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Abstract.  
In this paper, we study two models models for the dynamics spread and transmission of cholera. For 
these models Lyapounov functions are used to show that when the basic reproduction number is less 
than or equal to one, the disease free equilibrium is globally stable , and when it is greater than one there 
is an endemic equilibrium which is also globally asymptotically stable. 
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1 Introduction 

Cholera is a severe diarrhoea disease caused by the bacterium Vibrio Cholerae. Transmission 

occurs to human when his food or water are contaminated, and also where he has a contact with 

cholera patient's faeces, vomit and corpse. 

The purpose of this paper is to study the stability of cholera model of Wang and Modnak, 

according the following plan. In section 1 we present and study the model without controls. 

In section 2, we show the global stability of disease free and endemic equilibria of Wang and 

Modnak [8]. 

2 The basic model 

The basic model of cholera transmission can be written as a combined dynamical system 

where  and denote the susceptible, the infected 

recovered human and the environmental component respectively. Hence the model is given by : 
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with these parameters : 

with the following parameters : 

  is the recruitment into the population ;  and represent rates of ingesting vibrios from 

the contaminated water or through human to human interaction respectively ; denote the rate 

that an individual in the population died from reasons not related to the 

disease ;  is the rate that an infectious individual dies because of the disease,  is the rate of 

human contribution to cholerae,  is the natural death of  cholerae, is the pathogen 

concentration that yield 50% chance of catching cholera see [8]. 

Proposition 1. Let  be the solution of system(1) with initial conditions 

and the compact set : 

 

Then , under the flow described by (1),  is a positively set that attracts all solutions of 

 

Proof :Consider the following Lyapounov function 

 

Its time derivative satisfies : 

 

Hence,   for which implies that  is positively invariant set. Solving 

this differential equation one has that : 
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Where  is the initial condition of . Thus , as one has that

 

In the same way one has  for this implies 

that : 

 

at  

Then, one can conclude that  is an attractive set. This achieves the proof. 

2.1 Mathematical analysis 

In this section , the model is analyzed in order to obtain the basic reproduction ratio, 

condition for the existence and uniqueness of non trivial equilibria 

2.1.1 Basic reproduction number  

The desease free equilibrium of the model is  Now, the basic reproduction 

Number  will be calculated by using the next generation matrix from Driessche and 

Woutmough , 2002 [9]. 

Let , system (1) becomes , where 

 

 

and                                                                               The jacobian matrices of at the  

 

disease free equilibrium are respectively :                                           . and 

where    and  

 

is the next generation matrix of system (1). The radius                                         

of 
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 is        

                            

Hence, the basic reproductive number is : 

                                         

2.1.2 Stability of disease free equilibrium 

Theorem 1. If  

Proof Let be the following Lyapounov function  

and we have : 

 

 

 

For  and We have Hence by LaSalle's principe , 

the disease free equilibrium is globally asymptotically stable in  

2.1.3 Existence of endemic equilibrium 

System (1) has an endemic point  satisfying : 
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and we obtain : which is the solution of : 

 

               

    with 

 

 

and  

Then 

- for 

                             

G is positive and the fact that  is negative, one has  and the equation (4) 

has two solutions , one will take account only for one will take account only 

for  whom is in  

 

 

- For          

 

 

 

, equation(4) has  which is the disease free equilibrium and  

- The case  

                              

is not available, the two solutions are negatives and are not in  

And one has the following result on stability of endemic equilibrium : 

Theorem 2 .If  the endemic equilibrium is globally asymptotically stable. 



                                                                      Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                               

ISSN: 2395-0218  

 
Volume 7, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm                                                   967| 

Proof: Define a Lyapounov  function                                                                                            with  

and  are positive constants to be chosen latter. We have : 

                                

taking account of system (2) : 

 

 

for and the fact that  one has  

 

Hence by LaSalle's principe ,the endemic equilibrium is globally asymptotically stable in  
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3 The model with controls 

We present, in this section, the model of Wang and Modnak [8] which is the extension of 

model (1)by adding vaccination , treatment and water sanitation.The model (1) becomes : 

 

               

 

with v is the rate of vaccination, a the rate of therapeutic treatment applied to infected people 

vibrios and w is the rate of the death of vibrios by leading sanitary water. 

Like in section 1 the next set 

 

is a positively set that attracts all solutions of  Denote by  the interior of  

One has the disease free equilibrium :                                                          and the basic 

reproduction number : 

 

 

which gives us the following results. 

 

 

3.1 Stability of disease free equilibrium 

Theorem 3. if  the disease free equilibrium is globally asymptotically stable 

Proof : Let be the following Lyapounov function V : 

                                                    

We have : 
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We see that 

 for and  

If  then  

If then  

Hence by LaSalle 's principe the disease free equilibrium is stable in  

If  the disease free equilibrium is instable by theorem 3. Moreover, the behavior of the 

local dynamics near the disease free equilibrium implies that the system (5) is uniformly 

persistent in  ; namely there exists a constant  such that : 

Lim inf lim inf , lim inf  

The uniform persistence together with boundedness of  is equivalent to the existence of a 

compact set , which is absorbing for (5).  

 

3.2 Stability of endemic equilibrium 

The fourth equation of (5) is not appear in the third other. One can reduce the system 

(5) to : 
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which gives the following endemic equilibrium :  

 

 

with 

 

and  

and like in system (1),  is unique in  One has : 

Theorem 4. Here we use the technical method of Muldowney [5], see also  

Assume that : 

- There exist a compact absorbing set and  

- The system has an unique equilibrium point  in  

-  is locally stable 

- the system satisfies the Poincare Bendixon property 

- each periodic orbit of (5) in  is orbitally asymptotically stable. 

Then the endemic equilibrium is globally asymptotically stable 

The proof of this theorem is based on monotone dynamical systems, as developed in[5] 

and needs some following properties : 

Theorem 5. There exist a compact absorbing set  

Definition 1. The system (5) is called competitive if there exists a diagonal matrix H with entries 

 such that each off-diagonal entry of  is nonpositive in D, 

where  is the Jacobian matrix of (5) 
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Definition 2. Let be a three dimensional matrix one define the  

 

 

second compound matrix by 

 

Theorem 6. IF R0 > 1     the endemic equilibrium is locally asymptotically stable 

Proof : the proof of this theorem is the application of the following Arino, Mcluskey lemma : 

Lemma 1. If                                                          and are negative , then its 

engenvalues have real part negative. 

Proof We have : 

 

 

One has 

 

is the second additive compound of the jacobian matrix  is  

 

Theorem 7. Pour differential system (1) est competitive 
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Proof : Consider a three dimensional matrix  

 

 

One has 

 

For the system (5) is competitive and possesses the Poincaré - 

Bendixon property. 

Theorem 8. Any periodic orbits of the system (5) is asymptotically orbitally stable. 

The proof is based on the following Muldowney's theorem : 

Theorem 9. A sufficient condition for a periodic orbit  

                                   

is asymptotically stable, where  is the second additive compound matrix of the 

jacobian et  

The system (9) is called the second compound system of the orbit  

Proof Let be , la matrice  est 

 

 

system (7) becomes : 

 

Let be 
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By direct calculations, we can obtain the following inequalities : 

 

We deduce : 

 

Thus 

 

and 

 

which implies this inequality : 

 

where : 

 

                     

and : 

                           

which gives us : 

               

By application of Gronwall inquality, one has : 
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this implies that                 when            as a result the second compound differential system (7) is 

asymptotically stable. Thus the periodic solution               is   asymptotically stable with 

asymptotically phase. 
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