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Abstract. 
In this not we consider generalization of the notion of y-closed submodule and CLS-module called y-ec-closed 
submodule and an Ec-CLS-module respectively. And we study the properties of this kind of module. Also we 
study the direct sum of an Ec-CLS-module. 
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Introduction: 

      Throughout this paper R will be a commutative ring with identity, and all modules will be unitary left R–

modules. A proper submodule  N of an R–module  M  is called an essential submodule in  M, if for every 

nonzero submodule  K  of  M has nonzero intersection with N [1].A submodule N of M   is called closed in M, 

if it has no proper essential extension in M [1]. A submodule N is called ec-closed submodule if N contains 

essentially a cyclic submodule, i.e. there exists n∈N such that <n>⊆eN [2]. A submodule N is called y-closed 

submodule of a module M, if 
𝑀

𝑁
 is nonsingular [1]. An R-module M is called anc (CS-module), if every 

submodule of M is essential in a direct summand of M. A Tercan introduced the following concept: An R-

module M is called a CLS-module, if every y-closed submodule of M is a direct summand of M [3]. 

In this paper, we introduce the concept of y-ec-closed submodule of a module M, and we defined a CLS-

module that every  y-ec-closed submodule is a direct summand. 

  In section one, we defined y-ec-closed submodules and give some properties of these submodules. 

        In section two, we give the definition of Ec-CLS-module, we also give their properties. We prove that 

any direct summand of an Ec-CLS-module is an Ec-CLS-module.  

         In section three, we study the direct sum of an Ec-CLS-module. It is shown that if M = M1⨁M2, where 

M1 and M2 are an Ec-CLS-modules such that annM1+annM2 = R, then M is an Ec-CLS-module. 

 

1. y-ec-closed submodule. 

 

Definition (1.1): Let N be an ec-submodule of M, N is called y-ec-closed submodule of M, if 
𝑀

𝑁
 is 

nonsingular. 

Remarks and examples (1.2): 

1. For any uniform R-module M is y-ec-closed submodule of M. 
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2. The module Z as Z-module contains only <0> and Z which are y-ec-closed submodules of Z. 

3. Every y-ec-closed submodule of M is y-closed submodule. 

4. Every y-ec-closed submodule of M is ec-closed submodule of M and, then it is closed. The converse is not 

true, for example; M = Z6 as Z-module and {0 , 2 , 4 } is ec-closed (closed) submodule of Z6, but 
Z6

{0 ,2 ,4 }
 = {0 , 3 } 

is not y-ec-closed. 

Proposition (1.3): Let M be a nonsingular R-module, and let N be an ec-submodule of M. Then N is y-ec-

closed in M, if and only if N is ec-closed submodule. 

Proof: The necessity is given by Remark 1.2(4). Conversely, suppose that M is nonsingular R-module, and N 

is ec-closed submodule of M. If Z(
𝑀

𝑁
) = 

𝐴

𝑁
, where A is a submodule of M with N⊆A. Hence N⊆e A by [1, 

prop.1.21, p.32], but N is ec-closed, then N is closed. Therefore, N = A and there exists n∈N such that nR⊆eN. 

Thus Z(
𝑀

𝑁
) = 0, and hence N is y-ec-closed submodule of M. 

Examples (1.4): 

1. Every nonsingular simple R-module M is y-ec-closed of M. 

2. Every nonsingular uniform R-module M has only two y-ec-closed submodule<0> and M. 

Remark (1.5): Let R be an integral domain and let N be an ec-submodule of R-module M. If  
𝑀

𝑁
 is torsion 

free, then N is y-ec-closed of M. 

Proof: Since R is an integral domain and  
𝑀

𝑁
 is torsion free, then 0 = T(

𝑀

𝑁
) = Z( 

𝑀

𝑁
) by  

[1, p.31]. Then  
𝑀

𝑁
 is nonsingular and hence N is an y-ec-closed submodule. 

Proposition (1.6): Let M be an R-module and A, B be ec-submodule of M such that A⊆B then: 

1. If A is an y-ec-closed of M, then A is an y-ec-closed of B. 

2. If 
𝐵

𝐴
 is y-ec-closed of  

𝑀

𝐴
, then B is y-ec-closed submodule of M. 

3. If A is y-ec-closed of M, then   
𝑀

𝐵
 is singular if and only if B⊆eM. 

4. If A is y-ec-closed in B, and B isy-ec-closed of M, then A is y-ec-closed submodule of M. 

Proof:  

1. It is clear. 

2. Let 
𝐵

𝐴
 be y-ec-closed of 

𝑀

𝐴
, then there exists 

<𝑥>

𝐴
⊆e

𝐵

𝐴
, where x∈B and 

𝑀

𝐴
𝐵

𝐴

 is nonsingular. But 

𝑀

𝐴
𝐵

𝐴

≅
𝑀

𝐵
 by third 

isomorphism theorem), then B is y-closed and since <x>⊆eB, thus B is y-ec-closed of M. By the same we can 

prove the converse. 

3. By Remark 1.2(3) and [4, prop.2.1.18, p.27]. 

4. It is clear by Remark 1.2(4) and [4, prop.2.1.10, p.24]. 

 

Proposition (1.7): Let M be an R-module and A, B be an ec-submodules of M, then A is y-ec-closed 

submodule of A+B if and only if A∩B is y-ec-closed submodule of B. 

Proof: Assume that A is y-ec-closed submodule of A+B, then A is y-closed submodule of A+B by Remark 

1.2(3). Therefore A∩B is y-closed of B, by [4, prop.2.16, p.22]. But A is y-ec-closed, then there exists 

x∈Asuch that <x>⊆eA, <x>∩(A∩B) ⊆e A∩B. Hence A∩B is y-ec-closed submodule of B. The converse by 

the same way. 
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Proposition (1.8): Let M = A⨁B be an R-module, if A is an y-ec-closed submodule of M, then B is 

nonsingular 

Proof: Assume that A is y-ec-closed of M, then A is y-closed submodule of M by Remark 1.2(3). Therefore B 

is nonsingular by [4, prop.2.1.7]. 

Proposition (1.9): Let A and B are y-ec-closed submodule of an R-module M, then A∩B is y-ec-closed of M. 

Proof: Since A and B are y-ec-closed, then A and B are y-closed by Remark 1.2(3), then A∩B is y-closed by 

[4, prop.2.1.8]. But A and B are y-ec-closed, then there exists a∈A and b∈B such that <a>⊆eA and <b>⊆eB, 

then <a>∩<b>⊆eA∩B by [1, prop.1.1, p.16]. Hence A∩B is y-ec-closed of M. 

Proposition (1.10): Let M be an R-module, and let {B𝛼|𝛼 ∈ 𝜉} be an independent family of submodules of 

M. If {A𝛼|𝛼 ∈ 𝜉} is a family of submodules of M such that A𝛼 ⊆ B𝛼 , ∀𝛼 ∈ 𝜉, then ⨁A𝛼 is y-ec-closed 

submodule of ⨁B𝛼,𝛼 ∈ 𝜉 if and only if A𝛼 is y-ec-closed submodule of B𝛼, ∀𝛼 ∈ 𝜉. 

Proof: → by Remark 1.2(3) and [prop.2.1.20, p.24], we get if  ⨁A𝛼 is y-ec-closed submodule of ⨁B𝛼,𝛼 ∈ 𝜉 

then A𝛼 is y-ec-closed submodule of B𝛼, ∀𝛼 ∈ 𝜉. Since  ⨁A𝛼is y-ec-closed, then there exists a𝛼 ∈ A𝛼,∀𝛼 ∈
𝜉, such that ⨁< a𝛼>⊆e⨁A𝛼,∀𝛼 ∈ 𝜉 then < a𝛼>⊆eA𝛼,∀𝛼 ∈ 𝜉 by [1, prop.1.10]. Hence A𝛼 is y-ec-closed of 

B𝛼 . 

      Conversely, let A𝛼be y-ec-closed of B𝛼 , ∀𝛼 ∈ 𝜉, then A𝛼 is y-ec-closed submodule of B𝛼, ∀𝛼 ∈ 𝜉by 

Remark 1.2(3), then ⨁A𝛼 is y-ec-closed submodule of ⨁B𝛼,𝛼 ∈ 𝜉 by [4, prop.2.1.20, p.29]. Since A𝛼 is y-

ec-closed submodule of B𝛼  , then there exists a𝛼 ∈ A𝛼 ,∀𝛼 ∈ 𝜉  such that < a𝛼>⊆eA𝛼 ,∀𝛼 ∈ 𝜉  then ⨁< 

a𝛼>⊆e⨁A𝛼,∀ 𝛼 ∈ 𝜉 by (prop.1.1(d), p.16), then ⨁A𝛼 is y-ec-closed submodule of ⨁B𝛼,𝛼 ∈ 𝜉. 

 

Proposition (1.12): Let M be an R-module and N be y-ec-closed submodule of M, then [N:M] is y-ec-closed 

ideal of R. 

Proof: Let N be an y-ec-closed submodule of M, then N is y-closed of M by Remark 1.2(3). Thus, [N:M] is y-

closed ideal of R by [ , prop.2.1.21, p.30]. Since N is y-ec-closed submodule of M, then there exists n∈N such 

that <n>⊆eN, [<n> : <x>]⊆e[N:M],  ∀ x∈M by [5, prop.3.13, p.59]. Hence [N:M] is y-ec-closed of R. 

2. EC-CLS- module: 

In this section we introduce the concept of EC-CLS-module and discuss some of basic properties of these 

modules.  

Definition (2.1): An R-module M is called EC-CLS-module, if every y-ec-closed submodule of M is a direct 

summand of M. 

Remark (2.2): Every CLS-module is EC-CLS-module. 

Proof: Let M be an R-module, and let A be y-ec-closed submodule of M. Then A is  y-closed submodule of M 

by Remark 1.2(3). But M is CLS-module, then A is a direct summand of M. Therefore M is EC-CLS-module. 

Remarks and Examples (2.3):  

1. Z as Z-module is EC-CLS-module. 

2. It is clear that Z6 as Z6-module is EC-CLS-module. 

3. Every singular R-module is EC-CLS-module. 

4. Every CS-module is EC-CLS-module, but the converse is not true in general. For example, consider the 

module M = Z8⨁Z2 as Z-module. Since Z8 and Z2 are singular, then M is singular by [1, prop.1.22, p.32] and 

hence M is CLS-module. Therefore M is EC-CLS-module by Remark 2.2. But M is not CS-module by [6, 

p.56]. 

5. Every nonsingular finite uniform dimension, then M is EC-CLS-R-module if R is CS-module. 
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Proof: Let A be any maximal uniform submodule of M, clearly A is an ec-closed submodule in M. But M is 

nonsingular, then A is y-ec-closed of M. Since M is EC-CLS-module, then A is a direct summand of M. 

Hence M is CS. The converse is clear by the above Remark 

Lemma (2.4): Any direct summand of an EC-CLS-module is an EC-CLS-module. 

Proof: Let M = A⨁B be an EC-CLS-module. To show that A is EC-CLS-module, let K be an y-ec-closed 

submodule of A. By third and second isomorphism theorems, we have 
𝑀

K⨁B
 = 

A⨁B

K⨁B
≅

A⨁B

B
K⨁B

B

≅
A

A∩B
K

K∩B

 = 
𝐴

K
. Since 

K is y-ec-closed of A, then 
𝐴

K
 is nonsingular. Thus, K⨁B is an y-ec-closed submodule of M. But M is EC-

CLS-module, therefore K⨁B is a direct summand of M. So, M = K⨁B⨁D for some D a submodule of M. 

Since K is a direct summand of M and K⊆A, then K is a direct summand of A.  

Proposition (2.5): Every y-ec-closed of an EC-CLS-module is an EC-CLS-module. 

Proof: Let M be an EC-CLS-module, and N be y-ec-closed submodule of M. Let A ne y-ec-closed submodule 

of N. Then by prop.1.5(4), A is y-ec-closed submodule of M. But M is an EC-CLS-module, therefore A is a 

direct summand of M. Hence A is a direct summand of N. 

Proposition (2.6): Let A and B be submodules of an R-module M, if B is EC-CLS-module and A is an y-ec-

closed submodule of M, then A∩B is a direct summand of B. 

Proof: Assume that A is y-ec-closed of M, and B is EC-CLS-module. By the second isomorphism 

theorem
𝐴

A∩B
≅

𝐴+𝐵

B
. Since 

𝐴+𝐵

A
⊆

𝑀

A
, then  

𝐴+𝐵

A
 is nonsingular, and hence A∩B is y-ec-closed submodule of B. 

But B is EC-CLS-module, therefore A∩B is a direct summand of B. 

Proposition (2.7): Let A be a submodule of an R-module M, if M is an EC-CLS-module, then 
𝑀

A
 is an EC-

CLS-module. 

Proof: Let 
𝐵

A
be an y-ec-closed submodule of  

𝑀

A
, then by prop.1.5(2) B is y-ec-closed submodule of M. But M 

is EC-CLS-module, then B is a direct summand of M. Thus M = B⨁K, for some submodule K of M. Since 

A⊆B, then 
𝑀

A
 = 

𝐵

A
⨁

𝐾+𝐴

A
, thus 

𝑀

A
 is EC-CLS-module. 

3. The direct sums of EC-CLS-modules. 

A direct sum of EC-CLS-modules need not EC-CLS-module in general. Hence, we look for conditions under 

which this property is valid. 

Example (3.1): Each of Z2 and Z8 are EC-CLS-modules, but M = Z2⨁Z8 is not EC-CLS-module. 

Theorem (3.2): Let M = M1⨁M2 be an R-module such that M1 is M2-injective, where M1 and M2 are EC-

CLS-modules, then M is an EC-CLS-module. 

Proof: Let A be an y-ec-closed submodule of M, then 
𝑀

A
 is nonsingular. By the second isomorphism theorem  

M1

A∩M1
≅

M1+𝐴

A
⊆

𝑀

A
 . So, A∩M1 is an y-ec-closed submodule of M1. ButM1 is EC-CLS-module, therefore 

A∩M1 is a direct summand of M1. Hence A∩M1 is a direct summand of M. It follows that A∩M1 is a direct 

summand of A, then A = (A∩M1) ⨁ K, for submodule K of A. Let 𝜋i: M→Mi, i=1,2 be the projective maps. 

Now, consider the following diagram. 
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0 
 
 
 
 
Where 𝛼  = 𝜋 2|K and 𝛽  = 𝜋 1|K. Since 𝛼  is a monomorphism and M1 is M2-injective, then there exists a 

homomorphism 𝜑: M2→M1 such that 𝜑 ∘ 𝛼 = 𝛽. Let L = {x + 𝜑(x): x∈M2}. One can easily check that L is a 

submodule of M and L≅M2. Moreover, M = M1⨁L. To show that, let x∈M = M1⨁M2, then x = m1+m2, where 

m1∈M1 and m2∈M2. Thus x =m1+m2 + 𝜑(m2)- 𝜑(m2) = (m1- 𝜑(m2))+((m2+ 𝜑(m2)) ∈M1+L. Now, let x∈M1+L. 

Since x∈L, then x = y+ 𝜑(y), y∈M2, thus y∈M1∩M2 = 0 and then x = 0. Now, let k∈K, then k = m1+m2, for 

some,m1∈M1 and m2∈M2. Then m1= 𝛽(k) = 𝜑 ∘ 𝛼(k) = 𝜑(m2). This implies that k =m2 + 𝜑(m2) ∈L. Thus 

k⊆L. Since 
𝑀

𝐴
 = 

𝑀1⨁𝐿

(𝐴∩M1)⨁𝐾
≅

𝑀1

(𝐴∩M1)
⨁

𝐿

𝐾
, then 

𝐿

𝐾
 is nonsingular, and K is an y-ec-closed submodule of L. But 

L≅M2 and M2 is EC-CLS-module, then K is a summand of L. Thus L = K⨁D, for some submodule D of L. 

Now, since A∩M1 is a direct summand of M1, then M1 = (A∩M1) ⨁B, for some B of M1. So, M =M1⨁L = 

(A∩M1) ⨁B ⨁K⨁D = A⨁B⨁D, then A is a direct summand of M. Hence M is EC-CLS-module. 

Proposition (3.3): Let R be a ring and M be an R-module such that M = ⨁Mi , (i=1,…,n)is finite direct sum 

of relatively modules Mi,(i=1,…,n). Then M is EC-CLS-module if and only if Mi is an EC-CLS-module for 

each(i=1,…,n).  

Proposition (3.4): LetM1 and M2 be EC-CLS-modules such that annM1+ annM2 = R, then M = M1⨁M2 is 

EC-CLS-module. 

Proof: Let A be an y-ec-closed submodule of M1⨁M2 . Since annM1+ annM2 = R, then by the same way of 

the prove [7, prop.2.2, ch.2], A = C⨁D, where C is a submodule ofM1and D is a submodule ofM2. Since A =C 

⨁D is y-ec-closed submodule of M = M1⨁M2, then C is y-ec-closed submoduleM1andD is y-ec-closed 

submoduleM2 by prop.1.11. But M1and M2 are EC-CLS-modules, then C is summand of M1 and D is a 

summand of M2. So, A = C ⨁D is a summand of M = M1⨁M2. Hence M is an EC-CLS-module. 

Proposition (3.5): Let M = ⨁Mi, (i=1,…,n) be an R-module such that every y-ec-closed submodule of M is 

fully invariant, then M is an EC-CLS-module if and only if Mi is EC-CLS-module,(i=1,…,n). 

Proof: → Clear by lemma 2.4. 

← Let A be an y-ec-closed submodule of M. For each (i=1,…,n), let 𝜋i: M→Mi, be the projection map. Now, 

let x∈A, then x =  mi𝑛
𝑖=0  , mi∈Miand mi = 0, for all except a finite of i = 1,…,n). Clearly that 𝜋i(x) =mi∀ i∈I 

Since A isis y-ec-closed submodule then by our assumption A is fully invariant and hence 𝜋i(x) =mi∈A∩Mi. 

So, x∈ ⨁(A∩Mi), thus A ⊆ ⨁(A∩Mi). But ⨁(A∩Mi) ⊆ Ai, then ⨁(A∩Mi)= Ai, since A is y-ec-closed 

submodule of M, therefore (A∩Mi) is y-ec-closed submodule of Mi ,∀ i, (i=1,…,n), by prop.1.8. But Mi is EC-

CLS-module  ∀ i, (i=1,…,n), then (A∩Mi) is a direct summand ofMi. Thus, A is a direct summand of M.   
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