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Abstract

Let (R, *) be a 2-torsion free #-prime ring with involution %, L # 0 be a nonzero
square closed *-Lie ideal of R and Z the center of R. An additive mapping F
R — R is called a generalized derivation on R if there exists a derivation d:
R — R commutes with % such that F(zry) = F(z)y + xd(y) holds for all =,y € R.
In the present paper, we shall show that L is contained in the center of R such that
R admits a generalized derivations F' and ' with associated derivations d and g
commute with # satisfying several conditions.

1 Introduction

Let R be an assoclative ring with center Z([R) and involution . For each z,y € R, the
symbol [r,y] will represent the commutator ry — yr and the symbol x o y stands for
the skew-commutator ry + yr. An additive mapping r — x* on a ring R is called an
involution if (2*)* = x and (xy)* = y*z*. A left (resp. right, two sided) ideal L of R is
called a left (resp. right, two sided) #-ideal if L* = L. An ideal P of R is called *-prime
ideal if P(# R) is a *-1deal and for #-ideals L, J of ., LJ C P implies that L C P or
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J C P. An example: Let Z be the ring of integers. Let K = {( {[1] i ) | a.b e Z}. We

define a map * : R — R as follows: ( 3 i ) = ( S _ab ) . It is easy to check that
I= { 8 8 | be Z ; is a x—ideal of R. Now we give an example of *+— prime ideal:

Let F' be any field and R = F[z] be the polynomial ring over F. Let x : R — R be a
map defined by (f(z))* = f(—=) for all f(z) € R. Then it is easy to check that =R is a
¥—prime ideal of F. Note that an ideal I of F mayv be not a *—ideal: Let Z be the ring of
integers and R = Z x Z. Consider a map * : R — R defined by ((a, b))* = (b, a) for all
a,b € R. For an ideal I = Z x {0} of R, I is not a %—ideal of R since [* = {0} x Z # 1.
A ring R equipped with an involution * is said to be a #-prime ring if for anv a,b € R,
aRb = aRb* = {0} implies a = 0 or b = 0. Obviously, every prime ring equipped with
involution * is *-prime. The converse need not be true in general. An example due to L.
Oukhtite justifies the above statement is as following: Let R be a prime ring, S = R x R°
where R° is the opposite ring of R. Define involution = on S as (r,y)* = (y, ). Since
(0,2)S(z,0) = 0, it follows that S is not prime. Further, it can be easily seen that if
(a,b)S(e,d) = (a,b)S(e,d)* = 0, then either (a,b) =0 or (¢,d) = 0. Hence S is *—prime
but not prime. The set of symmetric and skew-symmetric elements of a *— ring will be
denoted by S,(R) L.e., Sy(R)={z € R|2* = £z}

An additive subgroup L of R is said to be a Lie ideal of R if [L, R] C L. A Lie ideal is
said to be a x—Lie ideal if L* = L. If L is a Lie (resp. x-Lie) ideal of R, then L is called
a square closed Lie (resp. #- Lie) ideal of R if 2 € L for all z € L.

An additive mapping d : R — R is called a derivation if d(xry) = d(x)y+ xd(y) for all
z,y € R. In particular, for fixed a € R, the mapping [, : R — R given by I,(z) = [a. 7]
is a derivation which is said to be an inner derivation.

An additive function F': R — R is called a generalized inner derivation if F(x) =
ar + rb for fixed a,b € R. For such a mapping F, it is easy to see that

Flry) = F(x)y + x[y,b] = F(z)y + zl(y) for all z,y € R.

This observation leads to the following definition, an additive mapping F' : B — R is
called a generalized derivation associated with a derivation d if F(ry) = F(x)y + xd(y)
holds for all =,y € R.

Familiar examples of generalized derivations are derivations and generalized inner deriva-
tions, and the latter includes left multipliers. Since the sum of two generalized deriva-
tions is a generalized derivation, every map of the form F(r) = ex + d(r), where ¢
is a fixed element of R and d a derivation of R, is a generalized derivation; and if
R has multiplicative identity 1, then all generalized derivations have this form. Over
the last four decade, several authors have proved commutativity theorems for prime
rings or semiprime rings admitting automorphisms, derivations or generalized deriva-
tions which are centralizing or commuting on appropriate subset of R (see [1], [2], [3]
[7] and [17], for partial bibliography). In this paper, we shall discuss when L C Z(R)
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such that R is a s-prime ring admitting a generalized derivations F' and & satisfying
any one of the following properties: (i) d(x)F(y) — zy € Z(R), (i) [ r),x] € Z(R),
(#7i) (F(z)ox) € Z(R), (iv) F(zoy) + [z.y] € Z(R), (v) Flr,y] — (zoy) € Z(R),
(vi) Flx,y] — (F(z)oy) —[d ( ).x] € Z(R), (vit) [F(z). F(y)] — [z, y] € Z(R), (viti)
F(x)ol(y)—(roy) € Z(R), (iz) [F(x), F(y)] - (zoy) € Z(R). (z) (F(z)oF(y))—[z.y] €
Z(R), (zi) [F(z) 2] — [z, i( ] Z(R), (m) (F(z) o) — (x 0 G(x)) € Z(R). (xiii)
[F(x),G(y)] — [x.y] € Z(R), (xitii) [F(z), F(y)] — Flr,y] € Z(R), for all z,y € L

2 Preliminary Result
We shall be frequently using the following identities without any specific mention:
o [20,2] = 2y, 2] + [, 2Jy
o [r.yz] = ylr. 2] + [z ]2
o ro(yz)=(roy)z—ylr, 2] =y(roz)+[ry]
o (zy)oz=u(yoz)—[r zly=(xo2)y+zly 2]

We begin with the following known results which shall be used throughout to prove
our theorems:

Lemma 2.1. [[13], Lemuma 4] Let R be a 2-torsion free *-prime ring and L a nonzero
#-Lie ideal of R. If a,b € R such that aLb =aLb* =0, thena=0 orb=0,

Lemma 2.2. [[14], Theorem 1] Let R be a 2—torsion free x-prime ring and L a square
closed *-Lie ideal of R. If d is a derivation of R satisfying [d(z),x] € Z(R) for allx € L,
then L C Z(R) ord = 0.

Lemma 2.3. [[4], Lemma3] Let R be a x—prime ring with characteristic not two and
L be a nonzero x—Lie ideal of R. Suppose that [L, L] C Z. then L C Z(R).

Lemma 2.4. [[11], Lemuna2.4] Let R be a 2—torsion free ¥—prime ring and L a nonzero
*—Lie ideal of R. If d is a derivation of R which commutes with x and satisfying d(L) C
Z(R), then L C Z(R).

Lemma 2.5. [[11], Lemma 2.5 | Let d(# 0) be derivation of a 2-torsion free s—prime
ring R which commutes with . Let L g Z(R) be a x—Lie ideal of R. Ift € R satisfies
td(L) =0 ord(L)t =0 then t =0,

Remark 2.1. Let b and ab be in the center of a *—prime ring K. If b is not zero, then
a € Z(R).

Proof. 0 = [ab,r] = a[b,r] +[a,r]b = [a,7]b for all r € R. Since b £ 0, then by Lemma 2.5
[a,r] =0 for all r € R. Hence a must be in Z(R).
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3 Centralizing Derivation On *—Prime Rings

Theorem 3.1. Let R be a x—prime ring with char(R) # 2 and L be a nonzero square
closed x- Lie ideal of R. If R admits a generalized derivation (F,d) such that d commutes
with *. Further, suppose that R satisfies the condition:

dx)F(y) —ry € Z(R), forallz € L.
IfF=0o0rd#0 then L C Z(R).

Proof. If F = 0, then 2y € Z(R) for all z,y € L. In particular [ry,w] = 0 ie.,
rly,w] + [z, w]y = 0 for all z,y,w € L. Replacing = by 2mz and using char(R) # 2,
we get [m,w|Ly = [m,w|Ly* = 0. Applving Lemma 2.1, we get [m,w] = 0 for all
m,w € L and hence by Lemma 2.3 we get the required result.

Henceforth, we shall assume d # 0, then we have
d(x)F(y) —ry € Z(R), for all x € L. (3.1)
Replacing y by 2ym in (3.1) and using (3.1) & char(R) # 2, we get
(d(z)F(y) — zy)m + d(z)yd(m) € Z(R).
This implies
[d(z)yd(m),m] =0 for all =, y,m € L. (3.2)

Thus, we have d(x)[yd(m), m] + [d(z), m]yd(m) = 0 for all =,y,m € L, replacing y by
2d(x)y in the above expression, using (3.2) and char(R) # 2, we get [d(z), m]d(z)yd(m) =
0ie.,

[d(z)., m]d(x)Ld(m) =0 for all = y,m € L. (3.3)

Let m € LN S (R), then (3.3) vields that [d(z), m|d(z)Ld(m) = [d(z), m]d(z)L{d(m))* =
0, and hence by Lemma 2.1 either [d(z). m]d(x) = 0 or d(m) = 0, since m—m* € LNS,(R),
then either [d(z),m — m*|d(x) = 0 or d(m — m*) = 0. Suppose that d(m — m*) = 0,
then we have d(m) = (d(m))* and in view of (3.3) we get that [d(z),m]d(x) = 0 or
d(m) = 0. Suppose that [d(zx), m — m*|d(z) = 0, then we have [d(z), m — m*]d(x) = 0 or
d(m—m*) = 0. Since m+m* € LNS,(R). If [d(z), m+m*)d(z) = 0, then 2[d(x), m]d(x) =0
and hence [d(z), m]d(z) = 0. On the other hand, if d(m+m*) = 0, then d(m) = —(d(m))*
and (3.3) vields that [d(x), m]d(x) = 0 or d(m) = 0. Consequently, for all m € L, we
get either [d(z). m]d(z) = 0 or d(m) = 0. Now let A= {m € L | [d(z), m]d(z) =0} and
B={me& L|d(m)=0}. Then A, B are additive subgroups of L and AUBE = L. But a
group can not be a union of its two proper subgroups, and hence either A =L or B = L.
Now if A = L then we have [d(z), m|d(z) = 0 for all z, m € L. Replacing m by 2mn and
using the fact that chr(R) # 2, we get [d(x), m|nd(x) = 0, that is

[d(z), m]Ld(x) =0, for all z,m € L. (3.4)
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Suppose that = € LN S,(R), since L is a *—Lie ideal and *d = d*, then (3.4) vields that
[d{z),m|Ld(x) = [d(x),m]L(d(z))* = 0 so by Lemma 2.1 either [d(z), m] =0 or d(z) =0
using the fact that © — 2* € L N Sy(R) we get [d(z —2*).m] =0or d(z —z*) = 0. If
[d{x — ax*),m] =0, then [d(z), m] = ([d(x), m])* and hence (3.4) vields that [d(x),m]| =0
or d(r) = 0. On the other hand, if d(r — z*) = 0, then d(x) = (d(x))*, in view of
(3.4) we have [d(x).m] = 0 or d(x) = 0. In conclusion, for any » € L, we find that
either [d(z),m] =0 or d(z) =0 for all m € L. Now let A, = {x € L | [d(z).m] = 0} and
By ={x € L|d(x)=0}. Then Ay, By are both additive subgroups of L and A;UB; = L.
But a group can not be a union of its two proper subgroups, and hence either A, = L or
B, = L. 1t A; = L then [d(z), m] = 0 for all ., m € L. In particular, [d(z),z] = 0 for all
r € L and hence by Lemma 2.2 we get L C Z(R). On the other hand, if By = L, then we
have d(z) = 0 and hence by Lemma 2.4 we get L C Z(R).

Theorem 3.2. Let R be a x—prime ring with char(R) # 2 and L be a nonzero square
closed x— Lie ideal of R. If R admits a generalized derivation (F, d) such that d commutes
with * and d(Z(L)) # 0. Further, Suppose that R satisfies the conditions:

(i) [F(x),z] € Z(R). for allz € L, or
(¢7) (F(r)ox) € Z(R) for allz € L,
then L C Z(R).
Proof. (i) Linearizing the above expression, we get
[F(x),y] + [F(y).z] € Z(R) for all z,y € L. (3.5)

Replacing y by 2y2 for any > € Z(L) in (3.5), and using the fact that char(R) # 2, we
et

y[F(z). 2] + F(y)lz. 2] + [y, 2]d(2) + y[d(2). 2] € Z(R). (3.6)
Since 2 € Z(L) and d is a derivation d(2) € Z(L), then (3.6) vields that [y, z]d(2) € Z(R),
Again since 0 £ d(2) € Z(L) so according to Remark 2.1 and s—primeness of R, we get
[y,z] € Z(R) for all =,y € L. This implies [r,[y,z]] = 0 for all r € R and =,y € L.
Replacing y by 2yr and using char(R) # 2, we get [r, [z, yz]] = [r, [z, y]z] = [z, ][, z].
Again replacing r by ry, we get [y, z|R[y,z] = 0 for all .,y € L. Therefore, [y, 7| Ry, ] =

[y, 2] R([y, x])* = 0, and hence *—primeness of R forces [y, x] =0 for all =,y € L. Apply-
ing Lemma 2.3, we get the required result.

(i¢) For all x € L, we have

(F(z)ox) e Z(R).

Linearizing the last expression, we get

(F(x)oy)+ (F(y)ozx) e Z(R) for all z.y € L. (3.7)
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Replacing y by 2y2 for anv z € Z(L) in (3.7) and using the fact that char(R) # 2, we get

—y[F(x). 2] + F(y)[z, 7] + (y o 2)d(=) + yld(2). 7] € Z(R).

Since z € Z(L) and d is a derivation so d(z) € Z(L), and hence we get (y o x)d(z) €
Z(R), again since 0 # d(z) € Z(L) and R is a #—prime so by Remark 2.1, we get

(yox)e Z(R) for all ,y € L. (3.8)

This implies [r, (yox)] = 0 forallr € R, x,y € L. Replacing y by 2yz in the last expression
and using the fact that char(R) # 2, we get (yox)[r,z] =0forallr € R, z,y € L. Again
replacing r by sr, we get

(yox)R[r,z] =0, forall r € R, z,y € L. (3.9)

For all € L N S,(R), relation (3.9) vields that (yo 2)R[r,z] =0 = (y o x)R([r, z])*.
Since R is #-prime ring and hence we obtain either (y o z) =0 or [r, x] = 0. Now for any
r € L, using the fact + —2* € LN S,(R), then (yo(zr —z*))=0o0r [r,x —a*] =0. If
yo(r—az*)=0,thenyo (r —z*) = (yox*) = 0, then we have either (yox) = 0 or
[r, )] = 0. On other hand, if [r, r — 2*] = 0 then [r, r —2*] = [r, z*] = 0. In conclusion, for
allz,y € L and r € R we have either (yoxr) =0or [r,z] =0. Let A={zr € L | (yor) =0},
B={reL|[r,2]=0 for all r € R}. Then A and B are both additive and AU B = L,
but (L,+) is not union of two its proper subgroups shows that either A = L or B = L.
If A= L, then (yox) =0 for all z,y € L, replacing = by [z, rz] in the last expression, we
get [r,7][y,z] =0, for all x,y € L, r € R. Again replacing r by sr, we get

[z, R|R[y,x] =0 for all x,y € L. (3.10)

If r € LN S.(R), then [z, R|R[y, x] = ([z, R])*R[y, ] = 0. Thus, *—primeness of R vields
that either [z, R] = Oor [y, x] = 0, but for any = € L, v—z*, r+z* € LNS,(R). Thus, for
any x € L either [r —a* R =0or [y,z —2*] = 0. If [ — z* R] = 0 then equation (3.10)
vields that [z, R|R[y, x] = ([z, R])*R[y,z] = 0. for all =,y € L, hence either [z, R] =0 or
[y, 2] =0. Let Ay ={x € L |[r.R] =0} and By ={z € L | [y, z] = 0}. Again A; and B,
are both additive and A; U By = L, but (L, +) is not union of two its proper subgroups
shows that either Ay = L or By = L. If Ay = L, then [z, R] = 0 for all x € L that is
L C Z(R) and if By = L then we have [y, z] = 0 for all ,y € L and hence L C Z(R) by
Lemma 2.3. Thus, in both cases we find that L C Z(R). On the other hand if B = L
then we have [r, R] = 0 for all # € L and again L C Z(R), hence in both cases we find
that L C Z(R).

Theorem 3.3. Let R be a x—prime ring with char(R) # 2 and L be a nonzero square
closed x— Lie ideal of R. If R admits a generalized derivation (F,d) such that d commutes
with ¥ and d(Z(L)) # 0. Further, Suppose that R satisfies the conditions:

(i) Flroy)+[r.yl € Z(R) for all z.y € L.
(i7) Flz,y] —(zroy) € Z(R), for all z,y € L.
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(tii) Flr,y] — (F(z)oy) — [d(y),z] € Z(R) for all z,y € L
(i) [F(x), F(y)] = [z,y) € Z(R), for all z,y € L

(v) F(z)o F(y)—(zoy) € Z(R), for all z,y € L.

(vi) [F(z), F(y)] = (xoy) € Z(R), for all z,y € L
(vii) (F(z)o F(y)) — [z.y] € Z(R). for all 2.y € L
IFF=0o0rd#0, then L C Z(R).

Proof. (i) If F =0, we have [r,y] € Z(R). Using the same manner as the last paragraph
of proof of Theorem 3.2 (i), we find that L C Z(R).

Therefore, we shall assume that d # 0. Then for any r,y € L, we have
F(zoy)+ [r,y] € Z(R). (3.11)
For any z € Z(L), replacing y by 2yz in (3.11) and using (3.11) & char(R) # 2, we get
(Flroy)z+ (zoy)d(z) — F(y)[z. 2] — yd[z, z] + y[z, 2] — [z.y]z € Z(R).  (3.12)
Using (3.11) and the fact that > € Z(L), we get (roy)d(2) € Z(R). Now, using the same
argument in the last paragraph of the proof of Theorem 3.2 (i7) after equation (3.8), we

get L C Z(R).

(i2) It F* =0, then (zoy) € Z(R) for all z,y € L, and hence by using the same tech-
nique as used in proof of Theorem 3.2 (ii) after equation (3.8) ., we get the required result.

Therefore, we shall assume that d # 0, then we have for any =,y € L
Flr.y] — (roy) € Z(R). (3.13)

For any 2z € Z(L), replacing y by 2yz in (3.13) and using (3.13) & the fact that
char(R) # 2, we get

Fly)lz, 2] + yd[z, 2] + [z, yld(2) — y[z,2] € Z(R). forall z.y € L and z € Z(L).

Since z € Z(L) then, we get [z,y]d(2) € Z(R). Using the same manner as used in the
proof of the last paragraph of Theorem 3.2 (i), we get the required result.

(iii) If F' = 0then —[d(y).r] € Z(R) for all ,y € I. in particular [d(x), ] € Z(R) for
all z € L, and hence L C Z(R) by Lemma 2.2.

Therefore, we shall assume d # 0 then for any =,y € L, we have

Flr,y] = (F(z)oy) — [d(y), =] € Z(R). (3.14)
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For any » € Z(L), replacing y by 2yz in (3.14) using (3.14) & the fact that char(R) # 2,
we get

F(y)le, 2] + yd[z, 2] + [z, yld(2) — y[F(2), 2] — d(y)[2, 2]

—yld(z), 2] = [y. 2]d(z) € Z(R). (3.15)

Since z € Z(L) and d is a derivation so 0 # d(z) € Z(L), and hence we get 2]z, y]d(z) €
Z(R). Using the fact that char(R) # 2 and 0 #£ d(2) € Z(L), we get [r,y] € Z(R), using
the same arguments as used above to get the required result.

(iv) If =0, then [r,y] € Z(R) for all x,y € L, hence we get the required result by
using the same argument which used in the last paragraph of the proof of Theorem 3.2 (7).

Therefore, we shall assume that d # 0, then for any z,y € L, we have
[F(z), F(y)] - z.4] € Z(R). (3.16)

Replacing y by 2yz for any 2 € Z(L) in (3.16) and use (3.16) & the fact that char(R) # 2,

we get
F(y)[F(x). 2] + y[F(x),d(2)] + [F(x), yld(z) — y[x, 2] € Z(R). (3.17)

Now, since z € Z(L) and d is a derivation, 0 # d(2) € Z(L) so we have [F(z),y]ld(z) €
Z(R), again since 0 # d(2) € Z(L) and R is *—prime, then according to Remark 2.1, we
vet [F(z),y] € Z(R) for all z,y € L. In particular we have [F(z),r] € Z(R) for all z € L.
Now using Theorem 3.2 (7)., we get the required result.

It the commutator is replaced by the anti-commutator in the the last theorem, then
we see that the conclusion of these theorem hold good.

(v) If F =0, then —(zoy) € Z(R) for all z,y € L, and hence we get the required
result by using same argument which used in the proof of Theorem 3.2 (7) after equation
(3.8) .

Therefore, we shall assume that d # 0 1.e., we have
Flr)oFly)—roy € Z(R) forall z.y € L. (3.18)
Replacing y by 2yz, for all > € Z(L) in (3.18) and using (3.18) & char(R) # 2, we get
—F)[F(x), 2]+ (F(z) 0 y)d(2) — yF(2),d(2)] — ylo, 2] € Z(R). (3.10)
Since z € Z(L) and d is a derivation so 0 # d(z) € Z(L) and hence, we get (F(zr)oy)d(z) €

Z(R). Again since 0 # d(z) € Z(L), and according to Remark 2.1 and %— primeness of
R, we get (F(z)oy) € Z(R). In particular we have (F(z)ox) € Z(R) for all z € L. Now
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using Theorem 3.2 (ii), we get the required result.

(vi) If F =0, then —(zoy) € Z(R) for all z,y € L, and hence L C Z(R) by using
the similar arguments which used in the proof of the last paragraph of Theorem 3.2 (7).

Therefore, we shall assume that d # 0 then for all 2,y € L, we have
[F(z), F(y)] - (z0y) € Z(R). (3.20)

Replacing y by 2yz, forall 2 € Z(L) in (3.20) and using (3.20) & the fact that char(R) # 2,

we get
F)lF(x), 2] + y[F(x), d(2)] + [F(x), yld(2) + ylz. 2] € Z(R). (3.21)

Since z € Z(L) and d is a derivation so 0 # d(z) € Z(L) and hence for all z,y € L, we
have [F(x),y]ld(z) € Z(R), again since 0 # d(z) € Z(L) and R is *—prime then according
to Remark 2.1, we find that [F(x),y|] € Z(R) for all z.y € L. In particular we have
[F(x),x] € Z(R) for all z € L. Hence using Theorem 3.2 (i), we get the required result.

(vii) If F' =0, then —[z,y] € Z(R) for all z,y € L. Using the same technique as used
in the first paragraph of the last Theorem, we get the required result.

Therefore, we shall assume that d # 0 then for any z,y € L, we have
(F(z)o F(y)) — [z.y] € Z(R). (3.22)

For all 2 € Z(L), replacing y by 2y2 in (3.22) and using (3.22) & the fact that char(R) # 2,
we get

—F(y)[F(2). 2] + (F(x) 0 y)d(2) — y[F(x).d(2)] - y[z, 2] € Z(R). (3.23)

Since z € Z(L), and 0 # d(z) € Z(L), so we get (F(x)oy)d(z) € Z(R) for all =,y € L.
But R is #—prime then then according to Remark 2.1, we get (F(z)oy) € Z(R) for all
r,y € L. In particular we have (F(z)o z) € Z(R) for all x € L. Now using Theorem 3.2
(it), we get the required result.

Theorem 3.4. Let R be a x—prime ring with char(R) # 2 and L be a nonzero square
closed x— Lie ideal of R. If R admits a generalized derivations F' and G with associated
derivation d and g commute with % such that d(Z(L)), g(Z(L)) # 0. Further, Suppose
that R satisfies the conditions:

(i) [F(z), 2] — [z.G(x)] € Z(R), for all z € L, or

(if) (F(z)ox)— (zoG(z)) € Z(R), for all = € L. or
(iii) [F(x).G(v)] = [z.u] € Z(R). for all 2.y € L.
IFF=0(or G=0)ord#0 (or g#0) then L C Z(R).
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Proof. (1) It is given that F and G are generalized derivations of R such that [F(z), 2] —
[r,G(z)] € Z(R). f G =0 {or F =0) then [F(z),z] € Z(R) or ([z.G(x)] € Z(R)) for all
r € L, and hence in both cases we obtain L C Z(R) by Theorem 3.2 (i).

Henceforth, we shall assume that 0 # d or (g # 0). Linearizing the above expression,
we get

[F(z),y] + [F(y). 2] = [z, G(y)] = [v.G(x)] € Z(R). (3.24)

Replacing y by 2yz for any 2 € Z(L) in (3.24) and using (3.24) & the fact that char(R) #
2, we get

Y[F(x), 2]4+F(y)[z. 2]+y[d(2), 2] +[y, 2]d(2)=G(y) [z, 2]=y[r. g(2)] =[x, ylg(2)—y[z. G(z)] € Z(R)

Since z € Z(L) and d g are derivations so 0 # d(z), g(2) € Z(L), and hence we get

) a

[y, 2] (d( ) 9(2)) €

Slnce 0 75 (d(z ) (H)) € Z(R) and R is x—prime, then by Remark 2.1, we get

[y, 2] € Z(R), By using similar argument which used in the proof of last paragraph of
Theorem 3.2 (1), we get the required result.

(i¢) It is given that F' and G are generalized derivations of R such that (F(z)ox) —
(roG(x)) € Z(R). It G=0o0r (F =0) then (F(x)ox) € Z(R) or (roG(z)) € Z(R))
for all » € L, and hence in both cases we obtain L C Z(R) by Theorem 3.2 (i7).

Henceforth, we shall assume that 0 # d or (g # 0). Linearizing the last expression,
we get
(F(z)oy)+ (F(y)or) — (zoG(y)) — (yeo G(z)) € Z(R). (3.25)
For any 2 € Z(L), replacing y by 2y= in (3.25) and using (3.25) & the fact that char(R) #
2, we get
—y[F(z), 2] + F(y)[z. 2] + (y 0 2)d(2) + yd(2), 2] — G(y)[x. 2]

—(zoy)g(z) —ylr, g(2)] —ylz, Gx)] € Z(R). (3.26)

Since » € Z(L) and g is a derivation so 0 # ¢(z) € Z(L), and hence we get (yox)(d(z)+
g(z)) € Z(R),but 0 # (d(2)+g(2)) € Z(L) and R is x—prime, then according to Remark
2.1, we get (yor) € Z(R). Applying the similar technique as used in the last paragraph
of the proof of Theorem 3.2 (i7), we obtain that L C Z(R).

(1¢2) If F =0o0r (G =0), then —[z,y] € Z(R) for all z,y € L, and hence by using the
same argument which used in the last paragraph of proof of Theorem 3.2 (i), we get the
required result.

Therefore, we shall assume that d # 0 or (g # 0). For any =,y € L, we have
[F(x). G(y)] — [x,4] € Z(R). (3.27)
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For any > € Z(L), replacing y by 2y2 in (3.27) and using (3.27) & the fact that char(R) #
2, we get,

Gy)F(x), 2] + y[F(x), g(2)] + [F(x), ylg(z) — ylr, 2] € Z(R). (3.28)

Since z € Z(L) and g is a derivation so 0 # g(2) € Z(L) and hence we get [F(z),y]g(z) €
Z(R). Again since, 0 # g(z) € Z(L) so using *—primeness of i and Remark 2.1, we get
[F(x),y] € Z(R). In particular [F(z),z] € Z(R) for all € L and hence by Theorem 3.2
(i), we get the required result.
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