

Volume 7, Issue 1

Published online: March 12, 2016

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Ec-CLS-modules

Sahira.M.Yaseen*, Mona H. Abd-ALrazak Dep.of Math. College of Science, Baghdad University

Abstract.

In this not we consider generalization of the notion of y-closed submodule and CLS-module called y-ec-closed submodule and an Ec-CLS-module respectively. And we study the properties of this kind of module. Also we study the direct sum of an Ec-CLS-module.

Keywords: y-closed submodule; Extending and CLS-modules.

Introduction:

Throughout this paper R will be a commutative ring with identity, and all modules will be unitary left Rmodules. A proper submodule N of an R-module M is called an essential submodule in M, if for every nonzero submodule K of M has nonzero intersection with N [1]. A submodule N of M is called closed in M, if it has no proper essential extension in M [1]. A submodule N is called ec-closed submodule if N contains essentially a cyclic submodule, i.e. there exists $n \in N$ such that $\langle n \rangle \subseteq_e N$ [2]. A submodule N is called y-closed submodule of a module M, if $\frac{M}{N}$ is nonsingular [1]. An R-module M is called and (CS-module), if every submodule of M is essential in a direct summand of M. A Tercan introduced the following concept: An Rmodule M is called a CLS-module, if every y-closed submodule of M is a direct summand of M [3].

In this paper, we introduce the concept of y-ec-closed submodule of a module M, and we defined a CLSmodule that every y-ec-closed submodule is a direct summand.

In section one, we defined y-ec-closed submodules and give some properties of these submodules.

In section two, we give the definition of Ec-CLS-module, we also give their properties. We prove that any direct summand of an Ec-CLS-module is an Ec-CLS-module.

In section three, we study the direct sum of an Ec-CLS-module. It is shown that if $M = M_1 \bigoplus M_2$, where M_1 and M_2 are an Ec-CLS-modules such that ann M_1 +ann $M_2 = R$, then M is an Ec-CLS-module.

1. y-ec-closed submodule.

Definition (1.1): Let N be an ec-submodule of M, N is called y-ec-closed submodule of M, if $\frac{M}{N}$ is nonsingular.

Remarks and examples (1.2):

1. For any uniform R-module M is y-ec-closed submodule of M.

- 2. The module Z as Z-module contains only <0> and Z which are y-ec-closed submodules of Z.
- 3. Every y-ec-closed submodule of M is y-closed submodule.

4. Every y-ec-closed submodule of M is ec-closed submodule of M and, then it is closed. The converse is not true, for example; $M = Z_6$ as Z-module and $\{\overline{0}, \overline{2}, \overline{4}\}$ is ec-closed (closed) submodule of Z_6 , but $\frac{Z_6}{\{\overline{0}, \overline{2}, \overline{4}\}} = \{\overline{0}, \overline{3}\}$ is not y-ec-closed.

Proposition (1.3): Let M be a nonsingular R-module, and let N be an ec-submodule of M. Then N is y-ecclosed in M, if and only if N is ec-closed submodule.

Proof: The necessity is given by Remark 1.2(4). Conversely, suppose that M is nonsingular R-module, and N is ec-closed submodule of M. If $Z(\frac{M}{N}) = \frac{A}{N}$, where A is a submodule of M with N⊆A. Hence N⊆_e A by [1, prop.1.21, p.32], but N is ec-closed, then N is closed. Therefore, N = A and there exists n∈N such that nR⊆_eN. Thus $Z(\frac{M}{N}) = 0$, and hence N is y-ec-closed submodule of M.

Examples (1.4):

- 1. Every nonsingular simple R-module M is y-ec-closed of M.
- 2. Every nonsingular uniform R-module M has only two y-ec-closed submodule<0> and M.

Remark (1.5): Let R be an integral domain and let N be an ec-submodule of R-module M. If $\frac{M}{N}$ is torsion free, then N is y-ec-closed of M.

Proof: Since R is an integral domain and $\frac{M}{N}$ is torsion free, then $0 = T(\frac{M}{N}) = Z(\frac{M}{N})$ by

[1, p.31]. Then $\frac{M}{N}$ is nonsingular and hence N is an y-ec-closed submodule.

Proposition (1.6): Let M be an R-module and A, B be ec-submodule of M such that $A \subseteq B$ then:

1. If A is an y-ec-closed of M, then A is an y-ec-closed of B.

2. If $\frac{B}{A}$ is y-ec-closed of $\frac{M}{A}$, then B is y-ec-closed submodule of M.

3. If A is y-ec-closed of M, then $\frac{M}{B}$ is singular if and only if $B \subseteq_e M$.

4. If A is y-ec-closed in B, and B isy-ec-closed of M, then A is y-ec-closed submodule of M.

Proof:

1. It is clear.

prove the converse.

2. Let $\frac{B}{A}$ be y-ec-closed of $\frac{M}{A}$, then there exists $\frac{\langle x \rangle}{A} \subseteq_{e_{\overline{A}}}^{B}$, where $x \in B$ and $\frac{M}{\frac{B}{A}}$ is nonsingular. But $\frac{M}{\frac{B}{A}} \cong \frac{M}{B}$ by third isomorphism theorem), then B is y-closed and since $\langle x \rangle \subseteq_{e_{\overline{B}}}^{B}$, thus B is y-ec-closed of M. By the same we can

3. By Remark 1.2(3) and [4, prop.2.1.18, p.27].

4. It is clear by Remark 1.2(4) and [4, prop.2.1.10, p.24].

Proposition (1.7): Let M be an R-module and A, B be an ec-submodules of M, then A is y-ec-closed submodule of A+B if and only if $A\cap B$ is y-ec-closed submodule of B.

Proof: Assume that A is y-ec-closed submodule of A+B, then A is y-closed submodule of A+B by Remark 1.2(3). Therefore A∩B is y-closed of B, by [4, prop.2.16, p.22]. But A is y-ec-closed, then there exists $x \in A$ such that $\langle x \rangle \subseteq_e A$, $\langle x \rangle \cap (A \cap B) \subseteq_e A \cap B$. Hence A∩B is y-ec-closed submodule of B. The converse by the same way.

Proposition (1.8): Let $M = A \oplus B$ be an R-module, if A is an y-ec-closed submodule of M, then B is nonsingular

Proof: Assume that A is y-ec-closed of M, then A is y-closed submodule of M by Remark 1.2(3). Therefore B is nonsingular by [4, prop.2.1.7].

Proposition (1.9): Let A and B are y-ec-closed submodule of an R-module M, then $A \cap B$ is y-ec-closed of M.

Proof: Since A and B are y-ec-closed, then A and B are y-closed by Remark 1.2(3), then $A \cap B$ is y-closed by [4, prop.2.1.8]. But A and B are y-ec-closed, then there exists $a \in A$ and $b \in B$ such that $\langle a \rangle \subseteq_e A$ and $\langle b \rangle \subseteq_e B$, then $\langle a \rangle \cap \langle b \rangle \subseteq_e A \cap B$ by [1, prop.1.1, p.16]. Hence $A \cap B$ is y-ec-closed of M.

Proposition (1.10): Let M be an R-module, and let $\{B\alpha | \alpha \in \xi\}$ be an independent family of submodules of M. If $\{A\alpha | \alpha \in \xi\}$ is a family of submodules of M such that $A\alpha \subseteq B\alpha$, $\forall \alpha \in \xi$, then $\bigoplus A\alpha$ is y-ec-closed submodule of $\bigoplus B\alpha, \alpha \in \xi$ if and only if $A\alpha$ is y-ec-closed submodule of $B\alpha, \forall \alpha \in \xi$.

Proof: \rightarrow by Remark 1.2(3) and [prop.2.1.20, p.24], we get if $\bigoplus A\alpha$ is y-ec-closed submodule of $\bigoplus B\alpha, \alpha \in \xi$ then $A\alpha$ is y-ec-closed submodule of $B\alpha, \forall \alpha \in \xi$. Since $\bigoplus A\alpha$ is y-ec-closed, then there exists $a\alpha \in A\alpha, \forall \alpha \in \xi$, such that $\bigoplus < a\alpha > \subseteq_e \bigoplus A\alpha, \forall \alpha \in \xi$ then $< a\alpha > \subseteq_e A\alpha, \forall \alpha \in \xi$ by [1, prop.1.10]. Hence $A\alpha$ is y-ec-closed of $B\alpha$.

Conversely, let $A\alpha$ be y-ec-closed of $B\alpha$, $\forall \alpha \in \xi$, then $A\alpha$ is y-ec-closed submodule of $B\alpha$, $\forall \alpha \in \xi$ by Remark 1.2(3), then $\bigoplus A\alpha$ is y-ec-closed submodule of $\bigoplus B\alpha, \alpha \in \xi$ by [4, prop.2.1.20, p.29]. Since $A\alpha$ is y-ec-closed submodule of $B\alpha$, then there exists $a\alpha \in A\alpha, \forall \alpha \in \xi$ such that $\langle a\alpha \rangle \subseteq_e A\alpha, \forall \alpha \in \xi$ then $\bigoplus \langle a\alpha \rangle \subseteq_e \oplus A\alpha, \forall \alpha \in \xi$ by (prop.1.1(d), p.16), then $\bigoplus A\alpha$ is y-ec-closed submodule of $\bigoplus B\alpha, \alpha \in \xi$.

Proposition (1.12): Let M be an R-module and N be y-ec-closed submodule of M, then [N:M] is y-ec-closed ideal of R.

Proof: Let N be an y-ec-closed submodule of M, then N is y-closed of M by Remark 1.2(3). Thus, [N:M] is y-closed ideal of R by [, prop.2.1.21, p.30]. Since N is y-ec-closed submodule of M, then there exists $n \in N$ such that $\langle n \rangle \subseteq_e N$, [$\langle n \rangle : \langle x \rangle] \subseteq_e [N:M]$, $\forall x \in M$ by [5, prop.3.13, p.59]. Hence [N:M] is y-ec-closed of R.

2. EC-CLS- module:

In this section we introduce the concept of EC-CLS-module and discuss some of basic properties of these modules.

Definition (2.1): An R-module M is called EC-CLS-module, if every y-ec-closed submodule of M is a direct summand of M.

Remark (2.2): Every CLS-module is EC-CLS-module.

Proof: Let M be an R-module, and let A be y-ec-closed submodule of M. Then A is y-closed submodule of M by Remark 1.2(3). But M is CLS-module, then A is a direct summand of M. Therefore M is EC-CLS-module.

Remarks and Examples (2.3):

1. Z as Z-module is EC-CLS-module.

- 2. It is clear that Z_6 as Z_6 -module is EC-CLS-module.
- 3. Every singular R-module is EC-CLS-module.

4. Every CS-module is EC-CLS-module, but the converse is not true in general. For example, consider the module $M = Z_8 \oplus Z_2$ as Z-module. Since Z_8 and Z_2 are singular, then M is singular by [1, prop.1.22, p.32] and hence M is CLS-module. Therefore M is EC-CLS-module by Remark 2.2. But M is not CS-module by [6, p.56].

5. Every nonsingular finite uniform dimension, then M is EC-CLS-R-module if R is CS-module.

Proof: Let A be any maximal uniform submodule of M, clearly A is an ec-closed submodule in M. But M is nonsingular, then A is y-ec-closed of M. Since M is EC-CLS-module, then A is a direct summand of M. Hence M is CS. The converse is clear by the above Remark

Lemma (2.4): Any direct summand of an EC-CLS-module is an EC-CLS-module.

Proof: Let $M = A \oplus B$ be an EC-CLS-module. To show that A is EC-CLS-module, let K be an y-ec-closed

submodule of A. By third and second isomorphism theorems, we have $\frac{M}{K \oplus B} = \frac{A \oplus B}{K \oplus B} \cong \frac{A \oplus B}{\frac{K}{B}} \cong \frac{A}{\frac{A \cap B}{K \cap B}} = \frac{A}{K}$. Since

K is y-ec-closed of A, then $\frac{A}{K}$ is nonsingular. Thus, K \oplus B is an y-ec-closed submodule of M. But M is EC-CLS-module, therefore K \oplus B is a direct summand of M. So, M = K \oplus B \oplus D for some D a submodule of M. Since K is a direct summand of M and K \subseteq A, then K is a direct summand of A.

Proposition (2.5): Every y-ec-closed of an EC-CLS-module is an EC-CLS-module.

Proof: Let M be an EC-CLS-module, and N be y-ec-closed submodule of M. Let A ne y-ec-closed submodule of N. Then by prop.1.5(4), A is y-ec-closed submodule of M. But M is an EC-CLS-module, therefore A is a direct summand of M. Hence A is a direct summand of N.

Proposition (2.6): Let A and B be submodules of an R-module M, if B is EC-CLS-module and A is an y-ecclosed submodule of M, then $A \cap B$ is a direct summand of B.

Proof: Assume that A is y-ec-closed of M, and B is EC-CLS-module. By the second isomorphism theorem $\frac{A}{A \cap B} \cong \frac{A+B}{B}$. Since $\frac{A+B}{A} \subseteq \frac{M}{A}$, then $\frac{A+B}{A}$ is nonsingular, and hence A \cap B is y-ec-closed submodule of B. But B is EC-CLS-module, therefore A \cap B is a direct summand of B.

Proposition (2.7): Let A be a submodule of an R-module M, if M is an EC-CLS-module, then $\frac{M}{A}$ is an EC-CLS-module.

Proof: Let $\frac{B}{A}$ be an y-ec-closed submodule of $\frac{M}{A}$, then by prop.1.5(2) B is y-ec-closed submodule of M. But M is EC-CLS-module, then B is a direct summand of M. Thus $M = B \oplus K$, for some submodule K of M. Since $A \subseteq B$, then $\frac{M}{A} = \frac{B}{A} \oplus \frac{K+A}{A}$, thus $\frac{M}{A}$ is EC-CLS-module.

3. The direct sums of EC-CLS-modules.

A direct sum of EC-CLS-modules need not EC-CLS-module in general. Hence, we look for conditions under which this property is valid.

Example (3.1): Each of Z_2 and Z_8 are EC-CLS-modules, but $M = Z_2 \bigoplus Z_8$ is not EC-CLS-module.

Theorem (3.2): Let $M = M_1 \bigoplus M_2$ be an R-module such that M_1 is M_2 -injective, where M_1 and M_2 are EC-CLS-modules, then M is an EC-CLS-module.

Proof: Let A be an y-ec-closed submodule of M, then $\frac{M}{A}$ is nonsingular. By the second isomorphism theorem $\frac{M_1}{A \cap M_1} \cong \frac{M_1 + A}{A} \subseteq \frac{M}{A}$. So, $A \cap M_1$ is an y-ec-closed submodule of M_1 . But M_1 is EC-CLS-module, therefore $A \cap M_1$ is a direct summand of M_1 . Hence $A \cap M_1$ is a direct summand of M. It follows that $A \cap M_1$ is a direct summand of A, then $A = (A \cap M_1) \bigoplus K$, for submodule K of A. Let π_i : $M \to M_i$, i=1,2 be the projective maps. Now, consider the following diagram.

Where $\alpha = \pi_2|_{K}$ and $\beta = \pi_1|_{K}$. Since α is a monomorphism and M_1 is M_2 -injective, then there exists a homomorphism $\varphi: M_2 \rightarrow M_1$ such that $\varphi \circ \alpha = \beta$. Let $L = \{x + \varphi(x) : x \in M_2\}$. One can easily check that L is a submodule of M and $L \cong M_2$. Moreover, $M = M_1 \oplus L$. To show that, let $x \in M = M_1 \oplus M_2$, then $x = m_1 + m_2$, where $m_1 \in M_1$ and $m_2 \in M_2$. Thus $x = m_1 + m_2 + \varphi(m_2) - \varphi(m_2) = (m_1 - \varphi(m_2)) + ((m_2 + \varphi(m_2)) \in M_1 + L$. Now, let $x \in M_1 + L$. Since $x \in L$, then $x = y + \varphi(y)$, $y \in M_2$, thus $y \in M_1 \cap M_2 = 0$ and then x = 0. Now, let $k \in K$, then $k = m_1 + m_2$, for some, $m_1 \in M_1$ and $m_2 \in M_2$. Then $m_1 = \beta(k) = \varphi \circ \alpha(k) = \varphi(m_2)$. This implies that $k = m_2 + \varphi(m_2) \in L$. Thus $k \subseteq L$. Since $\frac{M}{A} = \frac{M_1 \oplus L}{(A \cap M_1) \oplus K} \cong \frac{M_1}{(A \cap M_1)} \oplus \frac{L}{K}$, then $\frac{L}{K}$ is nonsingular, and K is an y-ec-closed submodule of L. But $L \cong M_2$ and M_2 is EC-CLS-module, then K is a summand of L. Thus $L = K \oplus D$, for some submodule D of L. Now, since $A \cap M_1$ is a direct summand of M_1 , then $M_1 = (A \cap M_1) \oplus B$, for some B of M_1 . So, $M = M_1 \oplus L = (A \cap M_1) \oplus B \oplus K \oplus D = A \oplus B \oplus D$, then A is a direct summand of M. Hence M is EC-CLS-module.

Proposition (3.3): Let R be a ring and M be an R-module such that $M = \bigoplus M_i$, (i=1,...,n) is finite direct sum of relatively modules $M_{i,i}$ (i=1,...,n). Then M is EC-CLS-module if and only if M_i is an EC-CLS-module for each(i=1,...,n).

Proposition (3.4): Let M_1 and M_2 be EC-CLS-modules such that $annM_1 + annM_2 = R$, then $M = M_1 \bigoplus M_2$ is EC-CLS-module.

Proof: Let A be an y-ec-closed submodule of $M_1 \oplus M_2$. Since $annM_1 + annM_2 = R$, then by the same way of the prove [7, prop.2.2, ch.2], $A = C \oplus D$, where C is a submodule of M_1 and D is a submodule of M_2 . Since $A = C \oplus D$ is y-ec-closed submodule of $M = M_1 \oplus M_2$, then C is y-ec-closed submodule M_1 and D is y-ec-closed submodule M_2 by prop.1.11. But M_1 and M_2 are EC-CLS-modules, then C is summand of M_1 and D is a summand of M_2 . So, $A = C \oplus D$ is a summand of $M = M_1 \oplus M_2$. Hence M is an EC-CLS-module.

Proposition (3.5): Let $M = \bigoplus M_i$, (i=1,...,n) be an R-module such that every y-ec-closed submodule of M is fully invariant, then M is an EC-CLS-module if and only if M_i is EC-CLS-module,(i=1,...,n).

Proof: \rightarrow Clear by lemma 2.4.

← Let A be an y-ec-closed submodule of M. For each (i=1,...,n), let π_i : M→M_i, be the projection map. Now, let x∈A, then x = $\sum_{i=0}^{n}$ mi, m_i∈M_iand m_i = 0, for all except a finite of i = 1,...,n). Clearly that $\pi_i(x) = m_i \forall i \in I$ Since A isis y-ec-closed submodule then by our assumption A is fully invariant and hence $\pi_i(x) = m_i \in A \cap M_i$. So, x∈ $\oplus(A \cap M_i)$, thus A ⊆ $\oplus(A \cap M_i)$. But $\oplus(A \cap M_i) \subseteq A_i$, then $\oplus(A \cap M_i) = A_i$, since A is y-ec-closed submodule of M, therefore $(A \cap M_i)$ is y-ec-closed submodule of M_i, $\forall i, (i=1,...,n)$, by prop.1.8. But M_i is EC-CLS-module $\forall i, (i=1,...,n)$, then $(A \cap M_i)$ is a direct summand of M_i. Thus, A is a direct summand of M.

References:

- 1. Goodearl, K.R. 1976. Ring theory, Non singular rings and modules. Marcel Dekker, New York.
- 2. M.A.Kamal and O.A.Elmnophy,2005, On p-Extending Modules, Acta Math. Univ. Comenianac, Vol. LXXIV, P.125-133.
- 3. Yongdue Wang, When an y-closed submodule is a direct summand, MathR. A., 2010.

- 4. B.AL-Bahrany, H.S. Lamyaa, Extending, Injactivity and chain condition on Y-closed submodules. M.Sc.Thesis, Collage of Science, University of Baghdad, (2012).
- 5. A. A. Ahmed, On submodules of multiplication modules, M.Sc.Thesis, Department of Mathematics, Collage of science, University of Baghdad, Baghdad, Iraq, **1992.**
- 6. Dung,N.V. Huynh,D.V. Smith,P.F and Wisbauer,R.1994. *Extending Modules*. Pitman Research Notes in Mathematics Series 313,Longman, NewYork.
- 7. M.S. Abbas, M.S.1991. On fully stable modules. Ph.D. Thesis. Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.