

Volume 7, Issue1

Published online: March 12,2016

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

QUASI-IQC-INJECTIVITY

Samir Mohammed Saied

The Ministry of Education Directorate General for Education in Wasit, Iraq samermaths@gmail.com

ABSTRACT. In this work, the notion of injectivity relative to a class of IQC submodules (namely, IQC-injectivity) has been introduced and studied, which is a generalization quasi-injective module. This notion is closed under direct summands. Several properties and characterizations have been given. We provide a characterization of semi simple Artinian ring, SI-ring and Dedekind domain in terms of IQC-injective \mathcal{R} -module.

Indexing terms/Keywords: Quasi -injective modules; IQC -injective R-module; Quasiclosed submodules; fully continuous modules; divisible modules.

Academic Discipline And Sub-Disciplines:

Mathematic: Algebra.

MATHEMATICSSUBJECT CLASSIFICATION:

16D50, 16D70.

INTRODUCTION

Throughout, Rrepresents an associative ring with identity and \mathcal{R} -modules are unitary left \mathcal{R} -modules. For an \mathcal{R} -modules \mathcal{M} and \mathcal{N} , $Hom_{\mathcal{R}}(\mathcal{M}, \mathcal{N})$ will denote the set of \mathcal{R} -module homomorphisms from \mathcal{M} to \mathcal{N} . The kernel of any $\beta \in Hom_{\mathcal{R}}(\mathcal{M}, \mathcal{N})$ is denoted by $ker(\beta)$ and its image $by\beta(\mathcal{M})$. $S = End_{\mathcal{R}}(\mathcal{M})$ will denote the ring of \mathcal{R} -endomorphisms of \mathcal{M} [1]. A submodule \mathcal{N} of \mathcal{R} -module \mathcal{M} is said to be an essential submodule of an \mathcal{R} -module \mathcal{M} , if \mathcal{N} has nonzero intersection with every nonzero sub module of \mathcal{M} [2]. A sub module \mathcal{N} of \mathcal{R} -module \mathcal{M} is said to be a closed in \mathcal{M} , if \mathcal{N} has no proper essential extensions in \mathcal{M} ([3], P.5). We shall use $\vartheta(\mathcal{R})$ to stand for the set of all essential right ideals of the ring \mathcal{R} . Given any \mathcal{R} -module \mathcal{M} , we set $Z(\mathcal{M}) = \{x \in \mathcal{M} | x I = 0, for some I \in \vartheta(\mathcal{R})\}$ ([2], P.30). An \mathcal{R} -module \mathcal{M} , is singular provided $Z(\mathcal{M}) = \mathcal{M}$. At the other extreme, we say \mathcal{M} is a nonsingular provided $Z(\mathcal{M})=0$ ([2], P.31). A sub module \mathcal{N} of \mathcal{R} -module \mathcal{M} is said to be a direct summand of \mathcal{R} -module \mathcal{M} , if $\mathcal{M} = \mathcal{N} \oplus \mathcal{L}$, for some submodule \mathcal{L} of \mathcal{M} [2]. An R-module \mathcal{M} is said to be semi

Volume 7, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm

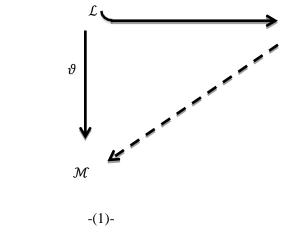
Journal of Progressive Research in Mathematics(JPRM) ISSN: 2395-0218

simple, if every sub module of \mathcal{M} is direct summand ([2], P.27). An \mathcal{R} -module \mathcal{M} is called CS-module (or extending ((C_1) -condition)), if \mathcal{M} satisfies any one of the following equivalent conditions (1) for every submodule \mathcal{N} of \mathcal{M} , there is a decomposition $\mathcal{M} = \mathcal{L} \oplus \mathcal{B}$ such that \mathcal{N} is essential in \mathcal{L} , (2) every closed submodule of \mathcal{M} is a direct summand [4]. A CS-module \mathcal{M} which satisfies (C₂)-condition: every sub module of \mathcal{M} which is isomorphic to a direct summand of \mathcal{M} is itself direct summand, is called continuous[4]. Let \mathcal{M} and \mathcal{N} be two \mathcal{R} -modules, \mathcal{N} is called \mathcal{M} -injective, if for every submodule \mathcal{L} of \mathcal{M} , any \mathcal{R} -homomorphism from \mathcal{L} to \mathcal{N} can be extended to an \mathcal{R} -homomorphism from \mathcal{M} to \mathcal{N} ([5], P.28). An \mathcal{R} -module \mathcal{N} is called injective, if it is \mathcal{M} -injective for all \mathcal{R} -module \mathcal{M} . A right \mathcal{R} -module $\mathcal M$ is (minimal) quasi-injective, if every homomorphism from a (simple) submodule of $\mathcal M$ to $\mathcal M$ can be extended to an endomorphism of \mathcal{M} [6]([7]). A submodule \mathcal{N} of \mathcal{M} is called Quasi-closed submodule, if $\forall x \in \mathcal{M}$ with $x \notin \mathcal{N}$, there exists a closed submodule \mathcal{L} of \mathcal{M} containing \mathcal{N} and $x \notin \mathcal{L}$. it is clear that every closed submodule is a Quasi-closed –submodule[8]. Let \mathcal{M} be an \mathcal{R} -module. A submodule \mathcal{N} of \mathcal{M} is called IOC-submodule (simply $\mathcal{N} \leq^{IQC} \mathcal{M}$), if \mathcal{N} is \mathcal{R} -isomorphic to a Quasi-closed submodule of \mathcal{M} . It is clear that, every Quasi-closed submodule (and hence direct summand) is IQC-submodule, but the converse generally is not true, $n\mathbb{Z}$ is IQC-submodule of the \mathbb{Z} -module \mathbb{Z} which is not Quasi-closed for each positive integer n > 2. It is easy to prove that every submodule which is \mathcal{R} -isomorphic to IQCsubmodule in \mathcal{M} is itself IQC-submodule in \mathcal{M} . Every IQC-submodule in a Quasi-closed submodule (direct summand) of \mathcal{M} is IQC-submodule in \mathcal{M} . Let \mathcal{M} and \mathcal{N} be two R-modules. If $\mathcal{L} \leq ^{IQC} \mathcal{M}$, then $f(\mathcal{L})$ \leq^{IQC} N where $f: \mathcal{M} \to \mathcal{N}$ is an R-isomorphism [9]. An \mathcal{R} -module \mathcal{M} is fully (extending) continuous, if every I(QC)-submodule of \mathcal{M} is a direct summand [9], ([8]).

Quasi - IQC-injective module

Definition(2.1): Let \mathcal{M} and \mathcal{N} be two \mathcal{R} -modules. \mathcal{M} is said to be an IQC- \mathcal{N} -injective, if for each IQC-submodule \mathcal{L} of \mathcal{N} , every \mathcal{R} -homomorphism ϑ from \mathcal{L} to \mathcal{M} can be extended to an \mathcal{R} -homomorphism from \mathcal{N} into \mathcal{M} , see (1). The \mathcal{R} -module \mathcal{M} is called Quasi- IQC -injective, if it is IQC - \mathcal{M} -injective.

 ${\mathcal N}$



Volume 7, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm

Examples and remarks (2.2):

(1) Every fully continuous \mathcal{R} -module is Quasi- IQC -injective. But the converse may not be true, in general.

(2) Every quasi-injective \mathcal{R} -module is Quasi- IQC -injective. But the converse may not be true, in general. For example see [10, Remark (2.9)]. It may be fully continuous (Quasi- IQC - injective), but not quasi-injective.

(3) Let \mathcal{M} and \mathcal{N} be two \mathcal{R} -modules. If \mathcal{M} is an IQC - \mathcal{N} -injective, then \mathcal{M} is an IQC - \mathcal{L} -injective for each Quasi-closed \mathcal{R} -submodule \mathcal{L} of \mathcal{N} .

Proof: Let \mathcal{L} be any Quasi-closed \mathcal{R} -submodule of \mathcal{N} , \mathcal{B} be any IQC -submodule of \mathcal{L} and $\vartheta: \mathcal{B} \to \mathcal{M}$ be any \mathcal{R} -homomorphism. Let $\iota_{\mathcal{B}}$ be the inclusion \mathcal{R} -homomorphism from \mathcal{B} into \mathcal{L} and $\iota_{\mathcal{L}}$ be the inclusion \mathcal{R} -homomorphism from Quasi-closed \mathcal{R} -submodule \mathcal{L} into \mathcal{N} . \mathcal{M} is an IQC - \mathcal{N} -injective, thus there exists an R-homomorphism $\zeta: \mathcal{N} \to \mathcal{M}$ such that $(\zeta \iota_{\mathcal{L}} \iota_{\mathcal{B}})(b) = \vartheta(b)$, for all $b \in \mathcal{B}$. Put $\psi = \zeta \iota_{\mathcal{L}}: \mathcal{L} \to \mathcal{M}$. For each $b \in \mathcal{B}$, then $\psi(b) = (\zeta \iota_{\mathcal{L}})(b) = (\zeta \iota_{\mathcal{L}})(\iota_{\mathcal{B}}(b)) = (\zeta \iota_{\mathcal{L}} \iota_{\mathcal{B}})(b) = \vartheta(b)$. Therefore \mathcal{M} is an IQC - \mathcal{L} -injective \mathcal{R} - module.

(4) Let \mathcal{M} be an \mathcal{R} -module and $\{\mathcal{N}_i\}_{i \in I}$ a family of \mathcal{R} -modules. If $\prod_{i \in I} \mathcal{N}_i$ is an IQC - \mathcal{M} - injective, then for each $i \in I$, \mathcal{N}_i is an IQC - \mathcal{M} - injective.

Proof: Put $\mathcal{N} = \prod_{i \in I} \mathcal{N}_i$, suppose that \mathcal{N} is an IQC - \mathcal{M} -injective and \mathcal{A} is an IQC-submodule of \mathcal{M} , and $f: \mathcal{A} \to \mathcal{N}_i$, $\forall i \in I$. There exists h: $\mathcal{M} \to \mathcal{N}$ such that $hi_{\mathcal{A}} = \varphi_i f$ where $i_{\mathcal{A}}: \mathcal{A} \to \mathcal{M}$ is inclusion mapping and $\varphi_i: \mathcal{N}_i \to \mathcal{N}$ is injection mapping. We now define h': $\mathcal{M} \to \mathcal{N}_i$, by h'(m)= $\pi_i h(m), \forall m \in \mathcal{M}$ where $\pi_i: \mathcal{N} \to \mathcal{N}_i$ is projection mapping, $\forall i=1,2$. Then h' is an \mathcal{R} -homomorphism and if $\forall a \in \mathcal{A}$, h'i_{\mathcal{A}}(a)=\pi_i h_{\mathcal{A}}(a)=\pi_i \varphi_i f(a) = f(a), this shows that \mathcal{N}_i is an IQC - \mathcal{M} -injective.

(5) Let \mathcal{M} and \mathcal{N}_i be \mathcal{R} -modules where $i \in I$ and I is finite index set, if $\bigoplus_{i \in I} \mathcal{N}_i$ is an IQC - \mathcal{M} -injective $\forall i \in I$, then \mathcal{N}_i is an IQC - \mathcal{M} -injective. In particular every direct summand of IQC- \mathcal{N} -injective \mathcal{R} -module is IQC- \mathcal{N} -injective.

Proof:Let \mathcal{M} be any IQC- \mathcal{N} -injective \mathcal{R} -module and \mathcal{L} be any direct summand \mathcal{R} -submodule of \mathcal{M} . Thus there exists an \mathcal{R} -submodule \mathcal{A} of \mathcal{M} such that $\mathcal{M} = \mathcal{L} \bigoplus \mathcal{A}$. Let \mathcal{B} be any IQC-submodule of \mathcal{N} and $f: \mathcal{B} \to \mathcal{L}$ be any \mathcal{R} -homomorphism. Define g: $\mathcal{B} \to \mathcal{M} = \mathcal{L} \bigoplus \mathcal{A}$ by g(b)=(f(b),0), for all $b \in \mathcal{B}$. It is clear that g is an \mathcal{R} -homomorphism, since \mathcal{M} is an IQC- \mathcal{N} -injective \mathcal{R} -module, thus there exists an \mathcal{R} -homomorphism $h: \mathcal{N} \to \mathcal{M}$ such that h(b) = g(b) for all $b \in \mathcal{B}$. Let $\pi_{\mathcal{L}}$ be the natural projection \mathcal{R} -homomorphism of $\mathcal{M} = \mathcal{L} \oplus \mathcal{A}$ into \mathcal{L} . Put $h_1 = \pi_{\mathcal{L}} h: \mathcal{N} \to \mathcal{L}$. Thus h_1 is an \mathcal{R} -homomorphism and for each $b \in \mathcal{B}$, then $h_1(b) = (\pi_{\mathcal{L}}h)(b) = \pi_{\mathcal{L}}(g(b)) = \pi_{\mathcal{L}}((f(b), 0)) = f(b)$. Therefore \mathcal{L} is an IQC- \mathcal{N} -injective \mathcal{R} -module.

Volume 7, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm

(6) Let \mathcal{M} be an \mathcal{R} -module and $\{N_i\}_{i \in I}$ a family of \mathcal{R} -modules. if \mathcal{M} is IQC $-\bigoplus_{i \in I} \mathcal{N}_i$ -injective $\forall i \in I$, then \mathcal{M} is IQC $-\mathcal{N}_i$ -injective.

Proof: Suppose that \mathcal{M} is an IQC $- \bigoplus_{i=1}^{n} \mathcal{N}_{i}$ -injective \mathcal{R} -module. Let \mathcal{A} is an IQC-submodule of \mathcal{N}_{i} (inclusion homomorphism $\mathfrak{l}_{\mathcal{A}}: \mathcal{A} \rightarrow \mathcal{N}_{i}$) and $\mu: \mathcal{A} \rightarrow \mathcal{M}$ be an \mathcal{R} -homomorphism. By $\mathfrak{l}_{\mathcal{N}_{i}}: \mathcal{N}_{i} \rightarrow \bigoplus_{i=1}^{n} \mathcal{N}_{i}$ is inclusion homomorphism and hypothesis, there exists \mathcal{R} -homomorphism $\gamma: \bigoplus_{i=1}^{n} \mathcal{N}_{i} \mapsto \mathcal{M}$ such that $\gamma \mathfrak{l}_{\mathcal{N}_{i}} \mathfrak{l}_{\mathcal{A}} = \mu$. Put $g = \gamma \mathfrak{l}_{\mathcal{N}_{i}}: \mathcal{N}_{i} \rightarrow \mathcal{M}$ such that $g \mathfrak{l}_{\mathcal{A}} = \mu$.

(7) Isomorphic to Quasi- IQC -injectivity is Quasi- IQC -injectivity.

(8) Let \mathcal{N} be any IQC -submodule of \mathcal{L} such that \mathcal{N} is IQC - \mathcal{M} -injective. Then every \mathcal{R} -monomorphism from \mathcal{N} into \mathcal{M} splits. In particular, if \mathcal{M} is an \mathcal{R} -module whose Quasi-closed submodules are IQC - \mathcal{M} -injective, then \mathcal{M} is fully extending module.

Proof:Let $\gamma: \mathcal{N} \to \mathcal{M}$ be an \mathcal{R} -monomorphism, and $\gamma^{-1}: \gamma(\mathcal{N}) \to \mathcal{N}$. As \mathcal{N} is an IQC - \mathcal{M} -injective module, there exists an \mathcal{R} -homomorphism $\beta: \mathcal{M} \to \mathcal{N}$, such that $\beta \gamma = I_{\mathcal{N}}$. For $m \in \mathcal{M}$ then $\beta(m) \in \mathcal{N}$, there exists $\gamma(n) \in \gamma(\mathcal{N})$ such that $\gamma^{-1}(\gamma(n)) = \beta(m) = \beta(\gamma(n))$ and hence $m - \gamma(n) \in \ker(\beta)$. It follows that $m = \gamma(n) + (m - \gamma(n)) \in \gamma(\mathcal{N}) + \ker(\beta)$. Moreover, $\gamma(N) \cap \ker(\beta) = \ker(\gamma^{-1}) = 0$. Thus $\mathcal{M} = \gamma(\mathcal{N}) \oplus \ker(\beta)$.

(9) If \mathcal{M} is Quasi- IQC -injective \mathcal{R} -module then any \mathcal{R} -monomorphism $\gamma: \mathcal{M} \to \mathcal{M}$ splits.

Proposition(2.3): Every Quasi-IQC-injective \mathcal{R} -module \mathcal{M} has C₂-condition.

Proof: Let \mathcal{M} be a Quasi- IQC -injective \mathcal{R} -module, \mathcal{A} and \mathcal{B} two sub modules of \mathcal{M} with \mathcal{A} is a direct summand in \mathcal{M} and \mathcal{B} is \mathcal{R} -isomorphic to \mathcal{A} . Let f: $\mathcal{B} \to \mathcal{A}$ be an \mathcal{R} -isomorphism. Then \mathcal{A} is an IQC - \mathcal{M} -injective, Examples and remarks (2.2), \mathcal{B} is an IQC - \mathcal{M} -injective. The inclusion mapping $\mathfrak{l}_{\mathcal{B}}: \mathcal{B} \to \mathcal{M}$, there exists an \mathcal{R} -homomorphism g: $\mathcal{M} \to \mathcal{B}$ such that $\mathfrak{gl}_{\mathcal{B}} = \mathfrak{l}_{\mathcal{B}}$. Then $\mathcal{M} = \mathcal{B} \oplus \ker(\mathfrak{g})$. That is; \mathcal{B} is a direct summand in \mathcal{M} , then \mathcal{M} has C₂-condition.

The submodule $n\mathbb{Z}$ (where $n \ge 2$) of \mathbb{Z} as \mathbb{Z} -module which is isomorphic to \mathbb{Z} is not a direct summand in \mathbb{Z} as \mathbb{Z} -module.

Corollary(2.4):Let \mathcal{M} be a Quasi-IQC-injective \mathcal{R} -module. Then every submodule of \mathcal{M} which is \mathcal{R} -isomorphic to \mathcal{M} is a direct summand in \mathcal{M} .

Proposition(2.5): Let \mathcal{M} be Quasi- IQC -injective \mathcal{R} - module. Then every submodule of \mathcal{M} which is isomorphic to closed submodule in \mathcal{M} is closed in \mathcal{M} .

Proof: Let \mathcal{M} be a Quasi- IQC – injective \mathcal{R} - module, \mathcal{K} a closed in \mathcal{M} and \mathcal{A} a submodule of \mathcal{M} with An \mathcal{R} - isomorphism $f : \mathcal{A} \to \mathcal{K}$. Consider the following diagram where $\iota_{\mathcal{A}} : \mathcal{A} \to \mathcal{M}, \iota_{\mathcal{K}} : \mathcal{K} \to \mathcal{M}$ are two inclusion homomorphism. Then f extends to some g in End(\mathcal{M}) such that $\iota_{\mathcal{K}} f = g\iota_{\mathcal{A}}$, by a Quasi -IQC - \mathcal{M} - injectivity of \mathcal{M} . Now let Ω be collection of the set of all essential extension of \mathcal{A} in

Volume 7, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm

 \mathcal{M} . $\Omega \neq \phi$, since $\mathcal{A} \in \Omega$. By Zorn's lemma, there exists maximal essential member \mathcal{A}' . That is; \mathcal{A}' ismaximal essential extension sub module in \mathcal{M} , which is evidently, it is closed submodule of \mathcal{M} . Thus $g_{|_{\mathcal{A}'}}$ is an \mathcal{R} -homomorphism. Since $g(\mathcal{A}) = f(\mathcal{A})$, hence $\mathcal{K} = g(\mathcal{A})$ is essential in $g(\mathcal{A}')$, by \mathcal{A} is essential sub module in \mathcal{A}' . Since \mathcal{K} is a closed in \mathcal{M} . This implies $\mathcal{K} = g(\mathcal{A})$, whence $\mathcal{A} = \mathcal{A}'$. The conclusion follows.

An \mathcal{R} - module \mathcal{M} is multiplication, if each submodule is of the form $\mathcal{M}\mathcal{A}$ for some rightideal \mathcal{A} of \mathcal{R} [13].

Proposition(2.6): Every Quasi - closed submodule of a multiplication a Quasi – IQC -injective is aQuasi - IQC - injective.

Proof: Let \mathcal{L} be an IQC- submodule of a Quasi- closed submodule \mathcal{N} of \mathcal{M} and let $\theta : \mathcal{L} \to \mathcal{N}$ be an \mathcal{R} -homomorphism. Since \mathcal{N} is an Quasi - closed submodule of \mathcal{R} -module \mathcal{M} . By hypothesis, there exists $\xi : \mathcal{M} \to \mathcal{M}$, by multiplication property of \mathcal{M} , then $\mathcal{N} = \mathcal{M}\mathcal{A}$ for some right ideal \mathcal{A} of \mathcal{R} , $\xi|_{\mathcal{N}} = \xi(\mathcal{N}) = \xi(\mathcal{M}\mathcal{A}) = \xi(\mathcal{M})\mathcal{A} \subseteq \mathcal{M}\mathcal{A} = \mathcal{N}$.

In the following, we characterize fully continuous modules in terms of IQC - \mathcal{M} -injectivity.

Proposition(2.7): The following statements are equivalent for an \mathcal{R} -module \mathcal{M} :

- (1) \mathcal{M} is fully continuous.
- (2) Every \mathcal{R} -module is IQC \mathcal{M} injective.

(3) Every IQC-submodule of \mathcal{M} is IQC - \mathcal{M} - injective.

(4) Every Quasi-closed submodule of \mathcal{M} is IQC - \mathcal{M} - injective.

Proof: (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) It is clear. (4) \Rightarrow (1). Let \mathcal{K} be any submodule of \mathcal{M} which is isomorphic to Quasi-closed submodule \mathcal{L} of \mathcal{M} . By (4) \mathcal{L} is IQC – \mathcal{M} –injective. Then \mathcal{K} is IQC - \mathcal{M} -injective The identity mapping $i_{\mathcal{K}}: \mathcal{K} \rightarrow \mathcal{K}$, there exists an \mathcal{R} -homomorphism $\mathfrak{G}: \mathcal{M} \rightarrow \mathcal{K}$ such that $\mathfrak{G}i_{\mathcal{K}} = I_{\mathcal{K}}$. Then $\mathcal{M} = \mathcal{K} \oplus \ker(\mathfrak{G})$. That is; $\mathcal{K} \leq \mathfrak{G} \mathcal{M}$.

An \mathcal{R} -module \mathcal{M} is said to be fully IQC- stable, if every IQC-submodule of \mathcal{M} is stable [9].

Proposition(2.8): Every multiplication Quasi-IQC-injective is a fully IQC- stable.

Proof: Let \mathcal{N} be an IQC-submodule of \mathcal{M} and an \mathcal{R} -monomorphism g: $\mathcal{N} \to \mathcal{M}$. Since M is multiplication, then $\mathcal{N} = \mathcal{M}\mathcal{A}$ for some ideal \mathcal{A} of \mathcal{R} . Then g can be extended to an \mathcal{R} -homomorphism h: $\mathcal{M} \to \mathcal{M}$, since \mathcal{M} is Quasi-IQC -injective. Now g $(\mathcal{N}) = h(\mathcal{N}) = h(\mathcal{M}\mathcal{A}) = h(\mathcal{M})\mathcal{A} \subseteq \mathcal{M}\mathcal{A} = \mathcal{N}$.

Proposition(2.9): If \mathcal{M} is a fully extending and fully IQC-stable, then \mathcal{M} is Quasi- IQC – injective module.

Volume 7, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm

Proof: It follows by [9, Proposition(2. 10)] and Proposition(2.3).

Theorem(2.10): The following statements are equivalent for an \mathcal{R} -module \mathcal{M} :

(1) \mathcal{M} is fully continuous.

(2) \mathcal{M} is Quasi- IQC - injective module and fully extending.

Proof: (1) \Rightarrow (2). By Examples and remarks (2.2).(2) \Rightarrow (1). By Proposition(2.3).

According to the definition of anIQC-injectivity, every R-homomorphism of IQC-submodule of \mathcal{M} to \mathcal{M} is extendable to all \mathcal{M} . In the following, we consider a direct sum of IQC-submodules instead of individual IQC-submodule.

We consider the following condition for an ${\mathcal R}$ -module ${\mathcal M}$ and a positive integer n.

 (ω_n) : For any submodule K of \mathcal{M} such that $K = K_1 \oplus K_2 \oplus \cdots \oplus K_n$ where K_i is IQC-submodule of \mathcal{M} , $\forall i=1,2, \ldots, n$, every \mathcal{R} -homomorphism $\vartheta: K \to \mathcal{M}$ can be extended to an \mathcal{R} -endomorphism of \mathcal{M} . It is clear that, if \mathcal{M} satisfies (ω_n) , then \mathcal{M} satisfies $(\omega_{n-1}), \forall n \geq 2$.

Theorem(2.11): The following statements are equivalent for a fully extending module \mathcal{M} :

- (1) \mathcal{M} is fully continuous.
- (2) \mathcal{M} satisfies $(\omega_n) \forall n \in \mathbb{Z}^+$.
- (3) \mathcal{M} satisfies $(\omega_n) \forall (n \ge 2) \in \mathbb{Z}^+$.
- (4) \mathcal{M} satisfies (ω_2).

(5) MisQuasi- IQC-injective.

Proof: (1) \Rightarrow (2). [9, Definition (2.2)] implies that K_i is direct summand of \mathcal{M} for each i=1,2, ..., n. So Kis direct summand of M, Theorem(2.10) and hence each \mathcal{R} -homomorphism from K into \mathcal{M} can be extended to an \mathcal{R} -endomorphism.

 $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$. It is clear. $(5) \Rightarrow (1)$: It follows from Proposition (2.3).

An \mathcal{R} -module \mathcal{M} is said to be co-Hopfian if every injective endomorphism $f: \mathcal{M} \to \mathcal{M}$ is an automorphism [14]. An \mathcal{R} -module \mathcal{M} is directly finite, if $fg = I_{\mathcal{M}}$ implies that $gf = I_{\mathcal{M}}$ for all $f; g \in$ End (\mathcal{M}) ([2], Lemma (6.9)). An \mathcal{R} -module \mathcal{M} is called weakly co-Hopfian, if any injective \mathcal{R} -endomorphism $f: \mathcal{M} \to \mathcal{M}$ is essential, that is; $f(\mathcal{M})$ is an essential submodule of \mathcal{M} [15]. In the following proposition, a sufficient condition for Quasi- IQC -injective modules to be co-Hopfian is given.

Proposition (2.12): A Quasi- IQC-injective \mathcal{R} -module \mathcal{M} is directly finite if and only if it is co-Hopfian.

Volume 7, Issue 1 available at <u>www.scitecresearch.com/journals/index.php/jprm</u>

Journal of Progressive Research in Mathematics(JPRM) ISSN: 2395-0218

Proof: Let f be injective \mathcal{R} -endomorphism of \mathcal{M} and $I_{\mathcal{M}}: \mathcal{M} \to \mathcal{M}$ the identitymap. Since \mathcal{M} is a Quasi-IQC -injective, there exists a map g: $\mathcal{M} \to \mathcal{M}$ such that, gf = $I_{\mathcal{M}}$. By directly finite of \mathcal{M} , we have fg = $I_{\mathcal{M}}$ which shows that f is an automorphism. Hence \mathcal{M} is co-Hopfian. The converse is clear.

In the following proposition, we give a condition for weakly co-Hopfian modules to be co-Hopfian.

Proposition (2.13): The following conditions are equivalent for a Quasi-IQC-injective \mathcal{R} -module \mathcal{M} :

(1) \mathcal{M} is weakly co-Hopfian.

(2) \mathcal{M} is co-Hopfian.

Proof: (1) \Rightarrow (2) Let f: $\mathcal{M} \rightarrow \mathcal{M}$ be an \mathcal{R} -monomorphism. By(1) we have f(\mathcal{M}) is essential in \mathcal{M} .f splits and hence f(\mathcal{M}) is a direct summand of \mathcal{M} , since \mathcal{M} is a Quasi- IQC -injective. Therefore f(\mathcal{M}) = \mathcal{M} . This shows that \mathcal{M} is co-Hopfian. (2) \Rightarrow (1) is obvious.

It is well-known that an \mathcal{R} -module \mathcal{M} is injective if and only if \mathcal{M} is \mathcal{N} -injective for each \mathcal{R} -module \mathcal{N} .

Proposition(2.14): The following statements are equivalent for an \mathcal{R} -module \mathcal{M} :

(1) \mathcal{M} is injective.

(2) \mathcal{M} is IQC - \mathcal{N} -injective, for each \mathcal{R} -module \mathcal{N} .

Proof: (1) \Rightarrow (2): Obvious, (2) \Rightarrow (1): Let $E = E(\mathcal{M})$ be the injective hull of \mathcal{M} . Let $i: \mathcal{M} \rightarrow E$ be the inclusion mapping and $j: E \rightarrow \mathcal{M} \oplus E$ the natural injection. By IQC $-\mathcal{M} \oplus E$ – injectivity of \mathcal{M} , implies that the identity mapping $I_{\mathcal{M}}$ of \mathcal{M} , can be extended to an \mathcal{R} -homomorphism f: $\mathcal{M} \oplus E \rightarrow \mathcal{M}$ such that $gi = I_{\mathcal{M}}$ where g = fj. Then $E = \mathcal{M} \oplus ker(g)$, then $\mathcal{M} = E$, hence \mathcal{M} is injective.

It is well-known that if \mathcal{R} is a semi simple Artinian ring, then every \mathcal{R} -module is injective ([2], Theorem(1.18)). Also, Osofsky in [16] a proved that ring \mathcal{R} is semi simple Artinian if and only if every cyclic \mathcal{R} -module is injective. Recall that \mathcal{R} is a right V-ring, if every simple \mathcal{R} -module is injective [17]. We now provide a characterization of semi simple Artinian rings in terms of Quasi- IQC - injective modules.

Theorem (2.15) :The following conditions are equivalent for a ring \mathcal{R} .

(1) Ris semi simple Artinian,

(2) \mathcal{R} is a right V-ring and every minimal quasi-injective right \mathcal{R} -module is Quasi- IQC -injective,

(3) Every \mathcal{R} -module is Quasi- IQC -injective,

Volume 7, Issue 1 available at <u>www.scitecresearch.com/journals/index.php/jprm</u>

(4) The direct sum of every two Quasi- IQC -injective modules is Quasi- IQC - injective. And every cyclic \mathcal{R} -module is Quasi- IQC -injective,

Proof: (1) \Rightarrow (2).It follows from([2], Theorem(1.18)). (2) \Rightarrow (3). Since \mathcal{R} is a right V-ring, every simple \mathcal{R} - module is injective and hence every simple right \mathcal{R} -module is a direct summand of each module containing it. So every \mathcal{R} -module is minimal quasi-injective, hence is Quasi- IQC -injective \mathcal{R} - module.(3) \Rightarrow (4).It is clear. (4) \Rightarrow (1). Let \mathcal{M} be Quasi- IQC -injective module and E the injective hull of \mathcal{M} . By(4) $\mathcal{M}\oplus E$ is Quasi- IQC -injective. Then Examples and remarks (2.2), \mathcal{M} is IQC - $\mathcal{M}\oplus E$ -injective and Proposition (2.14), hence \mathcal{M} is injective. By every cyclic \mathcal{R} -module is Quasi- IQC -injective, then every cyclic \mathcal{R} -module is injective, that is; \mathcal{R} is semi-simple Artinian, by Osofsky's theorem in [16].

Theorem (2.16): The following statements are equivalent for a ring :

(1) \mathcal{R} is a semi-simple Artinian ring .

(2) For each \mathcal{R} -module , if \mathcal{N}_1 and \mathcal{N}_2 are Quasi- IQC -injective \mathcal{R} -submodules of \mathcal{M} , then $\mathcal{N}_1 \cap \mathcal{N}_2$ is

a Quasi- IQC -injective ${\mathcal R}$ -module .

(3) For each \mathcal{R} -module , if \mathcal{N}_1 and \mathcal{N}_2 are quasi-injective \mathcal{R} -submodules of \mathcal{M} , then $\mathcal{N}_1 \cap \mathcal{N}_2$ is a Quasi-

IQC-injective \mathcal{R} -module.

(4) For each R-module , if \mathcal{N}_1 and \mathcal{N}_2 are injective \mathcal{R} -submodules of \mathcal{M} , then $\mathcal{N}_1 \cap \mathcal{N}_2$ is a Quasi- IQC -

injective \mathcal{R} -module.

Proof: (1)=>(2).It follows from Theorem (2.15). (2) =>(3) and (3) => (4) are obvious. (4) =>(1).Let \mathcal{M} be any \mathcal{R} -module and $\Xi = \Xi(\mathcal{M})$ is the injective envelope of \mathcal{M} , let $\mathcal{Q} = \Xi \oplus \Xi$, $\mathcal{K} = \{(x, x) \in \mathcal{Q} \mid x \in \mathcal{M}\}$ and let $\mathcal{Q} = \mathcal{Q} / \mathcal{K}$. Also, put $\mathcal{M}_1 = \{\mathcal{Y} + \mathcal{K} \in \mathcal{Q} \mid y \in \Xi \oplus (0)\}$ and $\mathcal{M}_2 = \{\mathcal{Y} + \mathcal{K} \in \mathcal{Q} \mid y \in (0) \oplus \Xi\}$. It is clear that $\mathcal{Q} = \mathcal{M}_1 + \mathcal{M}_2$ Define $\tau_1 : \Xi \to \mathcal{M}_1$ by τ_1 (y) =(y,0) + \mathcal{K} , for all $y \in \Xi$ and $\tau_2 : \Xi \to \mathcal{M}_2$ by $\tau_2(y) = (0,y) + \mathcal{K}$, for all $y \in \Xi$. Since $(\Xi \oplus (0)) \cap \mathcal{K} = (0)$ and $((0) \oplus \Xi) \cap \mathcal{K} = (0)$, thus we have τ_1 and τ_2 are \mathcal{R} -isomorphisms. Since Ξ is an injective \mathcal{R} -module, therefore \mathcal{M}_i is injective \mathcal{R} -submodule of \mathcal{Q} , for i=1,2. Thus by (4), we have $\mathcal{M}_1 \cap \mathcal{M}_2$ is a Quasi- IQC -injective \mathcal{R} -module. Define f: $\mathcal{M} \to \mathcal{M}_1 \cap \mathcal{M}_2$ by f(m)=(m,0)+ \mathcal{K} , for all $m \in \mathcal{M}$. Since $\mathcal{M}_1 \cap \mathcal{M}_2 = \{\mathcal{Y} + \mathcal{K} \in \mathcal{Q} \mid y \in \mathcal{M} \oplus (0)\}$, thus it is easy to prove that f is an \mathcal{R} - isomorphism. Thus \mathcal{M} is a Quasi- IQC -injective \mathcal{R} -module, by remark ((2.2),7). Hence every \mathcal{R} -module is Quasi- IQC -injective and this implies that \mathcal{R} is a semi-simple Artinian ring , by Theorem (2.15).

Recall that an \mathcal{R} -module \mathcal{M} is direct injective, if given any direct summand A of \mathcal{M} , an injection $i_A : \mathcal{A} \to \mathcal{M}$ and every \mathcal{R} -monomorphism $f : \mathcal{A} \to \mathcal{M}$, there is an \mathcal{R} -endomorphism g of \mathcal{M} such that $gf = i_A$ [18].

Volume 7, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm

Journal of Progressive Research in Mathematics(JPRM) ISSN: 2395-0218

Nicholson in([19], Theorem(7.13)) proved that direct injective \mathcal{R} -module is equivalent to C₂-condition. Proposition(2.3) shows that every Quasi- IQC injective \mathcal{R} -module is a direct injective and every direct injective \mathcal{R} -module is divisible [18]. Then we have the following:

Proposition(2.17): Every Quasi- IQC -injective \mathcal{R} -module is divisible.

The converse of Proposition(2.17) may not be true.

Quasi- IQC - injectivity is not closed under direct sums in general, as we see in the following

 $\mathcal{R} = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}, \ \mathcal{A} = \begin{pmatrix} 0 & 0 \\ 0 & F \end{pmatrix}, \ \mathcal{B} = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}, \ C = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ Where $F = \frac{Z}{2Z}$. It Is easy to see that the \mathcal{R} -modules \mathcal{A} and \mathcal{B} are quasi-injective. And hence by Examples and remarks (2.2), they are Quasi- IQC -injective. However $\mathcal{R} = \mathcal{A} \oplus \mathcal{B}$ is not Quasi- IQC -injective, since otherwise R satisfies (C2)-condition, by Proposition(2.3). But \mathcal{A} is isomorphic to C and C is not a direct summand in \mathcal{R} , contradiction.

Since \mathcal{A} and \mathcal{B} are two divisible \mathcal{R} -modules. And every direct sum of divisible \mathcal{R} -modules is divisible. That is; $\mathcal{A} \oplus \mathcal{B}$ is divisible. But it is not Quasi- IQC -injective.

In the following, we show that the distinction between Quasi- IQC -injectivity and divisibility vanishes over Dedekind domain. A domain \mathcal{R} is called Dedekind ring, if every divisible \mathcal{R} -module is injective ([20], Theorem(4.24)). We now provide a characterization of domain \mathcal{R} is Dedekind rings in terms of Quasi- IQC -injective \mathcal{R} -modules.

Theorem(2.18): The following conditions are equivalent for a ring \mathcal{R} .

(1) \mathcal{R} is Dedekind domain,

(2) Every divisible \mathcal{R} -module is Quasi- IQC -injective.

Proof: (1) \Rightarrow (2). By ([20], Theorem(4.24)). (2) \Rightarrow (1). Let \mathcal{M} be a divisible \mathcal{R} -module and $\Xi(\mathcal{M})$ an injective hull of M. By ([5], proposition (2.6)), $\Xi(\mathcal{M})$ is divisible and by ([5], Lemma(2.5)), then $\mathcal{M}\oplus\Xi$ is divisible. By(2) $\mathcal{M}\oplus\Xi$ is Quasi- IQC -injective. Then Examples and remarks (2.2), \mathcal{M} is IQC- $\mathcal{M}\oplus\Xi$ - injective and Proposition(2.14). That is; \mathcal{M} is injective, implies \mathcal{R} is Dedekind domain [20].

Recall that a ring \mathcal{R} is SI-ring, if every singular \mathcal{R} -module is injective ([3], below Corollary (7.16)). Over non singular ring; we provide a characterization of SI-ring in terms of Quasi- IQC -injective \mathcal{R} – modules.

Proposition(2.19): The following statements are equivalent for non singular ring \mathcal{R} :

(1) \mathcal{R} is SI-ring.

Volume 7, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm

(2) Every singular \mathcal{R} -module is Quasi- IQC -injective,

Proof: (1) \Rightarrow (2) is clear.(2) \Rightarrow (1). Let \mathcal{M} be a singular \mathcal{R} -module and $\Xi(\mathcal{M})$ the injective hull of \mathcal{M} . ([2], Proposition(1.23) and (1.22)), then $\mathcal{M}\oplus\Xi(\mathcal{M})$ is singular. By(2) $\mathcal{M}\oplus\Xi$ is Quasi- IQC -injective. Then Examples and remarks (2.2), \mathcal{M} is IQC $-\mathcal{M}\oplus\Xi$ -injective and Proposition(2.14), hence \mathcal{M} is injective. That is; \mathcal{R} is SI-ring.

In the next part we characterize some rings by Quasi- IQC -injectivity. In the following, Noetherian rings are characterize as in terms of Quasi- IQC -injective. Recall that a \mathcal{R} -module \mathcal{M} is F-injective, if for any finitely generated ideal \mathcal{L} of \mathcal{R} , every \mathcal{R} -homomorphism of \mathcal{L} into \mathcal{M} , can be extended to an \mathcal{R} -homomorphism \mathcal{M} into \mathcal{M} [21].

Proposition (2.20) : The following conditions are equivalent:

- (1) \mathcal{R} is Noetherian ring;
- (2) Every F-injective \mathcal{R} -modules are injective;
- (3) Every F-injective \mathcal{R} -module is Quasi- IQC -injective.

Proof: (1) implies (2) and (2) implies (3) are evidently.

Assume (3). Let \mathcal{M} be a F-injective \mathcal{R} -module, E the injective hull of \mathcal{M} . Write $Q=\mathcal{M}\oplus\Xi$ is F-injective \mathcal{R} -module. By(3) $\mathcal{M}\oplus\Xi$ is Quasi- IQC -injective. Then Examples and remarks (2.2) , \mathcal{M} is IQC - $\mathcal{M}\oplus\Xi$ - injective and Proposition(2.14), hence \mathcal{M} is injective. We have shown that every F-injective \mathcal{R} -module is injective. Since any direct sum of F-injective \mathcal{R} -modules is F-injective, then every direct sum of injective modules is injective which implies that \mathcal{R} is Noetherian, by ([20], P.82). Thus (3) implies (2) and (2) implies (1).

References

[1] Kasch, F, Modules and Rings. Academic Press Inc. London (English Translation) (1982).

[2] Good earl, K.R, Ring Theory, Nonsingular Rings and Modules, Marcel Dekker. Inc.New York, (1976).

[3] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending Modules, Pitman, (1996).

[4] S .Mohamed and Thanaa, Continuous modules ,Arabian J. for science and Engineering 2,107 - 112, (1976).

[5] ND. W. Sharpe, P. Vamos, Injective Modules, Cambridge University Press, Cam-bridge, (1972).

[6] R. E. Johnson and E. T. Wong: Quasi-injective modules and irreducible rings, J. London Math. Soc. 260-268, 39 (1961).

Volume 7, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm

[7] Zhu Z. and Tan, Z. S., Minimal quasi-injective modules. Sci. Math. Jpn. 62, 465-469, (2005).

[8] M. A. Hadi and M. A. Ahmed, fully extending module, International Journal of Algebra, Vol. 7, 2013, no. 3, 101 - 114

[9] Samir M. Saied , fully continuous module, Journal of Education for International Scientific Conference VII-Faculty of Education -University of Wasit , 2169-2176, 2014.

[10]H. Q. Dinh, A note on pseudo-injective modules, comm. Algebra , 33 ,(2005),361-369. [11]

A. W. Goldie : Torsion-free modules and rings, J. Algebra, 268-287, 1, (1964).

[12] M. Harada, Note on quasi-injective modules, Osaka J. Math. 351-356, 2, (1965).

[13] Barnard, A, Multiplication modules, Journal of Algebra 71, 174-178, (1981).

[14] K. Varadarajan, Hopfian and co-Hopfian objects, publicacionsMathematiques, Vol 36 293- 317, (1992).

[15] M. R. Vedadi and A. Haghany, Modules whose injective endomorphisms are essential, Journal of Algebra 243, 765-779,(2001).

[16] B. L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. 645- 650, Math. 14, (1964).

[17] O. E. Villamayor and G. O. Michler, On rings whose simple modules are injective, Algebra 25, 185-201,(1973).

[18] Chang -woo Han and Su-JeongChol, Generalizations of the quasi-injective modules, comm. Korean Math. Soc. 10, No.4, pp. 811-813, (1995).

[19] W. K. Nicholson, M. F. Yousif: Quasi-Frobenius Rings, Cambridge University Press, 2003.

[20]J. J. Rotman, An Introduction to Homological Algebra, New York: AcademicPress, (2000).

[21] R.Y. C. Ming. On regular rings and self-injective rings, IV, Publications De l'institutMathematique, Nouvelle serie tome 45(59), pp. 65-72, (1989).