

Volume 7, Issue 3

Published online: April 27, 2016

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Boundedness of singular integrals with oscillating kernels on weighted Morrey space

Hao Huang, Shijuan Hu, Jia Song

Department of Mathematics, Linyi University, Linyi 276005, P. R. China

Abstract.

In this paper, we obtain some weighted norm inequalities for singular integral with oscillating kernels on Morrey space.

Keywords: Oscillating kernels; Morrey space; weights.

1. Introduction

We first recall the definition of weighted Morrey space [1] as follows

$$||f||_{M_{p,k}(w)} = sup_B \left(\frac{1}{(w(B))^k} \int_B |f(x)|^p w(x) dx\right)^{\frac{1}{p}},$$

where B denotes any ball in \mathbb{R}^n . $1 \le p < \infty, 0 < k < 1$. The weighted Morrey space is a generalization of weighted Lebesgue space. In [1], the author obtained the boundedness of maximal Hardy-Littlewood operator and singular operators on $M_{p,k}(w)$ with $1 \le p < \infty$ and $w \in$ Ap. (the Muckenhoupt classes [2]).

The oscillating kernel was denoted by

$$K_{\alpha}(x) = e^{i|x|^{\alpha}} (1+|x|)^{-n} \alpha > 0, \alpha \neq 1.$$

 $Tf(x) = K_{\alpha} * f(x)$ is the singular integral operator with oscillating kernel. It is well known that the operator T was bounded on $L^{p}(\mathbb{R}^{n})(1 ([3]). The weighted boundedness of T on Lebesgue spaces can be found in [4].$

This paper focuses on the weighted boundedness of T on $M_{p,k}(w)$ following from some ideas which were developed in dealing with Lebesgue spaces. The main results of this paper can be stated as follows

Theorem 1.1. (a) If $w \in A_1$, then the operator T is bounded on the weak weighted Morrey space.

(b) Let $1 and <math>w \in A_p$. Then the operator T is bounded on $M_{p,k}(w)$.

Throughout this paper all definitions and notations are standard.

2. Boundedness of singular integral with oscillating kernels

The following properties of A_p weight classes play important role in the proofs of Theorem 1.1.

Lemma 2.1. [5] Let $1 \le p \le \infty$ and $w \in A_p$. Then the following statements are true

(a) There exists a constant ${\bf C}$ such that

 $w(2B) \leq Cw(B)$.

(b) There exists a constant C > 1 such that

 $w(2B) \ge Cw(B)$.

(c) There exist two constants C and r > 1 such that the following reverse Hölder inequality holds for every ball $B \subset \mathbb{R}^n$

$$\left(\frac{1}{|B|}\int_{B}|w(x)|^{r} dx\right)^{\frac{1}{r}} \leq C \frac{1}{|B|}\int_{B}|w(x)| dx$$

The following boundedness of **T** on weighted Lebesgue spaces had proved in [6].

Lemma 2.2. Let $\alpha > 0$ and $\alpha \neq 1$.

(a) If $w \in A_1$, then there is a constant C > 0 such that

 $sup_{\lambda>0}\lambda w(\{x\in B\colon |Tf(x)|>\lambda\})\leq \|f\|_{L^1(w)}.$

(b) If $w \in A_p$ (1 \infty), then there is a constant C> 0 such that

$$||Tf||_{L^{p}(w)} \le C ||f||_{L^{p}(w)}.$$

Now we are in a position to give the proof of Theorem 1.1. We first prove (a). Decomposing $f = f_{\chi^{2B}} + f_{\chi^{(2B)^c}} =: f_1 + f_2$, then for any given $\lambda > 0$, we have

$$w(\{x \in B : |Tf(x)| > \lambda\}) \le w\left(\left\{x \in B : |Tf_1(x)| > \frac{\lambda}{2}\right\}\right) + w\left(\left\{x \in B : |Tf_2(x)| > \frac{\lambda}{2}\right\}\right)$$

= 1 + II

By Lemma 2.1 (a) and Lemma 2.2 (a), we obtain that

 $I \leq \frac{c}{\lambda} \|f\|_{M_{1,k}(w)} w(B)^k$

For the term *II*, by an elementary estimate we get

$$w\left(\left\{x \in B: |Tf_{2}(x)| > \frac{\lambda}{2}\right\}\right) \leq \frac{c}{\lambda} \int_{\left\{x \in B: |Tf_{2}(x)| > \frac{\lambda}{2}\right\}} |Tf_{2}(x)| \quad w(x) \, dx. \text{ After noting that}$$
$$|Tf_{2}(x)| \leq C \sum_{j=1}^{\infty} \frac{1}{|2^{j}B|} \int_{2^{j}B} |f_{-}(y)| \quad dy ,$$

we have

$$II \leq \frac{c}{\lambda} \|f\|_{M_{1,k}(w)} w(B)^k$$

as desired.

For the proof of (b), it suffices to show that

$$\frac{1}{w(B)^{k}} \int_{B} |Tf(x)|^{p} w(x) dx \leq C ||f||_{M_{p,k}(w)}.$$

Let $f = f_{\chi_{2B}} + f_{\chi_{(2B)}c} =: f_1 + f_2$ and hence $Tf(x) = Tf_1(x) + Tf_2(x)$. Since T is a linear operator, one has

$$\begin{split} \frac{1}{w(B)^k} \int_B \ |Tf(x)|^p \, w(x) dx &\leq \frac{1}{w(B)^k} \int_B \ |Tf_1(x)|^p \, w(x) dx + \frac{1}{w(B)^k} \int_B \ |Tf_2(x)|^p \, w(x) dx \\ &\coloneqq J + JJ \end{split}$$

For the term JJ, by Hölder's inequality,

$$\int_{2^{j_{B}}} |f(y)| dy \le C ||f||_{M_{p,k}(w)} |2^{j+1}B| w (2^{j+1}B)^{\frac{1}{p}(k-1)}$$

Lemma 2.1(b) implies that

$$|J| \leq C ||f||_{M_{p,k}(w)}$$
.

Therefore, the proof of Theorem 1.2 is completed.

ACKNOWLEDGMENT

The authors are thankful to the support of College students innovation and entrepreneurship training program of Linyi University(2015).

References

- [1] Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282(2009), 219–231.
- [2] B. Muckenhoupt, Weighted norm inqualities for the Hardy maximal function, Trans. Amer. Math. Soc., 165(1972), 207–226.
- [3] V. Drobot, A. Naparstek and G. Sampson, (L^p,L^q) mapping properties of convolution transforms, Studia Math., 55(1976), 41–70.
- [4] S. Chanillo, D. Kurtz and G. Sampson, Weighted L^P estimates for oscillating kernels, Ark. Math., 21(1983), 233–257.
- [5] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc. Upper Saddle River, New Jersey, 2004.
- [6] S. Chanillo, D. Kurtz and G. Sampson, Weighted weak (1,1) and weighted L^p estimates for oscillating kernels, Trans. Amer. Math. Soc., 295(1986), 127–145.