \subseteq U$ iff $cl_T(A) \subseteq U$ where U is open. Thus, $A \equiv cl_T(A)$. Conversely, Let $A \equiv cl_T(A)$. Then, if $A \subseteq U$ and U is open implies $cl_T(A) \subseteq U$ and then A is gT-closed.

Proposition 4.6 The union of two gT-closed sets is gT-closed.

Proof: Let A, B be g*T*-closed sets and suppose that $A \cup B \subseteq U$ and U is open. Then $A \subseteq U$ and hence $cl_T(A) \subseteq U$ since A is gT-closed set. Similarly, $cl_T(B) \subseteq U$ and therefore, $cl_T(A \cup B) = cl_T(A) \cup cl_T(B) \subseteq U$. Thus $A \cup B$ is also gT-closed set.

The intersection of two gT-closed sets is not gT-closed in general as shown from the following example.

Example 4.3 Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$. The sets $\{a, b\}$ and $\{a, c\}$ are g*T*-closed sets but its intersection $\{a\}$ is not g*T*-closed set.

Proposition 4.6 The intersection of a gT-closed and a T-closed is always a gT-closed.

Proof: Let A be a g*T*-closed and let F be a T-closed. Suppose that $A \cap F \subseteq U$ where U is an open set. Putting $G = \mathbf{F}^{c}$, then $A \subseteq U \cup G$. But since G is T-open and U is open, then $G \cup U$ is open set and hence $cl_{T}(A) \subseteq G \cup U$. Now, we can write $cl_{T}(A \cap F) \subseteq cl_{T}(A) \cap cl_{T}(F) = cl_{T}(A) \cap F \subseteq (G \cup U) \cap F = (G \cap F) \cup (U \cap F) = \varphi \cup (U \cap F) \subseteq U$. Thus $A \cap F$ is a gT-closed set.

Proposition 4.7 A topological space X is a $T_{1/2}$ -space iff every gT-closed is closed.

Proof: Let X be a $T_{1/2}$ -space, and suppose that $A \subseteq X$ is a gT-closed set, then, A is g-closed and since X is $T_{1/2}$ -space hence, A is closed. Conversely, Let $x \in X$. If $\{x\}$ is not closed, then $\{x\}^c$ is not open and hence the only superset of $\{x\}^c$ is X. Thus, $\{x\}^c$ is gT-closed and hence closed from the assumption which means that $\{x\}$ is open. Thus, every singleton set is either open or closed and therefore, X is a $T_{1/2}$ -space.

5. APPLICATION OF T-CLOSED SETS.

In this section, we introduce new separation axioms called T_c -space, T_{θ} -space and we study its properties and its relation with $T_{1/2}$ -space which is considered as a main tool in digital Topology.

Definition 5.1 A topological space X is called T_{c} -space if every g-closed set is T-closed.

Definition 5.2 A topological space X is called T_{θ} -space if every T-closed set is θ -closed.

Proposition 5.1 Every T_c -space is $T_{1/2}$ -space.

Proof. Let X be T_c -space. Suppose that A is g-closed set and since X is T_c -space then, A is T-closed and hence closed. Therefore X is $T_{1/2}$ -space.

The converse of the previous proposition is not true in general as shown from the following example.

Example 5.1 Let X = {a, b, c, d} and τ = {X, ϕ , {a}, {b}, {a, b}, {a, b, c}, {a, b, d}}, then (X, τ) is a $T_{1/2}$ -space. But (X, τ) is not T_c -space since {c} is g-closed set but not T-closed.

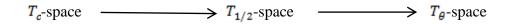
Proposition 5.2 Every $T_{1/2}$ -space is T_{θ} -space.

Proof. Let X be $T_{1/2}$ -space, then g-closed sets and closed sets coincide. Hence for any subset $A \subseteq X$, cl (A) = $cl^*(A)$. Therefore, θ -closed sets and T-closed sets coincide which means that X is T_{θ} -space.

The converse of the previous proposition is not true in general as shown from the following example.

Example 5.2 Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a, c\}\}$. (X, τ) is T_{θ} -space but not $T_{1/2}$ -space, since $\{b\}$ is g-closed but not closed.

From the above propositions, we have the following implications



These implications can't be reversed as we shown earlier.

References

- N. V. Veličcko, *H-closed topological spaces*, Amer. Math. Soc. Transl. 78 (1968), 103–118. Zbl 183.27302.
- [2] J. Dontchev and H. Maki, On θ-generalized closed sets, Internat. J. Math. & Math. Sci. 22 (1999), 239-249.
- [3] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19(2) (1970), 89-96.
- [4] W. Dunham, A new closure operator for non-T1 topologies, Kyungpook Math. J., 22(1982), 55-60.
- [5] S. Lipschutz, Theory and problems of general topology, Schums series (1986).
- [6] N. Levine, An equivalence relation in topology, Mathematical journal of Okayama University, Vol. 15(1971), Iss. 2, Art. 3, 113-123.
- [7] P. Bhattacharyya and B. K. Lahiri, Semigeneralized closed sets in topology, Indian J. Math. 29 (1987), no. 3, 375–382.
- [8] H. Maki, R. Devi, and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. III 42 (1993), 13–21.
- [9] S. P. Arya and T. M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math. 21 (1990), no. 8, 717–719.
- [10] H. Maki, R. Devi and K. Balachandran ,Associated topologies of generalized α-closed sets and αgeneralized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 15 (1994), 51–63.
- [11] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 16 (1995), 35– 48.
- [12] N. Palaniappan and K. C. Rao, *Regular generalized closed sets*, Kyungpook Math. J. 33 (1993), no. 2, 211–219.
- [13] O. Najsted. "On some classes of nearly open sets" Pacific. J. Math. 15 (1965) 961-970.

- [14] N. Levine. "Semi open sets and semi continuous mappings in topological spaces" Amr. Math. Monthly 70 (1963) 36-41.
- [15] D. Andrijevi'c, Semipreopen sets, Mat. Vesnik 38 (1986), no. 1, 24-32.
- [16] A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Phys. Soc. Egypt, 51 (1981).
- [17] S. G. Crossley, S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
- [18] M. Caldas, S. Jafari, M. M. Kovar, Some Properties of θ-open Sets, Divulgaciones Matematicas Vol. 12 No. 2(2004), pp. 161-169
- [19] T. Noiri, S. Jafari, *Properties of* (θ , *s*)-*continuous functions*, Topology and its Applications, 123(1)(2002), 167-179.
- [20] J. Cao, M. Ganster and I. Reilly, On generalized closed sets, Topology & Appl. 123 (2002), 37-46.
- [21] Mohamed Saleh, On θ-closed sets and some forms of continuity, archivum mathematicum (BRNO), Tomus 40 (2004), 383 – 393.
- [22] W. Dunham, $T_{1/2}$ -spaces, Kyungpook Math. J., V. 17, No. 2, December 1977.
- [23] M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937),375-381.