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Abstract  

 In this paper, we investigate solution of the fractional Ricatti differential equations (FRDEs) with alpha 
order Caputo fractional derivatives. In fact, FRDEs are analogous of the Ricatti‎ ordinary differential 
equations. The multi power series method is used to obtain a useful formula that is implemented to find 
an explicit solution of Cauchy problem for FRDEs without solving any integral. This formula is explicit and 
easy to compute by using Maple software to get explicit solution. Also, it is shown that the proposed 
formula can be used to solve the Cauchy problem for Ricatti‎ ordinary differential equations. 

Keywords: Ricatti‎ differential equation; Caputo fractional derivatives; multi power series method; 

Cauchy problems. 

 

1. Introduction 

The history of fractional calculus is back to 1695 when L’Hospital asked Leibniz about 

1/2

1/2

( )
.

d u x

dx
 

Leibniz replied, “It will lead to a paradox.” But he added prophetically, “From this apparent paradox, one 

day useful consequences will be drawn” [5]. In the past, only pure mathematician deal with fractional 

calculus because they are believed there is no applications to the fractional derivatives [14]. Based on the 

fact that a reasonable modeling of many physical phenomena having to depend on ‎the time ‎instant to 

gather with the prior time history, fractional ‎calculus can be used ‎successfully. Therefore, in recent year, 

fractional derivatives have been used in many phenomena in electromagnetic theory, fluid mechanics, 

viscoelasticity, circuit theory, control theory, biology, atmospheric physics, etc., [10] and [21]. However, 

there are two difficulties raised in the study of fractional derivatives, fractional derivatives cannot be 

expressed to a tangent direction as the classical first derivative. The second difficulty comes from 

complex integro-differential definitions which make the chain rule not valid for all type of fractional 

derivatives. 

Fractional differential equations (FDEs) have been used to describe many real world problems such as 

damping laws, fluid mechanics, rheology, physics, mathematical biology, diffusion processes, 

electrochemistry, and so on. The solvability of a wide fractional differential equation types has been 

attracted many researchers [4], [6], [7], [11], [12], [16], [17], [19], [20], and [21]. Some theorems related 
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to existence and uniqueness solutions of initial value problem for FDEs  can be found in the books [18] 

and [10]. 

Any differential equation that is quadratic in the unknown function is called the Ricatti‎ differential 

equation. This equation has many applications, especially in control theory. In recent year, the analytic or 

approximate solution of FRDEs has investigated by using many methods. For example, the 

decomposition method [15], the generalized Haar wavelet [13], Laplace-Adomian-Padé [8], the operator 

matrix ‎of shifting Legendre polynomial [9], Legendre wavelet operational matrix [3], the generalized  

differential  transform method [2]. Also, FRDEs may be considered as a good test example for 

investigating the ‎accuracy and effectiveness of the numerical methods as shown in [1]. Motivated and 

inspired by the on-going research in this field, we will ‎consider the following FRDEs type. 
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Where ( )D u x  is Caputo derivative, [18] and [10], for any analytic function ( )u x  which defined by 
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Clearly Caputo fractional derivative is linear operator i.e. 

( ( ) ( )) ( ) ( ), ,D a f x b g x D a f x D a g x a b R     
                                                                (3) 

For all  0   order Caputo derivative, one can have 

0 , 0,  D C C  , is a constant                                                                                              (4)                                                                                                            
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Where [ ]   is the smallest integer greater than or equal to   and 0 {0} N N . Note that, when  

N , the Caputo differential derivative is coinciding with the classical differential derivative. For 

more details on fractional derivatives definitions and their properties, the reader may see the books [18], 

[10] and [21].  

2. Main Result 

In this section, we state and prove a new theorem to find a useful explicit formula to compute a solution of Cauchy 

problems for FRDEs without solving any integral. Now, we will state and prove the following lemma. 

Lemma: Let ( )f x  is a smooth functions for 0x  , and ,
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Proof (1): Let us rewrite  ( )u x  as  
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Proof (2): By direct computation, one can have  
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Theorem: If  ( ), ( )A x B x and ( )C x are smooth functions for 0x , then the Cauchy problems for FRDEs type 

Eq.(1)  has a  solution ,
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3. Illustrated examples 

In this section, we used the formula ,
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So that it is a very easy method to find the solution of the Cauchy problems for FRDEs type Eq. (1). The ‎accuracy 

and effectiveness of the method will depend on the number of M . The forward linear algebraic system Eq. (6) - Eq. 

(9) is easy to compute by using Maple software or by setting a computer code to get explicit an approximate 

solution to Eq. (1). Several examples are adopted to illustrate the advantage of the proposed Method.  

Example 1. Consider the following nonlinear FRDE 
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If 8M  and 1   then the solution of Eq. (10) is 
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1

2
   then the solution of Eq. (10) 

is 

     

 

2 5/23/2 2

3/2 5/2

2 3

2

3 44 321 42 16 32
( ) 2

3 45

333 284 5121

36

xx xx
u x x

x

  

  

 



  
    

 
 

 

3/2 2 5/2

3

1.128379167 2. 2.051213127 0.2732395433 5.521879267

10.32009894

x x x x x

x

    

 
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This result is agreement with the result in, example 6 [1], example 3.2 [15]. 

Example 2. Consider the following nonlinear FRDE 

2( ) 1 ( ), 0, 0 1, (0) 0      D u x u x x u                                                                                          (12) 

Where the exact solution for 1  is  

2

2

1
( )

1






x

x

e
u x

e
                                                                                                                                                        (13) 

Using 8M  and solve Eq. (6) - Eq. (9) for any value of 0 1  , we find a solution of FRDE Eq. (12) as 

 

 

   

   

     

3 5

2 3

1 2 2 1 4 1 2
( )

1 1 3 1 1 5 1 1 3

    

     

     
  
           

x xx
u x                      

          

         

7

4

3
2(64) 3 1 2 1 2 1 5 4 1 4 1 3

2

1 6 1 3 1 7 1 1 5

x      

     

 
             
  

        


 

If 8M  and 1   then the solution of Eq. (12) is 

3 5 71 2 17
( )

3 15 315
    u x x x x x  

This result is agreement with the exact result in Eq. (13). Also If 8M  and 
1

2
   then the solution of Eq. (12) 

is 

3/2 5/2 7/2

3/2 5/2 7/2

3/2 5/2 7/2

2 16 1024 8192
( )

3 45 75

1.128379167 0.9577979845 1.300806688 1.987486218

  
    

    





x x x x
u x

x x x x

 

This result is agreement with the result in, example 2 [8]. 

Example 3. Consider the following nonlinear FRDE 

2 2( ) 2 ( ) ( ), 0, 0 1, (0) 0       D u x x u x u x x u                                                                        (14) 

Using 4M  and solve Eq. (6) - Eq. (9) for any value of 0 1  , we find a solution of FRDE Eq. (14) as 

     

 

     

   

     

 

     

4 32 2 2 2 3 2 4

2

4 4

2

4 5 22 4 8 16
( )

3 3 2 3 3 3 45 3 3

8 5 2 5 3 16 5 3

3 5 4 3 25 3 5 4 3

   





    

  

    

   



 
    
          

      
   
            



xx x x x
u x

x

                     

If 6M  and 
1

4
   then the solution of Eq. (14) is 

9/4 5/2 11/4 19/4 3

5 13/4 21/4 29/4 7/2

11/2 15

( ) 0.7845423289 1.203604445 1.808731848 0.4089298840 2.666666667

1.776863848 3.862362235 5.089518943 0.3860668648 5.502191747

12.01899082 2.712447261

u x x x x x x

x x x x x

x x

    

    

  /2 
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This result is agreement with the result in, example 1 [2]. 

If 6M  and 
1

2
   then the solution of Eq. (14) is 

5/2 3 7/2 11/2

4 6 9/2 13/2

17/2 5 7 9

( ) 0.6018022226 0.6666666667 0.6877739684 0.1509625991

0.6666666667 0.4415553048 0.6113546389 0.8293160657

0.06141305036 0.5333333333 1.254210816 0.2812575859

u x x x x x

x x x x

x x x x

   

   

      

This result is agreement with the result in, example 2 [2]. 

If 6M  and 
3

4
   then the solution of Eq. (14) is 

11/4 7/2 17/4 25/4

5 7 23/4 31/4

39/4 13/2 17

( ) 0.4521829621 0.3438869842 0.2271977785 0.05094746950

0.1333333333 0.09465289534 0.07063849782 0.1091095254

0.008269955518 0.03420165810 0.09834685897

u x x x x x

x x x x

x x x

   

   

   /2 21/20.02330746635x   

This result is agreement with the result in, example 3 [2]. 

Example 4. Consider the following nonlinear FRDE type 

2( ) 1 ( ), 0, 1 2, (0) 2 , (0) 1         D u x u x x u u                                                                 (15) 

If 3M  and 2   then the solution of Eq. (15) is 

2 3 4 4 5 6 7 6

7 8 9

1 1 1 1 1 1 1 1
( ) 2 2 2 2

2 3 12 12 60 36 252 360

1 17 5
2 2

90 3360 3024

u x x x x x x x x x x

x x x

         

   
 

If 8M  and 
3

2
   then the solution of Eq. (15) is 

3/2 5/2 7/2

3 4 5 6

9/2 11/2 13/2

( ) 1.414213562 1. 0.7522527778 0.8510768648 0.1719434921

0.4714045206 0.1250000000 0.2121320343 0.02500000000

0.08797191783 0.1558708833 0.08436962655 0.0404083528

    

   

   

u x x x x x

x x x x

x x x 15/26 x

 

This result is agreement with the result in, example 3.3 [15]. 

Example 5. Consider the following nonlinear FRDE type 

2( ) sin( ) cos(2 ) ( ) tan( ) ( ), 0, 1 2, (0) 1, (0) 1         D u x x x u x x u x x u u                        (16) 

If 3M  and 2   then the solution of Eq. (16) is 

3 5 6 7 8 91 1 1 1 1 1591
( ) 1

2 60 30 2520 672 362880
        u x x x x x x x x  

If 3M  and 
3

2
   then the solution of Eq. (15) is 
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5/2 9/2 11/2 13/2
4 5 6

15/2

8 32 1 7 1 64 2176
( ) 1

5 189 8 40 144 3465 45045

247 64

4096 720 25

45045

x x x x
u x x x x x

x

   





        

 
 

  
 

If 3M  and    then the solution of Eq. (16) is 

1 3 1 2

2 2 3 2 1 3

2 3 3 3

( ) 1 0.6604508265 0.06113973675 0.05330353742

0.07252965997 0.002447974756 0.002282238135

0.005812050616 0.01477733722

  

  

 

  

  

 

    

  

  

u x x x x x

x x x

x x

 

. 

4. Conclusion 
In this paper, we introduce a useful formula to compute a solution of the Cauchy problem for FRDEs type Eq. (1). 

This formula is not entailed any integration or any complex manipulations even if the FRDEs is content high 

nonlinearity terms as in the example (5). Also, it is explicit and easy to compute by using Maple software or by 

setting a computer code to get an explicit solution to this problem. It should be emphasized that this formula can be 

used to find a solution of high order Ricatti‎ ordinary differential equations. The ‎accuracy and effectiveness of the 

considering method depend on the number of terms as shown in illustrated examples.  For more ‎accuracy and 

effectiveness, we advise to use Padé approximation as (Khan at el. 2013) and (Momani at el. 2006). 
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