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Abstract  

The inverse problem of reconstructing the right-hand side (RHS) of a parabolic equation using the radial 
basis functions (RBF) method from a solution specified at internal points is investigated. In this paper, the 
RHS is unknown about time, and the method we use is the meshless method. Some numerical 
experiments are presented to illustrate the accuracy, stability and effectiveness.  
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1. Introduction 

In this paper, we consider the problem of reconstructing the RHS of a parabolic equation from a solution specified 

at internal points, it has many important applications in physics and engineering. 

This kind of inverse problem has been discussed in many papers [1-9]. In [1], the existence, uniqueness, 

regularity and the continuous dependence of the solution upon the data are demonstrated. In [2], the source term is 

state dependent. With the exception of [3] and [9], the unknown source has been sought either as a function of space 

or as a function of time. In [3], the source is defined by two unknown spatial functions with known time dependent, 

and the form of the functions about time is known. The unknown RHS in this paper is the same as that in [9], it is a 

function about space and time, and the dependence of the RHS on space is known, and on time is unknown. 

There are various methods to solve this kind of inverse problem. such as finite difference method [5,8,9], 

boundary element method [4,6], variational method [7], fundamental solutions method [10], radial basis functions 

method [11-17], and so on. The method used in [9] is a special numerical method similar to the bordering method, it 

is dependent on difference scheme for space and time. In this paper, according to some ideas in [9], we use the 

meshless method based on the RBF method. 

In meshless methods, a set of nodes are used instead of meshing the domain of the problem, because of this 

property, the meshless method is superior to the mesh dependent methods. The RBF method is a class of truly 

meshless method, it provides an interpolation formula for the approximation of the solution and its derivatives. 

This paper is organized as follows. In section 2, we give an outline of the RBF method. In section 3, we solve 

the inverse problem using the meshless method based on the RBF method. Numerical experiments and discussions 

will be given in section 4.  
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2. The RBF method 

The RBF is a univariate function, of which the independent variable is the distance between a fixed point 
*x and 

any point x . 

For given data { , }, 1,2, , .j jx u j N   1 2, , , Nx x x are the distinct nodes, ju is the value of function 

( )u x at the node jx for each  1,2, , .j N   N is the number of distinct nodes.  The interpolating function  

( )hu x can be written as 

1

( ) (|| ||) ( ) ,
n

h T

i j

i

u x x x x 


                                                             (2.1) 

where i  is the unknown RBF coefficient, (|| ||)jx x   is the RBF, and || ||jx x denotes the distance between  

x  and jx , 

1 2( ) [ (|| ||), (|| ||), , (|| ||)] ,T

Nx x x x x x x         

1 2[ , , , ] .T

N      

In order to compute i , substitute each ( 1,2, , )kx k N   for x  in (2.1), then we have 

,U                                                                                        (2.2) 

where 

 

1 1 1 2 1

2 1 2 2 2

1 2

(|| ||) (|| ||) (|| ||)

(|| ||) (|| ||) (|| ||)
,

(|| ||) (|| ||) (|| ||)

N

N

N N N N

x x x x x x

x x x x x x

x x x x x x

  
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  
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   
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

 

1 2[ , , , ] ,T

NU u u u   

so we can get the coefficient 

1 ,U   

from (2.2). 

Substituting (2.3) into (2.1), 

1

1

( ) ( ) ( ) ,
N

h T

j j

j

u x x U x u 



    

where ( )j x  is called the shape function, and 

1

1 2( ) [ ( ), ( ), , ( )] ( ) ,T

Nx x x x x         

The well-known RBFs are listed in Table 1. 
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Table 1. Some well-known RBFs 

  Definition 

Gaussian (GA) 
2( ) exp( )r cr     

Hardy multiquadrics (MQ)  
2 2( )r r c    

Inverse multiquadrics (IMQ) 2 2 1( ) ( )r r c    

Inverse quadric (IQ) 
2 2 1( ) ( )r r c    

Thin plate spline (TPS) 
2( ) log( )cr r r   

 

3. The inverse problem and its numerical solution 

In this section, we solve the inverse problem of reconstructing the RHS in a parabolic equation [18] by using the 

meshless method based on the RBF method. 

The problem can be described as 

( , ) ( , ) ( ), 0 ,0 ,t xxu x t u x t f t x l t T                                                       (3.1) 

with the initial and boundary conditions 

0( ,0) ( ), 0 ,u x u x x l                                                                      (3.2) 

(0, ) 0, ( , ) 0, 0 .u t u l t t T                                                                 (3.3) 

If the function ( , )f x t  is known, the equation (3.1) with conditions (3.2-3.3) is the direct problem. In this paper, we 

assume that the function ( , )f x t  is unknown, and we solve the functions ( , )u x t and ( , )f x t with the additional 

observation of ( , )u x t at certain internal point 0 0(0 )x x l  , 

0( , ) ( ).u x t E t                                                                              (3.4) 

The mathematical model (3.1-3.4) arises in various areas of physics and engineering, such as hydrology, 

material sciences, heat transfer, transport problems, and so on. In the context of heat conduction, ( , )u x t represents 

temperature at the position x and time t , ( , )f x t is interpreted as a heat source, respectively. In practice, ( , )f x t is 

unknown in many cases, so it is required to reconstruct the unknown heat source by additional temperature 

measurements which are made at some single points, for example, finding a pollution source intensity and designing 

the final state in melting and freezing processes. 

According to some transitions in [9], we assume the function ( , )f x t can be described as 

( , ) ( ) ( ),f x t t x                                                                              (3.5) 

where ( )x  is the known function, and satisfies the following restrictions: 

(1) 0( ) 0,x   

(2) ( )x  is smooth enough, 

(3) ( ) 0x  on the boundary of the computational domain.  

Let 

( , ) ( ) ( ) ( , ),u x t t x x t                                                                         (3.6) 

where 
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0
( ) ( ) ,

t

t s ds                                                                                    (3.7) 

substituting (3.5-3.7) into (3.1), the equation (3.1) can be rewritten as 

( , ) ( , ) ( ) ( ) 0 ,0 ,t xxx t u x t t x x l t T                                                  (3.8) 

combining (3.4) with (3.6), we get 

0

0

( ) ( , )
( ) ,

( )

E t x t
t

x







                                                                             (3.9) 

substituting (3.9) into (3.8), 

0

0

( ) ( , )
( , ) ( , ) ( ) 0 ,0 ,

( )
t xx

E t x t
x t u x t x x l t T

x


 




                                    (3.10) 

the initial and boundary conditions are 

0( ,0) ( ), 0 ,x u x x l                                                                    (3.11) 

(0, ) 0, ( , ) 0, 0 .t l t t T                                                                (3.12) 

On the basis of above descriptions, if we have the numerical solution ˆ ( , )x t of the equation (3.10), we can 

get the numerical solution ˆ( , )u x t and ˆ ( , )f x t from (3.5-3.6). 

Next, we solve the problem (3.10-3.12) using the meshless method based on RBF method. 

According to (2.4), the approximate function  ˆ ( , )x t  of  ( , )x t  at the time mt t  can be represented as 

1 2

1

ˆ ˆ( , ) ( ) ( , ), ( 1,2, , ,0 )
N

m j j m M

j

x t x x t m M t t t T  


          

where ( )j x  is the shape function described in section 2. 

Then 

0 0

1

ˆ ˆ( , ) ( ) ( , ),
N

m j j m

j

x t x x t  


  

1

ˆ ˆ( , ) ( ) ( , ).
N

xx m j j m

j

x t x x t  


  

For the ˆ ( , )t mx t , we apply one step forward difference formula to time, 

1
ˆ ˆ( , ) ( , )

ˆ ( , ) ,m m
t m

x t x t
x t

t

 
  




 

where +1 , 1,2, , 1.m mt t t m M      

So for mt t , the equation (3.10) can be rewritten as 

0

11

1 0

ˆ( ) ( ) ( , )
ˆ ˆ( , ) ( , )

ˆ( ) ( , ) ( ),
( )

N

m j j mN
jm m

j j m

j

E t x x t
x t x t

x x t x
t x

 
 

  









  



  

that is equivalent to 
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0

1

1

1 0

ˆ( ) ( ) ( , )

ˆ ˆ ˆ( , ) ( , ) [ ( ) ( , ) ( )],
( )

N

m j j mN
j

m m j j m

j

E t x x t

x t x t t x x t x
x

 

    










    


  

by substituting each ( 1,2, , )kx k N   for x , we get 

0

1

1

1 0

ˆ( ) ( ) ( , )

ˆ ˆ ˆ( , ) ( , ) [ ( ) ( , ) ( )],
( )

N

m j j mN
j

k m k m j k j m k

j

E t x x t

x t x t t x x t x
x

 

    










    


  

Combining with the conditions (3.11-3.12), for the iterative system of equation (3.13),we can obtain the 

numerical solution ˆ ( , )x t  for 1,2, ,k N   and 1,2, ,t M  , using the iterative method, then we can have 

the numerical solutions 

ˆ ˆ( , ) ( ) ( ),k m m kf x t t x      ˆ ˆˆ( , ) ( ) ( ) ( , ),k m m k k mu x t t x x t     

4. Numerical experiments and discussions 

In this section, we give an example to test the accuracy, stability, and efficiency of the meshless method used in this 

work. In the experiments, we use Gaussian RBF. 

Example. Consider the problem (3.1-3.5), with the conditions 

0 0( ) 0, ( ) , 0.5.u x E t t x    

and let 1, 1l T  . 

The exact solutions are 

2( , ) sin( ), ( , ) (1 )sin( ),u x t t x f x t t x      

with ( ) sin( ).x x   

     Firstly, in order to illustrate the numerical accuracy of the method in this work, we plot the error functions 

ˆ( , ) ( , )f x t f x t  and ˆ( , ) ( , )u x t u x t in Figure 1. 

 

Fig 1: error function (a): ˆ( , ) ( , )f x t f x t ,(b): ˆ( , ) ( , )u x t u x t . 

For purpose of observing the effect of approximation more clearly, we plot the exact and numerical solution of 

the functions ( , )f x t and ( , )u x t at 0.1x in Figure 2. 
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Fig 2: the exact and numerical solutions of  (a): ( , )f x t ,(b): ( , )u x t at 0.1x  . 

From the above two figures, we see that the effect of the approximation using the meshless method is well. 

Secondly, in order to test the stability of the numerical solution, we give small perturbation on the 

overspecified data ( )E t , and the artificial error is defined as 

( ) ( )(1 ),E t E t    

where   represents the noisy parameter. 

The results are shown in Figures 3-4. In Figure 3, we plot the error function ˆ( , ) ( , )f x t f x t  with 

0.001  and 0.01 , respectively. In Figure 4, we plot exact and numerical solution of the function 

( , )f x t  and ( , )u x t  at 0.1x  with 0.01 . 

 

Fig 3: error function ˆ( , ) ( , )f x t f x t  (a):. 0.001 , (b):. 0.01 . 

  
Fig 4: the exact and numerical solutions of  (a): ( , )f x t ,(b): ( , )u x t at 0.1x with 0.01  . 
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From these two figures, we can see that with the increase of the noisy data, the error function 

ˆ( , ) ( , )f x t f x t increases as well, even so, there is no obvious oscillation about the numerical solution, so the 

effect of approximation is stable as a whole. 

Thirdly, in order to test the effectiveness of the numerical solution, we make a comparison between the method 

(RBF) in this paper and the finite difference method (FDM), we plot the exact and numerical solution of ( , )f x t  

and ( , )u x t  in three different cases: 0 , 0.001  and  0.01 , in Figures 5-7, respectively. 

 
Fig 5: the exact and numerical solutions of  (a): ( , )f x t ,(b): ( , )u x t at 0.1x with 0  . 

 

  

 
Fig 6: the exact and numerical solutions of  (a): ( , )f x t ,(b): ( , )u x t at 0.1x with 0.001  . 

 

 

Fig 7: the exact and numerical solutions of  (a): ( , )f x t ,(b): ( , )u x t at 0.1x with 0.01  . 

From these three figures, we can see that under the condition of the same nodes, the approximation achieved 

by using RBF is better than using FDM, especially in the case that there exists noisy data. 
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At last, in order to further illustrate the accuracy, stability and effectiveness of the method, we define the root 

mean square error (RE) of the functions ( , )f x t and  ( , )u x t as follows 

2

1 1

ˆ( ( , ) ( , ))
( ) ,

M N

i j i ji j
f x t f x t

RE f
MN

 



 

 

where ( , )i jf x t  and  ˆ( , )i jf x t are the exact and numerical solution at the node ,i jx t , respectively, M and N  are 

the number of nodes about  x and  t , in order to make a comparison with the finite difference method, we use the 

uniform nodal arrangement. The definition of  ( )RE u  is same to ( )RE f . The results in different cases are given 

in Table 2. 

Table 2. The errors for different ,x t  and noisy parameter 

  RE(f) RE(u) 

x  t    RBF FDM RBF FDM 

0.1 0.001 0 38.9636 10  
28.0577 10  

41.6295 10  
150.0802 10  

0.1 0.0001 0 33.3836 10  
11.1873 10  

41.6303 10  
141.2946 10  

0.05 0.0005 0 32.6363 10  
21.1760 10  

42.0125 10  
154.0137 10  

0.05 0.0001 0 46.3887 10  
22.6768 10  

420.129 10  
156.7091 10  

0.1 0.001 0.001 34.7862 10  
28.4609 10  

44.8746 10  
43.8935 10  

0.1 0.0001 0.001 31.3263 10  
11.2306 10  

44.8743 10  
43.8926 10  

0.05 0.0005 0.001 32.9984 10  
21.4907 10  

45.8765 10  
43.9846 10  

0.05 0.0001 0.001 34.9774 10  
23.1079 10  

45.8765 10  
43.9842 10  

0.1 0.001 0.01 23.5674 10  
11.2241 10  

33.9731 10  
33.8935 10  

0.1 0.0001 0.01 24.1048 10  
11.6257 10  

33.9723 10  
33.8926 10  

0.05 0.0005 0.01 24.3398 10  
25.3300 10  

34.1703 10  
33.9846 10  

0.05 0.0001 0.01 24.5846 10  
27.1334 10  

34.1699 10  
33.9842 10  

 

From Table 2, we can get the approximation effect of the method FDM is feasible when there is no noisy data, 

but when the noisy parameter is increased, the effect of the approximation become worse suddenly. In the practical 

problems, the existence of noisy data is an unbeatable truth, from the data in Table 2, we obtain that the method 

RBF is better than FDM for the approximation effect of ( , )f x t under any case, meanwhile, for the approximation 

effect of ( , )u x t , the method RBF is not worse than FDM when there exist noisy data. As a result, the RBF method 

is accurate, stable and effective. 

5. Conclusion 

 In this paper, we use the meshless method based on the RBF method to solve the inverse problem of 

reconstructing the right-hand side in parabolic equation. From the experiments, we get that the numerical solutions 

are close to the exact solutions, with the noisy data   increasing, the results have a corresponding change, however, 

there is no obvious oscillation. So the method in this work is accurate, stable and efficient. 
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