Journal of Progressive Research in Mathematics
www.scitecresearch.com/journals

On some generalizations of (n, m)-normal powers operators on Hilbert space

Eiman H. Abood and Mustafa A. Al-loz
Department of mathematics, College of science, University of Baghdad, Baghdad, Iraq.

Abstract

. Recall that an operator $T \in B(H)$ is called (n, m)-normal powers operator if and only if $T^{n}\left(T^{m}\right)^{*}=$ $\left(T^{m}\right)^{*} T^{n}$ for some nonnegative integers n and m.Throughout this paper,we introduce some types of generalizations of (n, m)-normal powers operatorsand study some of them properties.

Keywords: Normal operators, (n, m)-normal powers operator, n-power quasi-normaloperator, n-power class (Q).

1. Introduction.

Recall that operator $T \in B(H)$ is said to be normal operator if $T T^{*}=T^{*} T$. In [3], Alzuraqi introduced a new class of operators n-normal operators which is defined as follows: $T \in B(H)$ is called an n-normal operator if $T^{n} T^{*}=T^{*} T^{n}$ for some nonnegative integer n. He gave some basic properties of these operators and described the n-normal operators.

In [1], the authorssuggested the class of (n, m)-normal powers operators and study some properties of such class of operators for different values of the parametersn, m which is defined as follows: $T \in B(H)$ is called (n, m)-normal powers operator if and only if $T^{n}\left(T^{m}\right)^{*}=\left(T^{m}\right)^{*} T^{n}$ for some nonnegative integers n and m. Clearly, every bounded normal operator is (1,1)-normal powers operator. Moreover, one can see that every n -normal operator is $(n, 1)$-normal powers . But the converse is not necessary true in general.It is simply seen that, $T=\left[\begin{array}{cc}2 & 1 \\ 0 & -2\end{array}\right]$ is (3,2)-normal powers operator but it is not 3 -normal .Hence, the class of n-normal operator is subclass of the class of (n, m)-normal powers operators.For more information about (n, m) normal powers operators, we can refer the reader to [1] and [2].

In this paper, we establish new classes of operators which are generalizations of (n, m)-normal powers operators on a Hilbert.

2. On (n, m)-Powers Quasi-Normal Operators.

Recall that [4], an operator $T \in B(H)$ is called quasi-normal if $T\left(T^{*} T\right)=\left(T^{*} T\right) T$. In [6], the author introduced then-power quasi-normal as follows: T is called n-power quasi-normal if and only if $T^{n}\left(T^{*} T\right)=$ $\left(T^{*} T\right) T^{n}$ for some nonnegative integer n. It is clear that every quasi-normal operator is 1-power quasinormal. In this section we introduce a new class of operator, which is called (n, m)-power quasi-normal is introduced as follows:

Definition 2.1: Let $T \in B(H), T$ is called (n, m)-power quasi-normal if and only if $T^{n}\left(T^{* m} T\right)=\left(T^{* m} T\right) T^{n}$ for some nonnegitive integers n, m.

It is clear that every quasi-normal operator is (1,1)-power quasi-normal operator. Moreover, one can see that every n-power quasi-normal operator is $(n, 1)$-power quasi-normal operator. But the converse is not true in general. It is easily seen that, $T=\left[\begin{array}{cc}2 & 1 \\ 0 & -2\end{array}\right]$ is (3,2)-power quasi-normal operator but it is not 3-power quasinormal.

Theorem 2.2: If T is (n, m)-power quasi-normal operator, then so are:

1) $k T$ for any scalar k.
2) Any $S \in B(H)$ which is unitary equivalent to T.
3) The restriction $T \mid M$ of T to any closed subspace M of H that reduces T.

Proof: Since T is (n, m)-power quasi-normal operator, then $T^{n}\left(T^{* m} T\right)=\left(T^{* m} T\right) T^{n}$ for someative integers n, m.

1) $(k T)^{n}\left((k T)^{* m} k T\right)=k^{n} T^{n}\left(\bar{k}^{m} T^{* m} k T\right)=k^{n} \bar{k}^{m} k T^{n}\left(T^{* m} T\right)=k^{n} \bar{k}^{m} k\left(T^{* m} T\right) T^{n}$
$=\left(\bar{k}^{m} T^{* m} k T\right) k^{n} T^{n}=\left((k T)^{* m} k T\right)(k T)^{n}$.

Therefore, $k T$ is (n, m)-power quasi-normal operator.
2) Let $S=U T U^{*}$, where U is a unitaty operator. Thus,

$$
\begin{aligned}
& S^{n}\left(S^{* m} S\right)=\left(U^{*} T U\right)^{n}\left(\left(U^{*} T U\right)^{* m}\left(U^{*} T U\right)\right)=U^{*} T^{n} U\left(U^{*} T^{* m} U U^{*} T U\right)=U^{*} T^{n}\left(T^{* m} T\right) U=U^{*}\left(T^{* m} T\right) T^{n} U \\
& =\left(U^{*} T^{* m} U U^{*} T U\right) U^{*} T^{n} U=\left(\left(U^{*} T U\right)^{* m}\left(U^{*} T U\right)\right)\left(U^{*} T U\right)^{n}=\left(S^{* m} S\right) S^{n} .
\end{aligned}
$$

3) By [3:p159] we have, $(T \mid M)^{n}\left((T \mid M)^{m *}(T \mid M)\right)=\left(T^{n} \mid M\right)\left(\left(T^{m *} \mid M\right)(T \mid M)\right)=\left(T^{n}\left(T^{m *} T\right) \mid M\right)=$ $\left(\left(T^{m *} T\right) T^{n}\right) \mid M$
$=\left(\left(T^{m *} \mid M\right)(T \mid M)\right)\left(T^{n} \mid M\right)=\left((T \mid M)^{m *}(T \mid M)\right)(T \mid M)^{n}$.

The following theorem proves that the class of (n, m)-normal powers is subclass of (n, m)-power quasinormal.

Theorem 2.3: If $T \in B(H)$ is a (n, m)-normal powers operator, then T is (n, m)-power quasi-normal.
Proof: Since T is (n, m)-normal powers operator, then $T^{n}\left(T^{m}\right)^{*}=\left(T^{m}\right)^{*} T^{n}$. Note that,
$T^{n} T^{* m} T=T^{* m} T^{n} T=T^{* m} T^{n+1}=T^{* m} T T^{n}$

Theorem 2.4: Let T and S are (n, m)-power quasi-normal operators, such that T commutes with S and S^{*}. Then $S T$ is a (n, m)-power quasi-normal operator.

Proof: $(S T)^{n}\left((S T)^{* m}(S T)\right)=S^{n} T^{n}\left(\left(S^{*} T^{*}\right)^{m}(S T)\right)=\left(S^{n} T^{n}\right)\left(\left(S^{* m} T^{* m}\right)(S T)\right)=S^{n} T^{n} S^{* m} S T^{* m} T$

$$
=S^{n}\left(S^{* m} S\right) T^{n}\left(T^{* m} T\right)=\left(S^{* m} S\right) S^{n}\left(T^{* m} T\right) T^{n}=S^{* m} S\left(T^{* m} T\right) S^{n} T^{n}
$$

$=\left(S^{* m} T^{* m} S T\right) S^{n} T^{n}=\left(\left(S^{*} T^{*}\right)^{m}(S T)\right) S^{n} T^{n}=\left((S T)^{* m}(S T)\right)(S T)^{n}$
Theorem 2.5: Let T and S are (n, m)-power quasi-normal operators, such that $S T=T S=T^{*} S=S T^{*}=0$, then $S+T$ is (n, m)-power quasi-normal operator.

Proof:

$$
\begin{aligned}
& \quad(S+T)^{n}\left((S+T)^{* m}(S+T)\right)=\left(S^{n}+T^{n}\right)\left(\left(S^{*}+T^{*}\right)^{m}(S+T)\right)=\left(S^{n}+T^{n}\right)\left(S^{* m} S+T^{* m} T\right) \\
& =S^{n} S^{* m} S+T^{n} T^{* m} T \\
& =S^{* m} S S^{n}+T^{* m} T T^{n}=\left(S^{* m} S+T^{* m} T\right)\left(S^{n}+T^{n}\right)=\left(\left(S^{*}+T^{*}\right)^{m}(S+T)\right)\left(S^{n}+T^{n}\right) \\
& =\left((S+T)^{* m}(S+T)\right)(S+T)^{n} .
\end{aligned}
$$

Proposition 2.6: Let T_{1}, \cdots, T_{k} are (n, m)-power quasi-normal operators. Then $\left(T_{1} \oplus \cdots \oplus T_{k}\right)$ and $\left(T_{1} \otimes\right.$ $\cdots \otimes T_{k}$) are (n, m)-power quasi-normal operators.

Proof:

$$
\begin{aligned}
& \left(T_{1} \oplus \cdots \oplus T_{k}\right)^{n}\left(\left(T_{1} \oplus \cdots \oplus T_{k}\right)^{* m}\left(T_{1} \oplus \cdots \oplus T_{k}\right)\right) \\
& \quad=\left(T_{1}{ }^{n} \oplus \cdots \oplus T_{k}{ }^{n}\right)\left(\left(T_{1}{ }^{* m} \oplus \cdots \oplus T_{k}{ }^{* m}\right)\left(T_{1} \oplus \cdots \oplus T_{k}\right)\right)
\end{aligned}
$$

$$
\begin{gathered}
=T_{1}{ }^{n}\left(T_{1}{ }^{* m} T_{1}\right) \oplus \cdots \oplus T_{k}{ }^{n}\left(T_{k}{ }^{* m} T_{k}\right) \\
=\left(T_{1}{ }^{* m} T_{1}\right) T_{1}{ }^{n} \oplus \cdots \oplus\left(T_{k}{ }^{* m} T_{k}\right) T_{k}{ }^{n} \\
=\left(\left(T_{1}{ }^{* m} \oplus \cdots \oplus T_{k}{ }^{* m}\right)\left(T_{1} \oplus \cdots \oplus T_{k}\right)\right)\left(T_{1}{ }^{n} \oplus \cdots \oplus T_{k}{ }^{n}\right) \\
=\left(\left(T_{1} \oplus \cdots \oplus T_{k}\right)^{* m}\left(T_{1} \oplus \cdots \oplus T_{k}\right)\right)\left(T_{1} \oplus \cdots \oplus T_{k}\right)^{n} .
\end{gathered}
$$

Hence, $\left(T_{1} \oplus \cdots \oplus T_{k}\right)$ is a (n, m)-power quasi-normal operator.Now, let $x_{1}, \cdots, x_{k} \in H$, then

$$
\begin{gathered}
\left(T_{1} \otimes \cdots \otimes T_{k}\right)^{n}\left(\left(T_{1} \otimes \cdots \otimes T_{k}\right)^{* m}\left(T_{1} \otimes \cdots \otimes T_{k}\right)\right)\left(x_{1} \otimes \cdots \otimes x_{k}\right) \\
=\left(T_{1}{ }^{n} \otimes \cdots \otimes T_{k}{ }^{n}\right)\left(\left(T_{1}{ }^{* m} \otimes \cdots \otimes T_{k}{ }^{* m}\right)\left(T_{1} \otimes \cdots \otimes T_{k}\right)\right)\left(x_{1} \otimes \cdots \otimes x_{k}\right) \\
=\left(T_{1}{ }^{n}\left(T_{1}{ }^{* m} T_{1}\right) \otimes \cdots \otimes T_{k}{ }^{n}\left(T_{k}{ }^{* m} T_{k}\right)\right)\left(x_{1} \otimes \cdots \otimes x_{k}\right) \\
=\left(\left(T_{1}{ }^{* m} T_{1}\right) T_{1}{ }^{n} \otimes \cdots \otimes\left(T_{k}{ }^{* m} T_{k}\right) T_{k}{ }^{n}\right)\left(x_{1} \otimes \cdots \otimes x_{k}\right) \\
=\left(\left(T_{1}{ }^{* m} \otimes \cdots \otimes T_{k}{ }^{* m}\right)\left(T_{1} \otimes \cdots \otimes T_{k}\right)\right)\left(T_{1}{ }^{n} \otimes \cdots \otimes T_{k}{ }^{n}\right)\left(x_{1} \otimes \cdots \otimes x_{k}\right) \\
=\left(\left(T_{1} \otimes \cdots \otimes T_{k}\right)^{* m}\left(T_{1} \otimes \cdots \otimes T_{k}\right)\right)\left(T_{1} \otimes \cdots \otimes T_{k}\right)^{n}\left(x_{1} \otimes \cdots \otimes x_{k}\right) .
\end{gathered}
$$

Hence, $\left(T_{1} \otimes \cdots \otimes T_{k}\right)$ is a (n, m)-power quasi-normal.

3. On (n, m)-Power Class (Q) Operators.

Recall that [5], an operator $T \in B(H)$ is called $\operatorname{class}(Q)$ operator if $T^{* 2} T^{2}=\left(T^{*} T\right)^{2}$. In [7] the authors introduced the n-power $\operatorname{class}(Q)$ operator as follows: $T \in B(H)$ is called n-power class (Q) operator if and only if $T^{* 2} T^{2 n}=\left(T^{*} T^{n}\right)^{2}$ for some nonnegative integer n. It is clear that every class (Q) operator is 1 power class. In this section we introduce a new class of operator, which is called (n, m)-power class (Q) is introduced as follows:

Definition 3.1: Let $T \in B(H), T$ is called (n, m)-power $\operatorname{class}(Q)$ operator if and only if $T^{* 2 m} T^{2 n}=$ $\left(T^{m *} T^{n}\right)^{2}$ for some nonnegative integers n, m.

It is clear that, every class (Q) operator is $(1,1)$-power class (Q) operator. Moreover, one can see that every n-power class (Q) operator is $(n, 1)$-power class (Q) operator. But the converse is not true in general. It is easily seen that, $T=\left[\begin{array}{cc}2 & 1 \\ 0 & -2\end{array}\right]$ is (n, m)-powers class (Q) operator but it is not class (Q) and not 3-power class (Q).

Theorem 3.2: If T is (n, m)-power class (Q) operator, then so are:

1) $k T$ for every scalar k.
2) Any $S \in B(H)$ that is unitary equivalent to T.
3) The restriction $T \mid M$ of T to any closed subspace M of H that reduces T.

Proof: Since T is (n, m)-power class (Q) operator, then $T^{* 2 m} T^{2 n}=\left(T^{m *} T^{n}\right)^{2}$

1) $\quad(k T)^{* 2 m}(k T)^{2 n}=\bar{k}^{2 m} T^{* 2 m} k^{2 n} T^{2 n}=\bar{k}^{2 m} k^{2 n} T^{* 2 m} T^{2 n}=\left(\bar{k}^{m} k^{n}\right)^{2}\left(T^{* m} T^{n}\right)^{2}$
$=\left(\bar{k}^{m} k^{n} T^{* m} T^{n}\right)^{2}=\left(\bar{k}^{m} T^{* m} k^{n} T^{n}\right)^{2}=\left((k T)^{* m}(k T)^{n}\right)^{2}$.

Therefore, $k T$ is (n, m)-power class (Q) operator.
2) Let $S=U T U^{*}$, where U is a unitaty operator. Thus,

$$
S^{* 2 m} S^{2 n}=\left(U^{*} T U\right)^{* 2 m}\left(U^{*} T U\right)^{n}=U^{*} T^{* 2 m} U U^{*} T^{2 n} U=U^{*} T^{* 2 m} T^{2 n} U=U^{*}\left(T^{* m} T^{n}\right)^{2} U
$$

$=U^{*}\left(T^{* m} T^{n}\right) U U^{*}\left(T^{* m} T^{n}\right) U=\left(U^{*} T^{* m} T^{n} U\right)^{2}=\left(U^{*} T^{* m} U U^{*} T^{n} U\right)^{2}=\left(S^{* m} S^{n}\right)^{2}$.

Hence, S is (n, m)-powers class (Q) operator.
3) By $[3: p 159]$ we have,
$(T \mid M)^{* 2 m}(T \mid M)^{2 n}=\left(T^{* 2 m} \mid M\right)\left(T^{2 n} \mid M\right)=\left(T^{* 2 m} T^{2 n} \mid M\right)=\left(T^{* m} T^{n}\right)^{2} \mid M=\left((T \mid M)^{* m}(T \mid M)^{n}\right)^{2}$.

Theorem 3.3: If $T \in B(H)$ is (n, m)-normal powers operator, then T is (n, m)-power class (Q).

Proof: Since T is (n, m)-normal powers operator, then $T^{n}\left(T^{m}\right)^{*}=\left(T^{m}\right)^{*} T^{n}$. Note that,
$T^{* 2 m} T^{2 n}=T^{* m} T^{* m} T^{n} T^{n}=T^{* m} T^{n} T^{* m} T^{n}=\left(T^{* m} T^{n}\right)^{2}$.

The above theorem proves that the class of all (n, m)-normal powers operator is subclass of the class of (n, m)-power class (Q).In addition that, the next theorem proves that the class of all (n, m)-powers quasinormal operator is subclass of the class of (n, m)-power class (Q).

Theorem 3.4: If $T \in B(H)$ is (n, m)-powers quasi-normal operator, then T is (n, m)-power class (Q).

Proof:

Since T is (n, m)-powers quasi-normal operator, then $T^{n}\left(T^{m *} T\right)=\left(T^{m *} T\right) T^{n}$.Note that, $T^{* 2 m} T^{2 n}=T^{* m} T^{* m} T^{n} T^{n}=T^{* m} T^{* m} T T^{n} T^{n-1}=T^{* m} T^{n} T^{* m} T T^{n-1}=T^{* m} T^{n} T^{* m} T^{n}=\left(T^{* m} T^{n}\right)^{2}$.

Proposition 3.5: Let T_{1}, \cdots, T_{k} are (n, m)-power class (Q) operators. Then $\left(T_{1} \oplus \cdots \oplus T_{k}\right)$ and $\left(T_{1} \otimes \cdots \otimes\right.$ T_{k}) are (n, m)-power class (Q) operators.

Proof :

$$
\begin{aligned}
& \quad\left(T_{1} \oplus \cdots \oplus T_{k}\right)^{* 2 m}\left(T_{1} \oplus \cdots \oplus T_{k}\right)^{2 n}=\left(T_{1}{ }^{* 2 m} \oplus \cdots \oplus T_{k}{ }^{* 2 m}\right)\left(T_{1}{ }^{2 n} \oplus \cdots \oplus T_{k}{ }^{2 n}\right) \\
& =T_{1}{ }^{22 m} T_{1}{ }^{2 n} \oplus \cdots \oplus T_{k}{ }^{* 2 m} T_{k}{ }^{2 n} \\
& =\left(T_{1}{ }^{* m} T_{1}{ }^{n}\right)^{2} \oplus \cdots \oplus\left(T_{k}{ }^{* m} T_{k}{ }^{n}\right)^{2}=\left(T_{1}{ }^{* m} T_{1}{ }^{n}\right)\left(T_{1}{ }^{* m} T_{1}{ }^{n}\right) \oplus \cdots \oplus\left(T_{k}{ }^{* m} T_{k}{ }^{n}\right)\left(T_{k}{ }^{* m} T_{k}{ }^{n}\right) \\
& =\left(T_{1}{ }^{* m} T_{1}{ }^{n} \oplus \cdots \oplus T_{k}{ }^{* m} T_{k}{ }^{n}\right)^{2}=\left(\left(T_{1}{ }^{* m} \oplus \cdots \oplus T_{k}{ }^{* m}\right)\left(T_{1}{ }^{n} \oplus \cdots \oplus T_{k}{ }^{n}\right)\right)^{2} \\
& = \\
& \left(\left(T_{1} \oplus \cdots \oplus T_{k}\right)^{* m}\left(T_{1} \oplus \cdots \oplus T_{k}\right)^{n}\right)^{2} .
\end{aligned}
$$

Hence, $\left(T_{1} \oplus \cdots \oplus T_{k}\right)$ is a (n, m)-power class (Q) operator.Now, let $x_{1}, \cdots, x_{k} \in H$, then

$$
\begin{aligned}
& \left(T_{1} \otimes \cdots \otimes T_{k}\right)^{* 2 m}\left(T_{1} \otimes \cdots \otimes T_{k}\right)^{2 n}\left(x_{1} \otimes \cdots \otimes x_{k}\right) \\
& \quad=\left(T_{1}{ }^{* 2 m} \otimes \cdots \otimes T_{k}{ }^{* 2 m}\right)\left(T_{1}{ }^{2 n} \otimes \cdots \otimes T_{k}{ }^{2 n}\right)\left(x_{1} \otimes \cdots \otimes x_{k}\right) \\
& =\left(T_{1}{ }^{* 2 m} T_{1}{ }^{2 n} \otimes \cdots \otimes T_{k}{ }^{* 2 m} T_{k}{ }^{2 n}\right)\left(x_{1} \otimes \cdots \otimes x_{k}\right)=T_{1}{ }^{* 2 m} T_{1}{ }^{2 n} x_{1} \otimes \cdots \otimes T_{k}{ }^{* 2 m} T_{k}{ }^{2 n} x_{k} \\
& =\left(T_{1}{ }^{* m} T_{1}{ }^{n} x_{1}\right)^{2} \otimes \cdots \otimes\left(T_{k}{ }^{* m} T_{k}{ }^{n} x_{k}\right)^{2}=\left(T_{1}{ }^{* m} T_{1}{ }^{n} x_{1} \otimes \cdots \otimes T_{k}{ }^{* m} T_{k}{ }^{n} x_{k}\right)^{2} \\
& =\left(\left(T_{1}{ }^{* m} \otimes \cdots \otimes T_{k}{ }^{* m}\right)\left(T_{1}{ }^{n} \otimes \cdots \otimes T_{k}{ }^{n}\right)\left(x_{1} \otimes \cdots \otimes x_{k}\right)\right)^{2} \\
& \quad=\left(\left(T_{1} \otimes \cdots \otimes T_{k}\right)^{* m}\left(T_{1} \otimes \cdots \otimes T_{k}\right)^{n}\left(x_{1} \otimes \cdots \otimes x_{k}\right)\right)^{2}
\end{aligned}
$$

$$
=\left(\left(T_{1} \otimes \cdots \otimes T_{k}\right)^{* m}\left(T_{1} \otimes \cdots \otimes T_{k}\right)^{n}\right)^{2}\left(x_{1} \otimes \cdots \otimes x_{k}\right) .
$$

Hence, $\left(T_{1} \otimes \cdots \otimes T_{k}\right)$ is a (n, m)-power class (Q) operator.
Proposition 3.6: Let $T \in B(H)$. Then T is a (n, m)-power class (Q) operator if and only if T is a (m, n) power class (Q) operator.

Proof: Let, T is (n, m)-power class (Q) operator, then $T^{* 2 m} T^{2 n}=\left(T^{m *} T^{n}\right)^{2}$. Note that,
$T^{* 2 n} T^{2 m}=\left(T^{* 2 m} T^{2 n}\right)^{*}=\left(\left(T^{* m} T^{n}\right)^{2}\right)^{*}=\left(\left(T^{* m} T^{n}\right)^{*}\right)^{2}=\left(T^{* n} T^{m}\right)^{2}$.
Thus, T is a (m, n)-power class (Q).The converse of the proposition is similar.

Theorem 3.7: Let T and S are (n, m)-power class (Q) operators, such that T commutes with S and S^{*}. Then $S T$ is a (n, m)-power class (Q) operator.

Proof :

$(S T)^{* 2 m}(S T)^{2 n}=T^{* 2 m} S^{* 2 m} S^{2 n} T^{2 n}=T^{* 2 m} T^{2 n} S^{* 2 m} S^{2 n}=T^{* 2 m} T^{2 n}\left(S^{* m} S^{n}\right)^{2}=\left(T^{* m} T^{n}\right)^{2}\left(S^{* m} S^{n}\right)^{2}$ $=\left(T^{* m} T^{n} S^{* m} S^{n}\right)^{2}=\left(T^{* m} S^{* m} T^{n} S^{n}\right)^{2}=\left(\left(S^{m} T^{m}\right)^{*} S^{n} T^{n}\right)^{2}=\left((S T)^{* m}(S T)^{n}\right)^{2}$.

Theorem 3.8: The class of all (n, m)-power class (Q) operators on H is closed subset of $B(H)$ under scalar multiplication.

Proof : Put, $Q(H)=\{T \in B(H)$: Tis a (n, m)-powers class (Q) operator on H for somenonnegative integer $n, m\}$.

One can show that from theorem (5.1), $\alpha T \in Q(H)$ for any scalar α, therefor the scalar multiplication is closed under $Q(H)$.Now let T_{k} be a sequance in $B(H)$ of (n, m)-power class (Q) converges to T, then after simple computation one can see that, $\left\|T^{2 m *} T^{2 n}-\left(T^{m *} T^{n}\right)^{2}\right\|=\| T^{2 m *} T^{2 n}-T_{k}{ }^{2 m *} T_{k}{ }^{2 n}+\left(T_{k}{ }^{m *} T_{k}{ }^{n}\right)^{2}-$ $\left(T^{m *} T^{n}\right)^{2} \|$
$\leq\left\|T^{2 m *} T^{2 n}-T_{k}{ }^{2 m *} T_{k}{ }^{2 n}\right\|+\left\|\left(T_{k}{ }^{m *} T_{k}{ }^{n}\right)^{2}-\left(T^{m *} T^{n}\right)^{2}\right\| \rightarrow 0 \quad$ as $k \rightarrow \infty$.

This implies that, $T^{2 m *} T^{2 n}=\left(T^{m *} T^{n}\right)^{2}$, therefore $T \in Q(H)$.Hence, $Q(H)$ is closed under scalar multiplication.

From the previous we get the following inclusions of classes:

Normal $\subsetneq(n, m)$-normal powers $\subsetneq(n, m)$-powers quasi-normal $\subsetneq(n, m)$-power class (Q).

References

[1] Abood E. H. and Al-loz M. A., On some generalization of normal operators on Hilbert space, Iraqi J. of Sci., 2C (56) (2015), 1786-1794.
[2]Al-loz M. A., On (n, m)-normal powers operators onHilbert spaces, Mc.S. thesis, Univ. of Baghdad, College of science, 2016.
[3] Alzuraiqi S. A., On n-normal operators, General Math. Notes, 1 (2) (2010), 61-73.
[4] Brown A., On a class of operators , Proc. Amer. Math. Soc., 4 (1953), 723-728.
[5] Jibril A. A., On operators for whichT ${ }^{2 *} \mathrm{~T}^{2}=\left(\mathrm{T}^{*} \mathrm{~T}\right)^{2}$, International Math. Forum, 5 (46) (2010), 2255 2262.
[6] Mecheri S., On n-Power quasi-normal on Hilbert space, Bull. Math. Ana. and App., 3 (2) (2011), 213228.
[7] Panayappan S., On n-Power Class (Q) Operators, Int. J. Math. Ana., 6 (31) (2012), 1513 - 1518.

