
                                                                      Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                               

ISSN: 2395-0218  

 
Volume 7, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm                                                1036| 

 
SCITECH                                                                        Volume 7, Issue 3  

RESEARCH ORGANISATION                 Published online: April 27, 2016| 

Journal of Progressive Research in Mathematics 

www.scitecresearch.com/journals     

Boundedness of singular integrals with oscillating kernels on 

weighted Morrey space 

Hao  Huang, Shijuan Hu, Jia Song 

Department of Mathematics, Linyi University, Linyi 276005 , P. R. China  

 

Abstract.  

In this paper, we obtain some weighted norm inequalities for singular integral with oscillating kernels on 

Morrey space. 
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1. Introduction 

We first recall the definition of weighted Morrey space  [1] as follows 

, 

where B denotes any ball in .  . The weighted Morrey space is a 

generalization of weighted Lebesgue space. In [1], the author obtained the boundedness of 

maximal Hardy-Littlewood operator and singular operators on  with 1 ≤ p< ∞ and w ∈ 

Ap. ( the Muckenhoupt classes [2]).  

The oscillating kernel was denoted by  

.  

  is the singular integral operator with oscillating kernel. It is well known that 

the operator  was bounded on  ( [3]).  The weighted boundedness of  T on  

Lebesgue spaces  can be found in [4].  

This paper focuses on the weighted boundedness of  on  following from some 

ideas which were developed  in dealing with Lebesgue spaces.  The main results of this paper 

can be stated as follows 

Theorem 1.1.  (a) If ,  then the operator T is bounded on the weak weighted Morrey 

space.. 

(b) Let  and . Then the operator T is bounded on . 
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Throughout this paper all definitions and notations are standard.  

  

2. Boundedness of  singular integral with oscillating kernels 

The following properties of  weight classes play important role in the proofs of Theorem 

1.1.  

Lemma 2.1. [5] Let  and . Then the following statements are true  

(a) There exists a constant  such that  

              w(2B) ≤ Cw(B).                                 

(b) There exists a constant C> 1 such that  

                  w(2B) ≥ Cw(B). 

       (c) There exist two constants C and 1 such that the following reverse Hölder inequality  

holds for every ball  ⊂ 
  

                       
 

The following boundedness of  on weighted Lebesgue spaces had proved in [6]. 

Lemma 2.2. Let 0  and .  

(a) If , then there is a constant > 0 such that  

                           

 (b) If  , then there is a constant C> 0 such that  

              

Now we are in a position to give the proof of Theorem 1.1. We first prove (a). 

Decomposing , then for any given , we have 

 

 

By Lemma 2.1 (a) and Lemma 2.2 (a) , we obtain  that  

                                                                 

For the term , by an elementary estimate we get  

 After  noting that  

        ,                                

  
|

we have 

                                              

as desired. 
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For  the proof of (b), it suffices to show that  

        . 

Let  and hence  Since  is a linear 

operator, one has  

  

 

                   

For the term JJ,  by Hölder’s inequality,  

 

Lemma 2.1(b)  implies that 

                      . 

Therefore, the proof of Theorem 1.2 is completed. 
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