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Abstract.

We investigate in this work necessary and sufficient conditions for having the maximum principle for nonlinear

system involving singular (p, q)-Laplacian operators on bounded domain £2 of R™. Moreover, we prove the

existence of positive weak solutions by the Browder theorem method for the considered system.
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1 Introduction:
Let us consider the following nonlinear system

— div[|z| | VulP~2Vu] = a|z| TP juP 2y + bul*v)fu+ f in Q,
— div]ja|7%|Vo|972V] = c|ul*|v|Pu + d|x|" TV |y[92y g in Q, (1.1)

u=v=>0 on 40,

where 0 is a bounded domain of R” with boundary 99,0 Q, 1 <p,g<n, 0<r < n—;ﬂ, D<s< ?.
a,b,c,d, ., 3,7,0 are positive constants, f, g are given functions. The feature that needs to be highlighted
in system (1.1) is the singularity in the weights. Due to this singularity in the weights, the extensions are
challenging and nontrivial. A crucial milestone in the understanding of the elliptic problems involving the
singular quasilinear elliptic operator — div|[|z|™"P \Vu|P~2Vu) is the paper by Caffarelli, Kohn and Nirenberg
[4] (see also [5, 16, 18]).

Many works have been devoted to the study of maximum principle for nonlinear systems either on a

bounded domain (cf. [3, 9, 10]) or an unbounded domain (cf. [6. 8, 14]).
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On the other hand, there have been many papers concerned with the existence of weak solutions for
singular elliptic systems in recent vears (see [1, 2, 12, 13, 15, 18] and related papers in their references.

This paper is organized as follows. In section 2, we introduce some technical results and definitions which
will be used in the sequel. Section 3 is devoted to the maximum principle and the existence of positive weak

solutions for the scalar case. Finally, in section 4, we consider the system case.

2 Technical results

We start this section by recalling some useful results in [17]. For ¢ € R! and p > 1, we define L,(<,

z|77)
as being the subspace of L,(2) of the Lebesgue measurable function u : Q — R, satisfying

1

lullz,(e,)z-2) = -/‘\:E\*J\VuP’ < 00. (2.1)
e

Ifl <p< Nand —o0 < a < "?%p, we define W2P(Q,|z| ?P|) as being the closure of C°(Q) in

WLP(Q, |z|~2P|) with respect to the norm defined by

»

e oi-emp = | [ Il 771907 | < 0. (2:2)
Q

Then, the space Wy (€. |z|~*?|) is reflexive and separable Banach space.
Let us recall some results on singular eigenvalue problems (see [17]) useful in the sequel for this work. Tt

was known that the singular eigenvalue problems

—div]la| || Vu=2Vu] = Ao+ D lup 2y in 0, } 23

u="~0 on 00,

where @ C R™ is an open bounded domain with C! boundary 902, 0 € Q. 1 < p<n, 0 < a < (H%P) and
¢ > 0, admits, an unique positive first eigenvalue A;(p) with a nonnegative eigenfunction.

Moreover, this eigenvalue is isolated, simple and as a consequence of its variational characterization one
has

n) [lal et < [ jaf v, (2.4
Q Q
where u > 0 a.e. in € (u not identical to 0) is the corresponding eigenfunction of Ay (p).
Also, we introduce some basic definitions and theorems concerning the nonlinear operators which we use

extensively in proving of existence of positive weak solution for our systems [7].
Definition 1 Let A:V — V' be an operator on a real Banach space V.. We say that the operator A is:

o bounded iff it maps bounded sets into bounded i.e. for each r > 0 there exists M > 0 (M depending on

r) such that ||u]| <r = ||A(u)|| < M, Yu e V;

e coercive: iff | lim

|| —oo

o monotone iff (A(uy) — A(ug),uy —ugy >0 for all up,ug €V

Volume 7, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm 1154|




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

e strictly monotone iff (A(uwy) — A(ug),wy —ug) >0 for all wy,us €V, uy # us;

e strongly monotone iff (A(uq) — A(ua), wy — ua) > kl|lug —ua||  for all uy,us €V, wg # ua;

o continuous iff u, — u implies A(u,) — Alu), forall u,,ueV;

o strongly continuous iff uy, — u implies A(u,) — A(u), for all up,ueV;

o demicontinuous iff u, — u implies A(u,) — A(u), for all u,.u€V;

o My —condition iff un — u, A(ty) — b. {(Aun), Un) — (byu) = A(u) =b  or all uy,uel.

Remark 1 From this Definition we have the following:
1. Every strongly continuous operator is continuous and bounded.
2. Every strongly continuous operator is continuous, which is demicontinuous and hence hemicontinuous.
3. Every strongly monotone operator is strictly monotone operator.

4. Every Monotone and continuous operator satisfies My —condition.

Theorem 2 (Browder [11] ) Let V be a reflexive real Banach space. Moreover let A : V. — V' be an
operator which is: bounded, demicontinuous, coercive, and monotone on the space V. Then, the equation
A(u) = [ has at least one solution uw € V' for each f € V'. If moreover, A is strictly monotone operator,

then the equation (1.1) has precisely one solution u € V' for every f € V',

Definition 2 By a solution (u,v) of (1.1), we mean o weak solution; i.e.. (u,v) € H'Ol‘p(.ﬂ._ 2|77P) %

Wa 9(€, x| =%9) such that

J1el v 29u9g + o [ la- e 0 up-2ug v [ ulelelfoe = [ e,
Q Q Q Q

JERE
194

for all (g,w) € WyP (%,

Q—2vtevr¢‘:+C'/|u|\’l|t¢|3ur¢‘:+df|x‘_(-9+1)q+5|rv|q_2tev:fgv.
Q Q Q

x| 7PY x Wad(9, |z|59).

3 The case of a single equation for the singular p-Laplacian

In this section, we study the maximum principle and existence of positive weak solution for the following

scalar case,

—div]|z| || VulP2Vu] = Aaz| oDy P2y 4+ f in Q, (3.1)
w=0 on 909, o
where ¢ € R™ is an open bounded domain with ¢! boundary 992, 0 € Q. 1 < p < n. 0 < a < (H—;P)_.

c>0and0< felL? sucththat%er%:l.
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3.1 Maximum principle

We are concerned with the following form of the maximum principle: The hypotheses f > 0 on Q implies

% > 0 for any solution u of system (3.1).
Theorem 3 Mazimum principle holds for system (3.1) iff A1 (p) > A.

Proof: The condition is necessary

It A1(p) < A, then the functions f := (A — ,\1(p))|1’|7(“+”p+cq’bp71 > 0. is nonnegative, nevertheless —ao
satisfies (3.1), which contradicts the maximum principle.

The condition is sufficient

Assume that A(p) > A holds; if u is a solution of (3.1) for f > 0, we obtain by multiplying system (3.1

) by u~ := max(0, —u) and integrating over Q

Jial-eeiivur =a [jayetesete - [ um <o fjapemeeep .
Q o Q

Q

By using (2.4), we have

(A(p) =) f S T L
0
Then u~ = 0, which implies that « = 0, i.e. the maximum principle holds.

3.2 Existence of positive weak solution

In this subsection, using the Browder theorem, we prove the existence of positive weak solution for the scalar

case (3.1).

Theorem 4 For f € LP" (Q), there exists a weak solution u € H"Ol’p(ﬂ. |z|~*P|) for the scalar case (3.1) if

A(p) > A
Proof. We transform the weak formulation of the scalar case (3.1) to the following operator form
J(uw) = A(u) — AB(u) = F, (3.2)
where, A. B and I are given by

(A(u), ) = f 2|2 | [VulP2VuVe, (B(u).¢) = f 2|~ VR+elur=2up, (F,®) = (f,¢) = f fe. (3.3)
Q Q 9]

Now, we have the following properties of the operators A and B:

a) A and B are bounded operators. From (3.3), by using the Holder inequality, we have

(Aw.0) = [ Lol IIVup2Vav,s
Q

1

/p" 1
j 2]~ ||V f 2]~ ||V o?
Q Q

»/p” /
G SN [ Ty

/P

I

= ul|
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Also, one can prove that

_ / .
(B(uLP) :f‘r‘ (a+1)p+c|u‘p 2u‘r’< ||u||ippﬂ =l a+1}p7C)||r-‘:}||$)}"01’p(gz‘xl—(‘l—l)l""c)'

Q

b) A and B are continuous operators. The operator A(u) is the Frechet derivative of the functional

%f |z|~"P|Vu|?. Hence A(u) is a continuous operator. Also, the operator B is the Frechet derivative of the
0

functional % J \x|_(r+1)7’+"’ |u|P. So it is a continuous operator. So A and B are continuous operators.
Q

c¢) J = A — B is Coercive operator.
From (3.3), we have

= [leler IV = [ fal - rsepap. (3.4
Q 0
Using (2.4), (3.4) becomes

(J(u), )

v

B A .
]MIPMMP—XmﬁfM\pMMF

—ap P — —
fWI\WM 1= 5 10 ey

and hence (J(u),u) — 00 as ||yl

WaP(Q,|z|—er) — OO

d) Now, to apply the Browder theorem, it remains to prove that .J is a strictly monotone operator.

From (2.4), we have

AP (D) |[ull Lo (@, g tarvpre) < i;,é,p(ﬂs‘x‘_np) (3.5)

Now, form (3.3), we get

(Tur) = Tug) vy —ug) = fwrwwmw—xjmrwﬂmwmw
(9] Q

+f|:c|*“P\V’u2|PfAf|:r\’(“+1)1”+”|u2|?”

Q Q

ff|:c|*“P\Vu1|P*2Vu1VU2+A]|$\*(”+1)P+“|UI|P*%.1UQ
0 Q
—f|x|_“P\Vu2|P_2Vu2Vu1 +)\/|x\_(”+1)P+C|u2|P_2ugu1.

Using Holder inequality, we have

(J(uy) = J(ug), ug — up)

v

+ [[uall?

P
HHIHIVL;:(Q ‘x‘—ap) “rl P(Q |z|—aP)

_ P P
et g o 92 R ey~ 12y 1 g o
“Allluallf

LP(Q,|z|~(a+t1)pte) ”uznip(q ||~ (a+1)p+e)

||u1||Lp(Q ||~ (et 1}P+C)Hu2“L‘P(Q ||~ (et 1)p+C) ||u2HLP(Q ||~ (a+1)p+c)”ulHip(gj|z|—(a+1)1=—C)]

(” 1”p 1, P(Q |m‘ o.p‘) H 2“1171 P(Q ‘Zl ap) ||u1||1'VD1’P(QJ|JJ‘_“p) - Huz‘ '[-Vul"p(ﬂ,lml_“‘p))

HUIHLP(Q ||~ (a+1)ptey HUQHLP(QJ|E|*(Q+1}'P*G))(”ul||Lp(Q,‘x‘_<a+ljp+c) - ||“2||LP(Q,\J:|—(¢+1>P—C))-
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By using (3.5), we have

A -1

() =T (ug) wr—ui2) > (L=l g g -y~ 102y g o ey 2t g0y = (02 o 1 -om)) > O

This proves the strictly monotone condition and hence the existence of positive weak solution of the

scalar case (3.1).

4 The case of a system for the (p,q)-Laplacian
In this section, we assume the following hypotheses
(Hy) 1<pg<n 0<r< %?.U<s<%

() a,6>0, &b 4 85 — 1 and 7,6 >0,

atl s+

(Hs) a,b,c,d >0 and b,c < inf [(p;HfH)Ph) (S kand NE

atl B+1

(Hy) (W) ’ (m) T2l

(Hs) fELP(Q), gL (Q), L+ L =Tand I+ L =1.

4.1 Maximum principle

Our aim in this subsection is to construct a maximum principle for system (1.1) which means that if f, g are

nonnegative functions then any solution (u,v) of system (1.1) imply u = 0, v > 0.

Theorem 5 Assume that hypotheses (Hy)-(H;) are satisfied. Then, the mazimum principle holds for system

(1.1) if
Alp) > e, Mlg) > d. (4.1)
M) =D (Mg -1 > 1. (4.2)

Conversely, if the mazimum principle holds, then (4.1) and (4.3) are satisfied, where

atl B+1
(M) =177 (Mg -1 >0 (4.3)
with,
atl f+1
info (Z—z) v
D<e= ‘ e =<1
bLpo (Q—Z ¢ ¢

and ¢ ( respectively V) is the positive eigenfunction associated to M\(p) (respectively Ai(g)) normalized by

olloe = [¥]ac = 1.

Proof: The conditions are necessary

If \i(p) < a, then the functions f := (a — M\ (p))\I\*(’"*l)f’*?"c:'lp*l. g := 0 are nonnegative, nevertheless
(—¢,0) satisfies (1.1), which contradicts the maximum principle.

Similarly, if Ai(g) < d. then the functions f := 0, g := (d — Aa(g))|x|~+D9H5577! are nonnegative,

nevertheless (0, —1) satisfies (1.1), which means that the maximum principle does not hold.
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Now suppose that A(p) > a, Ai(g) > d and (4.3), (and hence (4.2)), does not hold., i.e.

atl B+1

(Mlp) —a) ® (Mlg) —d) = <O.

Now, we want to fined a positive real number £ such that

‘4(?—:)%%<¢ A=0
B(f—);L <1, B>0 o
o =8 - U
Equation (4.4) is satisfied if
a+1 841 at1 841
A sgp (:—z) c < & < % igf (l—z) c . (4.5)
atl s+l

q 5
,then, after some calcula-

Let A = [% sup(|:ﬂ|_(r+1)P+7)] " and B= [W inf(\r\_(s"'nq"'oh)}
tions, § exists if (4.3), (and hence (4.2)), does not hold.
atl B+l

If we take &= [(g—;)] » ¢ with C,D > 0, then (4.4) implies

(A1(p) — a)|z|~rFVrH7(Co)P=1 < b(CH)*(DY)P+,
(M (g) = d)fa[~HVaH8(Dy)a=t < o(Ch)=+ (DY)?,
Then,
f==(p) —a)le|~TTIPTI(CO)PT 4 b(C6)* (DY) P,
and

g=— (Ai(g) — d)|z|~ TV (Dy)Tt 4 o(Co)* T (Dw)®,

are nonnegative functions, nevertheless (— C'¢), — D) is a solution of (1.1). This is a contradiction with the
maximum principle.

The conditions are sufficient

Assume that (4.1) and (4.2) hold; if (u,v) is a solution of (1.1) for f, g > 0, we obtain by multiplying the

first equation of (1.1) by v~ = max(0, —u) and integrating over {2

'/‘|I|7Tp|v,u_7|}7 < af‘r‘*(r+l)]ﬂ+'7|u_*‘?+b‘[|u*|a+l‘q“f|3+ll
Q Q Q

From the characterization of the first eigenvalue A;(p), we have

v |BHL

(n(p) —a) f |- ORI P < b f et
Q Q

Using (Hj), we have

atl B+1
(M(p) ,Q)‘/hr(rﬂ)pﬂ‘ujp < f [‘I‘*(r+1)p+‘r"uf‘p]T [‘I|f(s+1)q+6|{‘q] T (4.6)
Applying Hélder inequality, (4.6) becomes
B+1 B+1 at1
q q P
up) =) | [ [eresrouop] || [ e ] ) ([ flaeeep] || <o
) 0 Q
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Now, 1if f [|1‘\7(r+1)p+ﬂ"|u7|p] = (0, then ©~ = 0 and hence u > 0. If not. then we have
Q
a+igt1 SRS
P q 4 q
a+l . .
(Ai(p) —a)F f [ aaianital < / [l2]~(e+ D+ L)
Q Q

Similarly, for the second equation of (1.1), we have

atl

P q
(M(q) — d) f |:|3:|—(3+1)q+5‘i,—|qj| _ / {|x\—(’”+1)1"+7|u_|p % f [|$|_(5+1)q+5‘®—|q <0
o o o
Also, if | [\r|7(5+1)Q+5|1‘7\q] =0, then v~ = 0 and hence v > 0. If not, then we have
Q
S e
(M(g) —d) 55 / [|I‘—(a+1)q+6‘l,—|q] < / [|3:|—(T+1JP+7|U.—|P} (4.8)
) 0
Multiplying (4.7) by (4.8), we obtain
Sl w S
((/\a(p_) D)5 alg) — 1) 1) /a(:c)\u—\P /d(xm—\q <.
) by

Using (4.1), (4.2), (4.7) and (4.8), we have u~ = v~ = 0, which implies that u > 0, v > 0, L.e. the maximum

principle holds for system (1.1).

Corollary 6 If p = g, then the mazimum principle holds for system (1.1) if and only if (4.1) and (4.2) are
satisfied.

Remark 7 Whenr =s5=0,v=p and 0 = q our result is reduced to the one in [3].

4.2 Existence of positive weak solutions for the system case

In this subsection, using the Browder theorem, we prove the existence of positive weak solution for system

(1.1). We have the following existence theorem:

Theorem 8 For(f.g) € LP (Q)x L9 (Q), there exists a weak solution (u,v) & IT"Ol’p(Q. |z|~7P) XYI'&‘Q(Q. |z|~=9)

for the system (1.1) if hypotheses (Hy — Hs) and (4.1) are satisfied.

Proof:  As In the scalar case, we transform the weak formulation of the system (1.1) to the following
operator form

S(u,v) = A(u,v) — Bu,v) = F, (4.9)

where, A, B and F are given by

(A(u,v), (@, 0)) :/\:r|7rp|Vu\p*2\7qu+j|:r\7sq\vw\q*?V@V@ (4.10)
0 Q
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(u,v), (@, = a x|\ TulP~?up + msany v v
(Bl (ew) = a [Pt d [ a2
O

+b/|u|&|v|ﬁt‘p+cf\u|“\v\-guy. (4.11)
Q Q

(F.%) = ((£.9). (p.0)) = /fﬁ—kfgt
Q Q

Now, we have the following properties for the operator S=A— B :
a) The operator S is Bounded and continuous. The operator A(u,v) can be written as the sum of the

two operators Aj(u), A2(v), where

(A (u }f/|1 | =P |V ul|P~ 2VuVe and (As(v ), ( .-"_)):]|I|_39|V1=\Q_QV1'V@‘.

As in the scalar case, operators A (1) and A5(v) are bounded and continuous; so their sum, the operator A,
will be the same. Also, for the operator B(u,v).
b) The operator S(u,v) is strictly monotone, to do this, since maximum principle holds for system (1.1),

ie., u > 0,v > 0, then we have

(S(uy,v1) — S(ug,ve), (u1,v1) — (u2,v2))

= (Alur,v1) — A(ua,v), (u1,v1) — (u2,v2)) — (B(ur,v1) — Blug, va), (u1,v1) — (u2,v2)).

where
’Lril 11 — ’-1 UQ 12 ?11 ’«!.1} ’U2 12}}
fm TP|WI|P+[\1~| Sﬂwq+/\x|—rp|wzv’+f|r\ 9T
ff|:c\_TP\Vu1|p_2\7u1Vu27f|$|_Tp|'\7u2|P_2Vu2Vu1
—f|x\_3q|V1=1|q_2\7v1thg—/\:c|_sq|V1fg|q_2VvQV1*1.
o) Q
and

(B'ul.’vl} 7B(U2.?)2 s ?.1-1.1’1) — (’ug.?)g)}
‘7 E

( ). (
= a/|:c|*(?”+”p+”‘“|u1\p+df|x (+1)q+5‘1?1|q+a/‘x -
Q Q Q

,a/‘I|—(T+1)p+7|ul‘y—1u1u2 ,a[|x‘—(r+l):ﬂ+1v‘u2|p—1u2u1

f || (e DaTE |y |0

Q

_df‘I|_(‘q+l)q+5\1-’1|q_11‘11-’2—Cif|$\_(5+1)q+6\l‘2|q_1f?”1

+bf g | o [P+ b/ [z |+ wa|PH + Cf g | a7 C[ |+ o[ 5
0 Q Q

—bf|u1|°‘ug|1f1|-3+1 —bf‘ﬂ-g‘au-1‘1‘2‘3+l —cf \u1|°+1|1fg\-31=1 —Cf‘ug‘a+1"!,‘1“@1,‘1.
Q Q Q 0
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Applying Holder inequality, after complicated ealeulations, one have

[S{ty. 1) = S{teg. va), (W 2 ) = (Ua, Ba)) = 0,

c) Now, to apply the Browder theorem. it remains to prove that S(u.v) is a coercive operator. From

(4.9-4.11%, we have

(S{uw.v). (w,v)) = f x ”'"\’ul"-—fl-rl "“"I"'-’l"*—af x ""1”“'""|u|"—a'f|-r (s 1)q+d 10
LT b 0

2

—h] _Ei:n:t' 3."21 - r_‘f||r|n|."|‘3rr.".
1]

]

Using the validity of the maximum principle for system (1.1) and (2.4) we have

(Slu, vl {w,v)) = (1 _Tjil fl | TP VP + (1 - —Iflil A%

—I!,I-—::"Ifln:e atl)y|8+1

Applving Holder inecquality and (H3), after some caleulations, we have

(S{w. vl (wv)) P 0 AS OO

|(e, v} |u'l: B0, |z|=re ) W A0, |z~ #0)

This proves the coercive condition and so, the existence of positive weak solution for systems (1.1).
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References

[1] R.Assucao, P. Carriao and 0. Miyagaki, Subcritical perturbations of a singular quasilinear elliptic equation
involving the critical Hardy-Sobolev exponent, Nonlinear Analysis, 66 (2007) 1351.1364

[2] W. Bastos, 0. Miyagaki and R. Vieira, Existence of solutions for a class of degenerate quasilinear elliptic
equation in R™ with vanishing potentials, Boundary Value Problems, 92 (2013), 1.16

[3] M. Bouchekif, H. Serag and F. de Thélin, On Maximum Principle and Existence of Solutions for Some
Nonlinear Elliptic Systems, Rev. Mat. Apl., 16 (1995) 1.16

[4] L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights. Compos. Math. 53
(1984) 259.275

[5] F. Catrina, Z-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and
nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54 2 (2201) 229.258

[6] ]. Fleckinger and H. Serag, On Maximum Principle and Existence of Solutions for Elliptic Systems on R", J.
Egypt. Math. Soc. 2 (1994) 45-51.

[7]1 ]. Francu, .Solvability of Operator Equations., Survey Directed to Differential Equations, Lecture Notes of
IMAMM 94, Proc. of the Seminar . Industrial Mathematics and Mathematical Modelling., Rybnik, Univ. West
Bohemia in Pilsen, Faculty of Applied Sciences, Dept. of Math., July, 4.8, 1994.

[8] S. Khafagy and H. Serag, Maximum principle and existence of weak solutions for weighted p-Laplacian
system on R", Asian Journal of Mathematics and Computer Research, 6 2 (2015) 168-180

Volume 7, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm 1162




[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

S. Khafagy and M. Herzallah, Maximum Principle and Existence of Weak Solutions for Nonlinear System
Involving Weighted (p, q)-Laplacian, to appear in Southeast Asian Bulletin of Mathematics.

L. Leadi and A. Marcos, Maximum Principle and Existence Results for Nonlinear Cooperative Systems on a
Bounded Domain, Electron. J. Diff. Eqns., 2011 82 (2011) 1.13

J. Leray and ]. Lions, Quelques resultats de Visik sur les proble.mes elliptiques nonlineaires par les
methodes de Minty Browder. Bull. Soc. Math. France. 107 (1995) 93.97

0. Miyagaki, R. Rodrigues, On positive solutions for a class of singular quasilinear elliptic systems. ]. Math.
Anal. Appl. 334 (2007) 818.833

S. Rasouli, On a class of singular elliptic system with combined nonlinear effects, Acta Universitatis
Apulensis, 38 (2014) 187.195

H. Serag and E. El-Zahrani E, Maximum Principle and Existence of Positive Solution for Nonlinear Systems
on R", Electron. . Di. Eqns., 85 (2005) 1-12

Z. Xiy and C. Chen, Existence of multiple solutions for singular elliptic problems with nonlinear boundary
conditions, ]. Math. Anal. Appl,, 410 (2014) 625.641

B. Xuan, Multiple solutions to a Caffarelli-Kohn-Nirenberg type equation with asymptotically linear term,
Revista Colombiana de Matematicas, 37 (2003) 65.79

B. Xuan, The eigenvalue problem for a singular quasilinear elliptic equation, Electron. ]. Diff. Eqns., 2004 16
(2004) 1.11.

B. Xuan, The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights. Nonlinear
Anal. 62 (2005) 703.725.

Volume 7, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm 1163|




