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1. INTRODUCTION

Throughout w, x and A denote the classes of all, gai and analytic scalar valued single sequences,
respectively.

We write w? for the set of all complex sequences (,,, ). where m, n € N, the set of positive integers.
Then, w? is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [1]. Later on it was inves-
tigated by Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir and Solankan [5], Tripathy et
al.,[6-10], Turkmenoglu [11], Raj [12-14] and many others.

Let (&mn) be a double sequence of real or complex numbers. Then the series > o~ | wpy is

[e ]

called a double series. The double series 3~ | x,,, give one space is said to be convergent if and
only if the double sequence (5, )is convergent, where
_ men e .
Smn = E;_J-=1 Lig (m.n = 1.2,3, )
A double sequence & = (&, )is said to be double analytic if
1
SUPm |‘l-'m n,| mAn <7 oo,
The vector space of all double analytic sequences are usually denoted by AZ. A sequence = = (Tynn)

is called double entire sequence if

1
|Tmn| ™ — 0 as m,n — oo.
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The vector space of all double entire sequences are usually denoted by I'2. Let the set of sequences

with this property be denoted by A? and I'? is a metric space with the metric

1
(1.1) d(x,y) = supmn {l;t‘«mﬂ — Y| T cmym 0 1,23, } s

forallx = {x,,, Yandy = {y,n } in'2. Let ¢ = { finite sequences} .

Consider a double sequence & = (r,,,,,). The (m,n)" section x[™"] of the sequence is defined

by zmnl — > :}‘zoxr@jéij for all m,n e M,

0O 0 .0 0

0O 0 .0 0
6mn =

0O 0 ...1 0

0 0 .0 0

with 1 in the (m,n)™ position and zero otherwise.

1
A double sequence © = (xy) is called double gai sequence if ((m + n»)! |zmn|) ™ — 0 as
m,n — oo. The double gai sequences will be denoted by 2.
Let M and ® be mutually complementary Orlicz functions. Then, we have

(i) For all w,y = 0,

(1.2) uy < M (u) + @ (y), (Young'sinequality)[See[K ampthanetal., [15]]

(ii) For all u > 0,

(1.3) un(u) =M (u) + P (n(u).

(iii) For all u = 0, and 0 < A < 1,
(1.4) M (Au) < AM (u).

Lindenstrauss and Tzafriri [16] used the idea of Orlicz function to construct Orlicz sequence space
Car = {_{ € w: Eiozl M (%) < oc, forsomep > 0} ,
The space £3y with the norm
-l = 4 A P S E
|| = inf {p S0:% M (TA) < 1} ,
becomes a Banach space which is called an Orlicz sequence space. For M (¢) =P (1 < p < o0}, the

spaces £y coincide with the classical sequence space £),.
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A sequence [ = (finn) of Orlicz function is called a Musielak-Orlicz function. A sequence g =

(gmn) defined by
G (0) = sup {[v| 2 — foum (1) 1w >0}, mon =1,2, ---
is called the complementary function of a Musielak-Orlicz function f. For a given Musielak Orlicz

tunction f, the Musielak-Orlicz sequence space t5 is defined by

1/m+n

ff:{;UEQLFQZIf (|zmn]) —}Oa.s-m.,n—}oo},

where I is a convex modular defined by
Ip (2) = Cvey T from (2mn)/"™" = () € 1.
We consider ¢ equipped with the Luxemburg metric
d (.‘L" y} = SUPmn {'iﬂf (Ei:l Ezozl fmn (Jiﬂnliﬂml)) < 1} .
The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [16] as
follows
Z(A)=A{x=(zp) € w: (Azg) € Z},

for Z = ¢, ¢y and fo, where Axp = 1y — x4q for all £ € .
Here ¢, ey and {4, denote the classes of convergent,null and bounded sclar valued single sequences
respectively. The spaces ¢(A), co (A), loo (A) and by, are Banach spaces normed by

2l = faa| + supizy | D] and Jlally,, = (R [axl”)' " (1< p < 20).
Later on the notion was further investigated by many others. We now introduce the following
difference double sequence spaces defined by

Z(A)= {Ji = (Zyn) € w* (Azyn) € Z} R

where Z = A%, x? and Azpn = (Trmn — Zmng1) = (Tmain — Tmaintl) = Tmn — Lmngl — Lmpin +
Zm+1n+1 for all m,n € N. The generalized difference double notion has the following representation:
A"y = A" = AT — A e A L1y, and also this generalized differ-
ence double notion has the following binomial representation: A™r,,, =57 ;10 (—1)"4 (T) (?) Entintg-
Let § = (5mn) be a sequence of nonzero scalars. Then, for a sequence space E, the multiplier se-

quence space I, associated with the multiplier sequence n, is defined as

E,= {..L = (mn) € w? - (NranTmn) € E} .

2. DEFINITION AND PRELIMINARIES

Let n € W and X be a real vector space of dimension w, where n < w. A real valued function
dp(ry, ... xy) = ||(di(21,0), ..., dp(r,,0))], on X satisfying the following four conditions:
(i) I(di(z1,0), ... dp(xn,0))]|p = 0if and and only if dy(x,0),.. ., dy(x,,0) are linearly dependent,
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(i) |[(di(x1,0), ..., dn(2s.0))||p is invariant under permutation,

(iii) ||(aa’.1(;c1,0),...,a’.ﬂ(;cﬂ e =l [[(di(z1.0), ... dy(2n,0))||pa € R

(iv) dp (1 y1), (22, 92) - (Tpayn)) = (dX(Il-:IZZ""IR:’p+d1'(ylwy2-:'"yn)p)lfp forl < p < oo
(or)

(v) d((z1,91), (22,92)s -+ (£, yn)) = sup {dx (21,2, - Tn) dy (Y1, 92, - Yn) }
for r1, w9, -1y € X, y1.¥2. - yn € Y is called the p product metric of the Cartesian product of n
metric spaces is the p norm of the n-vector of the norms of the n subspaces.

A trivial example of p product metric of n metric space is the p norm space is X = R equipped

with the following Euclidean metric in the produect space iz the p norm:

I(dy(x1,0),...,dn(xn, 0))||E = sup (|det{dmn (zmn))])
di1 (211,0)  dia (212,0) ... din(210,0)
doy (121,0)  da (r22.0) ... day (21,,0)
sup
dnl (anlw 0) dﬂZ‘ (J-:ﬂ2:-0) drm (IrmsO)
where ©; = (141, xin) € R™ foreach i = 1,2

If every Cauchy sequence in X converges to some L € X, then X is said to be complete with respect
to the p— metric. Any complete p— metric space is said to be p— Banach metric space.

Let X be a linear metric space. A function w : X — R is called paranorm, if

(1) w(z) =0, for all x € X;

(2) w(—x)=w(z), forall z € X;

(3) w (e +y) <w(e)+wy), forall .y € X;

(4) If (gun) is a sequence of scalars with o,,, — ¢ as m,n — oo and (x,,,) is a sequence of vectors

with w(zmn — ) — 0 a8 m, n — oo, then w (epp2rmn — ox) — 0 as m,n — .
A paranorm w for which w () = 0 implies & = 0 is called total paranorm and the pair (X, w) is
called a total paranormed space. It is well known that the metric of any linear metric space is given
by some total paranorm by Willansky [17].

n = (prs) a nondecreasing sequence of positive reals tending to infinity and @13 = 1 and
Or41,5+1 < Prs + 1.

The generalized de la Vallee-Pussin means is defined by :

t-rs ("L) = 1 Em (=3 . EREI Lmn;

where I, = [rs — A\ + 1,75]. For the set of sequences that are strongly summable to zero, strongly

summable and strongly bounded by the de la Vallee-Poussin method.
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The notion of A— double gai and double analytic sequences as follows: Let A = (A, n);o =g De a

strictly increasing sequences of positive real numbers tending to infinity, that is
0< Mo < M1 <---and Ay — 00asm,n — oo

and said that a sequence © = (rmn) € w? is A— convergent to 0, called a the A— limit of =, if

B (r) = 0asm,n — oo, where
Lo —
B;} (r) =
. AN Am—1 Am—1 Am—1 . 1/m4n
Pra Emef,-s Eﬂeh—s (Am Am,n — A™ Am.ﬂ+l —A™ /\m+1.ﬂ +A™ /‘\m+l.n+l) |'-*5-mn| .

The sequence = = (£,,,) € w? is A— double analytic if 5u-p|Bf; (.L)| < oo, If imynmn = 0 in the

ordinary sense of convergence, then

x 1 / -1 / -1 / -1 / -1
Einlr&,-’c_ Zm Elrs ZREIN (Am Amgn — AT }\m.n+1 —A™ )\m—l—l.ﬂ + A™ }‘m—i—l.n—}—l)

T
1/m+n

((m+ ) |zmn —0])

lim,. ‘B” (x) — 0‘ = lim, % Zmefﬂ 2o Elre
(Am— )\m n A lAlm n4+1 — i\m_l)\m+1.n + Am_1/"\m+l.n+l) (('?ﬂ- + '-’1]! |;Umﬂ - 0|)1;m+ﬂ =0.

= 0. This implies that

which yields that [2m, ptmn () = 0 and hence = = (z,,,) € w? is A— convergent to 0.

Let f = (fmn) be a Musielak-Orlicz function and (X, I(d{x1,0),d(x2,0),- (Tn—1, 0 )
be a p—metric space, ¢ = (gmn) be double analytic sequence of strictly positive real numbers. By
w? (p — X) we denote the space of all sequences defined over
(X |(d(x1,0),d(z2,0),--- ,d (;L'ﬂ_l,O]]Hp) . The following inequality will be used throughout the
paper. If 0 < gimp < supgmn = H, K = max (1, 2H_1) then

(21] |a-mﬂ + b‘ﬂ‘!ﬂ |Qmu = K {|a-mﬂ |Q'mn + |bm n|qm“}

for all m,n and amn, by € C. Also |a|™™™ < max ( s

Let (

a H) for all @ € C.

,0).d(x2,0), -+ d(zy-1,0)) ||p) be an p— metric space and let s (102 - :L') denote
the space of X — valued sequences. Let ¢ = (gmn) be any bounded sequence of positive real numbers

and f = ( finn) be a Musielak-Orlicz function. We define the following sequence spaces in this paper:

[x d (21,0),d (22,0),--- =d(1-'n—1,0))||¢} v_
{1 (Tmn) € s (w? — ) : lim,, [fmn (HB ) (d(xy),d(xz), - d(rn_y))| )]qm 0}?

BF"

{ =) €5 (w2 =) - supre [ foun (1B () (d24,0),d (22,0) -+ (rr, )], )77 < o0},

v
[ﬁq (d(;cl,O},d(;cg,O},---,d(;cﬂ_l,O])H;f} -

If we take [, (x) =z, we get
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. 1”
L l(d (21,0) ,d (22,0) -+ . d( wn_l-O)}ll"’} =

"'?

<
L= () € s (w2 = ) s limge [Fonn (|BY (), (d (21,0),d 22,0) -+ d (s, 0)))] 77 =0}

. 21
(A% 1 (21,0) 1 (2,0) -+ d (-, O] =
{;L' = (Lmn) € s (w? — 1) : sup,. [fm;e (HBf;l (), (d(r1,0),d(r2,0), - ’d("t”_l‘o))||rﬁ)rm = oo} '

If we take g = (gmn) = 1, we get

[X g I(d (1,0) . d (£2,0) -+ d -_{.-R_l_o))nﬂv -
{_{ (xmn) € s (w* —x) [fmﬂ (HB# d (21,0),d (x2,0),--- ’d(I“—l*O])Hp)} 20} ?

["\?B#‘ 1(d (1,0),d (r2,0),- -, d(rn_1,0)) er -
{;t.' = (tmn) € s (w? — ) : [fmﬂ (HBrr Ad (21,0),d (22,0),--- ed(l'ﬂ—l*o])Hﬁ” = oo} '

In the present paper we plan, some topological properties are studied in the following sequence
spaces. [XfB" |(d(x1,0),d(x2,0),- ,d(r,_1,0))]| } and

[\25“ |(d(x1.0),d (22.0),- -+ ,d(x,_1,0))| } " which we shall discuss in this paper.

3. MaiN REsuLTs

3.1. Theorem. Let f = (fmn) be a Musielak-Orlicz function, ¢ = (gmn) be a double analytic se-
quence of strictly positive real numbers, the sequence space
|:XfBu I(d(x1,0),d(x2,0),--- ,d (1.'};_1,0)}”::} ’ is a paranormed space with respect to the para-
norm defined by
g(x)=inf
[ (1B (). (4 21,0) d (22,0) -+ d(ear )] )] < 1} =0,
Proof: Clearly g (x) = 0 for = (xmn) € [X?,g#, |[(d(x1,0),d(x2,0), - ,d(xn_1, 0))||;’; Y Since
finn (0) =0, we get g (0) =0.

Conversely, suppose that g (x) =0, then
ind { [Fon (1B (), (0,0) (2,0 -+ d (way, 00 )] <1} =0
Suppose that B# (x) # 0 for each m,n € N. Then ||B§}l (), (d(x1,0),d

(r2,0) -+ 1 d (en-1, 0))[| =

Gmny L/ H
0. Tt follows that ([ foun (|| B (4),(d (£1,0)d (22,0) -+ 1 (ra-1, OD|| )| ™) = 00 which is

a contradiction. Therefore B} (x) =0. Let
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(L (1B (29, (d(21,0) (2,0 .- d{xﬂ_l,on\\p)rmﬁ)wgl

and

([ (1B @) (d(21.0) d 22.0) - d e, )] ) <

Then by using Minkowski’s inequality, we have

([fmﬂ (”B# (+y),(d(r1,0),d(r2,0), - d(rn, OJ)HpH th)lfH <
1/H

(|:f‘mﬂ (HB (z),(d(x1,0),d(x2,0),- d{xﬂ—l‘o))Hp)rmn) | N
(|:fﬂ1ﬂ (HBf; (y),(d(x1,0),d(x2,0),--- ‘d(‘“ﬂ—l‘o]]Hp)} an) 1/H |

So we have
g(z+y)= mf{[fm (HB# £+ y). (d(ry,0),d(xs.0) .- ,d(;un_l,onup)r"‘“ <1}<
mf{[fm (HB“ (d(£1,0),d (£2,0) -, d (2,_1,0))]| )r’"‘” < 1} ¥
. Jrmn
ind { [fn (1B @) (d (20.0) . (22,0 .-+ . (v, 0] )| <1}
Therefore,
glr+y) <glz)+g(y).

Finally, to prove that the scalar multiplication is continuous. Let A be any complex number. By
definition,
g o) = inf {[fn (1B () 1 (d (21,0) d (23,0) .- ,d(;cn_l,O]]Hp)rm <1},
Then
g(\z) = {((|A|t)ffm’ff [fmn (HB (A\z),(d (21,0, d (22,0) -~ ,d(-,cﬂ_l,o))\|p)rm < 1}
where t = W' Since |A|"™" < max (1,|A]""7"") , we have
g (Ax) < max (1, A7) inf
{f%ﬂ /H [fmn (HB (M), (d (21,0),d (22,0) -+, d (2a_1,0))]| )]q"”‘ < 1}

; 0), » <

This completes the proof.

3.2. Theorem. (i) If the sequence ( f,) satisfies umform As— condition, then

X |BY (@) (d (21,0)d (22,0) -+ d (1,0 }

- v
qu HB (), (d(x1,0),d(x2,0),-- ,(1’-(.{-;1_1‘0}”33}

(11] If the sequence (g,,, ) satisfies uniform A;— condition, then

: ., A Va
| B () (d (21,0 . d (22,0) -+, d (01,0 }M =

[ 1B () 21,0), d 22,0),+ d (ans, O[]
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Proof: Let the sequence ( fyny) satisfies uniform Ao — condition, we get
(3.1)

2qBE m Ea v 2q I 14
[ VB (2), (d (21, 0), d (22,0) - ,d(irn,l,O))”p} c {stg;‘ 1B (x),(d (21,0),d (2,0) -+ ,d (2_1,0))

=

—
=
=]

To prove the inclusion

[Xﬁg#,HB;; (), (d(21,0),d (22,0), -, d (20 1,0))]| ]

s -V
[ 1B (o), (0, 0) d (02,0) -+ d (e, 0)}||‘“]

let a € [X?JB#. ||Bf; (x),(d(x1.0),d(x2.0), -+, d(xp_1,0)) || } . Then for all {z,n} with (z,.,) €
[X?%;#‘HB;‘;( . (x1,0),d (5,0 cod(x,_q, U})H } " we have
(3?) Z 2 |Imnﬁmn‘ < 0.

m=1n=1

Since the sequence ( fy,,) satisfies uniform As;— condition, then i
() € [y B (2) (01,0 d (2.0 - d e )]
we get Yoo 3 e < oo by (3.2). Thus

(@roamn) € [XfFB#.HB;; (), (d (1,0, d (2,0) - d (ann, 0))]| ]
[ 1B (@), (d 1, 0) d (22,0) -+ o (g, ) } and hence

(amn) € [XéqB ||B# J(d(x1,0),d(x,0) -+ Td(.cﬂ_l.ﬂ)]H:}V- This gives that
(3.3)

AV
[ng»» ||BE (), (d (w1,0) ,d (22,0) -+ ,d (x,_1,0))]| ] [qus 1B (), (d(;{:l,O),d(;{:Q,O).---,d[xn_l,o)}\m

we are granted with (3.1) and (3.3)
Va
[ 1By (0 1,0) (22, 0) o s (o, 0))2] =
2qBY 1Y
[Xg ’ ||B# (), (d (21,0),d (2,0}, -+ ,d (n_1,0)) p}

(ii) Similarly, one can prove that [ng K HB (), (d(z1,0),d(x2,0),--- ‘d(;un_l‘O])Hﬂvm C [X?%#,HBf; (x), (d(r1,0]

if the sequence (gy,n) satisfies uniform As— condition.

3.3. Proposition. If f = (fu,) be any Musielak Orlicz function. Then

1V
(A2, 1B (0), (d(21,0) d (22,0) - den 1, D[] <
(A2, 1B () (d (50,0) d (22,0) ,d(.cﬂ_l,on||j”]" if and only if supr 1 25 < oc.
Proof: Let = & [A2. || B () (d (£1,0) d (22,0) - ,d(l-ﬂ_l,onnf] and N = supy 212 <

00. Then we get

[\fﬁBu | B () (d(1,0) ,d (22,0) .-+ d(rn_1,0))|

v
vm} _
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N (A3 1B (2)(d (21,0)d (22,0) -+ d (e, 0))|*’”} —0.

||Bf; (z),(d(x1,0),d(z2,0), - ,d(xn-1,0)) ||l’9 } . Conversely, suppose that

Thus = € [\JZF%“

\fﬁjgp ||BP* ), (d(x1,0),d(22,0),--+ ,d(xn_1,0)) ||;f }
wex V
\fﬁBp 1B (2) . (d (£1,0) . d (22,0) .+ . d (xn_1.0)]7 } and
LV
re [xffpr 1By (2), (d (£1,0),d (£2,0) -+ ,d (201, 0) |7 } - Then
L "
pr ||B“ ), (d(z1,0),d(x2,0),--- ,d(;cﬂ_l,O]]H;’j } < €, for every € > 0. Suppose that eupr3>1\p:i =
0o, then there exists a sequence of members (rs;;.) such that E?'.mj_k_,oo% = oo. Hence, we have
% ’
pr | B (). (d(x1,0) ,d (x2,0) -+, d(xn_1,0))| ‘ﬂ = 00. Therefore

Cax V
T §é [ 'L?,?Bp ||B§; (x),(d(x1,0),d(x2,0), -+, d(r,-1,0)) ||; } , which is a contradiction. This com-

pletes the proof.

AV
3.4. Proposition. The sequence space [Xpr ||B# r), (d(x1,0),d(£2,0) - d(z,_1, 0))”ﬂ is
not solid
Proof: The result follows from the following example.

Example: Consider

1 1 ... 1
1 1 ... 1
A1V
r=(rmn) = ' = [X?,QJB:; ||_B'Ll T ,(d (;Ul,O),d(IQ,O),--- ,d(rp_1,0) ;} . Let
1 1 ... 1
_1m+n _1m+n _1m+n
_1m+n _1m+n _1m+n
Qn = ' , for all m,n € M.
_11;1—1-?1 _1m+n _1m+n

Then amntmn € [X?fﬁf*HBff (), (d (21,0) ,d (£2,0) - . d (2n_1,0))||* } Hence
[X:;QB#‘ HB# (x),(d(x1,0),d(x2,0), -, d(xn_1, 0))” } ’ is not solid.
2V
3.5. Proposition. The sequence space [X?cffgu, ||Bf; (), (d (21,0) ,d (22,0) - ,d (£n_1,0)) ||ﬂ i
]
not monotone

Proof: The proof follows from Proposition 3.4.

A sequence © = (I, ) is said to be ¢— statistically convergent or s,— statistically convergent to

26}:0

0 if for every € > 0,

{[f?nﬂ (”B'“ r),(d(x1,0),d(x2,0),- - ‘d(;u?l—l‘o))np)}qmn

limyg
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where the vertical bars indicates the number of elements in the enclosed set. In this case we write

sy, —limr =0or ry, = 0(s,) and s, = {zr:30 e R: 5, — limz = 0} .

3.6. Proposition. For any sequence of Musielak Orlicz functions f = (fimn) and ¢ = (gmn) be

double analytic sequence of strictly positive real numherq Then

_XZ;?IBM Bf* (x),(d(x1,0),d(x2,0), - ,d(x,-1,0) H :|

i y,fBP HB z),(d(x1,0),d(x2,0), - (£1_1.0 H ]

l?rDOf:Let re [X?QB“ ||B# x), (d(xry,0),d(x2,0), -+ d(an_y, 0:’)” } "~ and € > 0. Then
foun (1B () (d (01, 0) o (12,0) -+ . d (-,cn_l,onl\p)rmh >

H [fm” (HB# (), (d(xy,0),d(x3,0), -+ d(x,_q, 0))”3))} "

-}

v
from which it follows that « € [ ofBE HBf}l (z),(d(x1,0),d(zr2,0),- (,Lﬂ 1,0)) H }
To show that [ pfBE HB ), (d(x1,0),d(x2,0),- d(zn_1,0)) H } strictly contain
[ X ||B x) (r1,0),d(x2,0), - ,d(xp_1,0)) || } . We define = = (zmn) by (zmn) = mn if
s — [‘ hp.rs] + < mn < rs and (z,,,) = 0 otherwise. Then
oV
¢ { - HB ) (d(xy,0),d(z5,0),- - ‘d(‘“?l—l‘o))Hﬂ and for every e (0 < e < 1),

_E}:M%Oasr,s—}oo

{ [ (185 ) (1,0) d 22,0), -+ dCanms 0))],)] 7] 2 e} = B2

Vv
iexr —0 ({ SBE B (x),(d(x1,0),d(x2,0), -+ d(xn_1, 0])||ﬂ ) , where [| denotes the great-

est integer function. On the other hand,
an
[ (1B () (d1,0) ,d (22, 0) -+ s dan 1, O], )| = o0 a5 7,5 = 0

le Ty 7+ 0 [X?"?B#’ ||Bf; (), (d(x,0),d(x2,0) -+, dix,_q, 0))” } . This completes the proof.
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