

Volume 7, Issue 1

Published online: March 17, 2016

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Some theorem on common fixed points and points of coincidence for mappings in metric space

Andrzej Mach

Abstract.

The paper includes theorem giving the sufficient condition for existence of common point of coincidence and common fixed point for 2n + 1 mappings in metric space.

2000 Mathematics Subject Classification: Primary 47H10; Secondary 54H25, 55M20.

Key words and phrases: Fixed point; point of coincidence; weakly compatible mappings; contraction; Banach fixed point theorem; Kannan type condition.

Introduction

Let (X,d) be a metric space. By contraction ([3], [4]) we understand a mapping $F: X \to X$ for which there exists $L \in [0,1[$ such that $d(Fx,Fy) \leq L \cdot d(x,y)$, for all $x,y \in X$. The very good known Banach Fixed Point Theorem reads as follows ([3], [4]). Let X be a complete metric space with metric d. Let $F: X \to X$ be a contraction. The above suppositions imply the existing of a fixed point, the solution of Fx = x. The Banach Fixed Point Theorem is an important tool in mathematical analysis and has been investigated under various conditions and developed in different directions. Among others, many authors consider a variety of contractive conditions (see for example [5], [6], [7], [8]). In the presented paper we obtain a sufficient condition for existence of common fixed points and points of coincidence for 2n+1 ($n \in \mathbb{N}$) mappings in metric space (X,d). The condition which is given in the paper is analogous to condition included in [2] and named by authors - Kannnan type condition. Summarizing, we will prove theorem giving sufficient condition (Kannan type condition) for existence of common fixed point for 2n+1, $n \in \mathbb{N}$ mappings $X \to X$ where (X,d) is a metric space.

1 Notations, definitions, lemma

Definition 1.1. ([7], [1]) A mapping $T: X \to X$ - for a metric space (X, d) - is called Kannan if there exists $\alpha \in [0, \frac{1}{2})$ such that for all $x, y \in X$

$$d(Tx,Ty) \leq \alpha[d(x,Tx) + d(y,Ty)]$$

Definition 1.2. A point $y \in X$ is called point of coincidence of a family $\{T_j\}_{j \in J}$ of self-mappings on X if there exists a point $x \in X$ such that $y = T_j x$ for all $j \in J$.

Definition 1.3. A pair (F,T) of self-mappings on X is said to be weakly compatible if FTx = TFx whenever Fx = Tx.

The lemma below is a generalization of the result from the paper [1].

Lemma 1.4. Let $n \in \mathbb{N}$. Let X be a nonempty set and the mappings

$$F, S_1, ..., S_n, T_1, ..., T_n$$

have a unique point of coincidence v in X. If all pairs (F, T_i) , (F, S_i) , for $i \in \{1, 2, ..., n\}$ are weakly compatibles, then v is the unique common fixed point of mappings $F, S_1, ..., S_n, T_1, ..., T_n$.

Proof. Take $u \in X$ such that $Fu = S_1u = ... = S_nu = T_1u = ... = T_nu = v$. By weakly compatibility of all pairs (F, T_i) , (F, S_i) , for $i \in \{1, 2, ..., n\}$ we have

$$\left(S_i v = S_i F u = F S_i u = F v, \text{ and } T_i v = T_i F u = F T_i u = F v\right), \text{ for } i \in 1, ..., n.$$

Therefore the point w such that $w = Fv = S_1v = ... = S_nv = T_1v = ... = T_nv$ is a point of coincidence for mappings $F, S_1, ..., S_n, T_1, ..., T_n$, so w = v by uniqueness. From the above v is a unique common fixed point of mappings $F, S_1, ..., S_n, T_1, ..., T_n$.

Definition 1.5. Let (X,d) be a metric space. Let $F, S_1, ..., S_n, T_1, ..., T_n : X \to X$ be the mappings such that $S_i(X) \cup T_i(X) \subset F(X)$ for i = 1, ...n. We define the sequence $\{x_m\}_{m\geq 0}$ of elements of X as follows. Choose an arbitrary point x_0 in X. Let x_1, x_2 be the point of X such that $Fx_1 = T_1x_0$ and $Fx_2 = S_1x_1$. Continuing, $Fx_3 = T_2x_2$ and $Fx_4 = S_2x_3,...,Fx_{2n-1} = T_nx_{2n-2}$, $Fx_{2n} = S_nx_{2n-1}$. Generally, if we have defined x_{kn} for a $k \in \{0, 2, 4, ...\}$, we put

$$Fx_{kn+i} = \begin{cases} T_{\frac{i+1}{2}}x_{kn+i-1}, & \text{for } i \in \{1, 3, ..., 2n-1\}, \\ S_{\frac{i}{2}}x_{kn+i-1}, & \text{for } i \in \{2, 4, ..., 2n\}. \end{cases}$$

2 Main theorem

Theorem 2.1. Let $n \in \mathbb{N}$. Let (X, d) be a complete metric space and

$$F, S_1, ..., S_n, T_1, ..., T_n$$

be self mappings of the space (X,d) such that F(X) is the closed subset of X and $\bigcup_{i=1}^{n} S_i(X) \subset F(X)$, $\bigcup_{i=1}^{n} T_i(X) \subset F(X)$. Let us suppose that the following condition is satisfied:

$$d(S_i x, T_j y) \le A_i d(F x, S_i x) + B_j d(F y, T_j y), \quad for \ i, j \in \{1, 2, ..., n\}$$
 (2.1)

for all $x, y \in X$ where A_i, B_j are non-negative real numbers with $A_i + B_j < 1$, for $i, j \in \{1, 2, ..., n\}$. Then $F, S_1, ..., S_n, T_1, ..., T_n$ have a unique point of coincidence. If additionally all pairs (F, T_i) , (F, S_i) , for $i \in \{1, 2, ..., n\}$ are weakly compatibles, then $F, S_1, ..., S_n, T_1, ..., T_n$ have the unique common fixed point.

Proof. Firstly, we will prove that, if $F, S_1, ..., S_n, T_1, ..., T_n$ have a point of coincidence, then it is unique. Assume that v, v^* are two distinct point of coincidence for mappings $F, S_1, ..., S_n, T_1, ..., T_n$. Then, there exists u, u^* such that

$$Fu = S_1 u = \dots = S_n u = T_1 u = \dots = T_n u = v$$

and

$$Fu^* = S_1u^* = \dots = S_nu^* = T_1u^* = \dots = T_nu^* = v^*.$$

By (2.1) we have

$$d(v, v^*) = d(S_1u, T_1u^*) \le A_1d(Fu, S_1u) + B_1d(Fu^*, T_1u^*) = 0,$$

so $v = v^*$. We will prove the existence of a point of coincidence of mappings $F, S_1, ..., S_n$, $T_1, ..., T_n$. Choose an arbitrary point x_0 in X. The sequence $\{x_m\}_{m\geq 0}$ of elements of X is defined by Definition 1.5. Let us consider two cases:

- a) there exists $k \in \{0, 2, 4, ...\}$ for which $Fx_{kn} = Fx_{kn+1}$.
- b) for every $k \in \{0, 2, 4, ...\}$ $Fx_{kn} \neq Fx_{kn+1}$. In the case a) - by (2.1) - for every $i \in \{1, 2, ..., n\}$ - we have

$$d(S_{i}x_{kn}, Fx_{kn}) = d(S_{i}x_{kn}, Fx_{kn+1}) = d(S_{i}x_{kn}, T_{1}x_{kn})$$

$$\leq A_{i}d(Fx_{kn}, S_{i}x_{kn}) + B_{1}d(Fx_{kn}, T_{1}x_{kn})$$

$$= A_{i}d(Fx_{kn}, S_{i}x_{kn}) + B_{1}d(Fx_{kn}, Fx_{kn+1})$$

$$= A_{i}d(Fx_{kn}, S_{i}x_{kn})$$

and

$$d(Fx_{kn}, T_i x_{kn}) = d(S_n x_{kn}, T_i x_{kn}) =$$

$$\leq A_n d(Fx_{kn}, S_n x_{kn}) + B_i d(Fx_{kn}, T_i x_{kn})$$

$$= B_i d(Fx_{kn}, T_i x_{kn}).$$

This yields that the point y defined as

$$y := Fx_{kn} = S_1x_{kn} = S_2x_{kn} = \dots = S_nx_{kn} = T_1x_{kn} = T_2x_{kn} = \dots = T_nx_{kn}$$

is the required unique point of coincidence for mappings $F, S_1, ..., S_n, T_1, ..., T_n$. In the case b) the reasoning is as follows. Let $k \in \{0, 2, 4, ...\}$. We have $Fx_{kn} \neq Fx_{kn+1}$. By (2.1) we get

$$d(Fx_{kn}, Fx_{kn+1}) = d(S_n x_{kn-1}, T_1 x_{kn})$$

$$\leq A_n d(Fx_{kn-1}, S_n x_{kn-1}) + B_1 d(Fx_{kn}, T_1 x_{kn})$$

= $A_n d(Fx_{kn-1}, Fx_{kn}) + B_1 d(Fx_{kn}, Fx_{kn+1}).$

Hence

$$d(Fx_{kn}, Fx_{kn+1}) \le \frac{A_n}{1 - B_1} d(Fx_{kn-1}, Fx_{kn})$$

$$\le \lambda d(Fx_{kn-1}, Fx_{kn}),$$

where

$$0 < \lambda := \max \left\{ \frac{A_i}{1 - B_j}, \frac{B_j}{1 - A_i} : i, j = 1, 2, ...n \right\} < 1.$$

Moreover

$$d(Fx_{kn}, Fx_{kn-1}) = d(S_n x_{kn-1}, T_n x_{kn-2})$$

$$\leq A_n d(Fx_{kn-1}, S_n x_{kn-1}) + B_n d(Fx_{kn-2}, T_n x_{kn-2})$$

$$= A_n d(Fx_{kn-1}, Fx_{kn}) + B_n d(Fx_{kn-2}, Fx_{kn-1}).$$

Therefore

$$\begin{split} d(Fx_{kn}, Fx_{kn-1}) & \leq \frac{B_n}{1 - A_n} d(Fx_{kn-1}, Fx_{kn-2}) \\ & \leq \lambda d(Fx_{kn-1}, Fx_{kn-2}). \end{split}$$

From the above we get easily for any $m \in \mathbb{N}$

$$d(Fx_m, Fx_{m+1}) \le \lambda^m d(Fx_0, Fx_1)$$

and for any $m_2 > m_1$

$$\begin{split} d(Fx_{m_1}, Fx_{m_2}) &\leq d(Fx_{m_1}, Fx_{m_1+1}) + d(Fx_{m_1+1}, Fx_{m_1+2}) + \ldots + d(Fx_{m_2-1}, Fx_{m_2}) \\ &\leq \left[\lambda^{m_1} + \lambda^{m_1+1} + \ldots + \lambda^{m_2}\right] d(Fx_0, Fx_1) \\ &\leq \left[\frac{\lambda^{m_1}}{1 - \lambda}\right] d(Fx_0, Fx_1), \end{split}$$

so $(F_{x_m})_{m\in\mathbb{N}}$ is a Cauchy sequence. Let us define $v:=\lim_{m\to\infty}F_{x_m}$. Since F(X) is a closed subset of X then there exists $u\in X$ such that F(u)=v. Let $j\in\{1,2,...,n\}$. We have for a $k\in\{0,2,4,...\}$ and $i_0\in\{2,4,...,2n\}$

$$\begin{split} d(Fu,T_{j}u) &\leq d(Fu,Fx_{kn+i_{0}}) + d(Fx_{kn+i_{0}},T_{j}u) \\ &= d(Fu,Fx_{kn+i_{0}}) + d(S_{\frac{i_{0}}{2}}x_{kn+i_{0}-1},T_{j}u) \\ &\leq d(Fu,Fx_{kn+i_{0}}) + A_{\frac{i_{0}}{2}}d(Fx_{kn+i_{0}-1},S_{\frac{i_{0}}{2}}x_{kn+i_{0}-1}) \\ &+ B_{j}d(Fu,T_{j}u). \end{split}$$

Then

$$d(Fu, T_j u) \le \frac{1}{1 - B_j} d(Fu, Fx_{kn+i_0})$$

$$+\frac{A_{\frac{i_0}{2}}}{1-B_i}d(Fx_{kn+i_0-1},Fx_{kn+i_0}),$$

so for sufficently large k - the distance $d(Fu, T_j u)$ can be arbitrarily small, then $T_j u = Fu$, for any $j \in \{1, 2, ..., n\}$. Moreover

$$d(Fu, S_j u) = d(S_j u, T_j u) \le A_j d(Fu, S_j u) + B_j d(Fu, T_j u) = A_j d(Fu, S_j u),$$

whence $S_j u = F u$, for any $j \in \{1, 2, ..., n\}$. We have proved that v is a unique point of coincidence of mappings $F, S_1, ..., S_n, T_1, ..., T_n$. If additionally all pairs (F, T_i) , (F, S_i) , for $i \in \{1, 2, ..., n\}$ are weakly compatibles, then by Lemma 2.1, $F, S_1, ..., S_n, T_1, ..., T_n$ have the unique common fixed point.

3 Examples

Example 3.1. Let $X = [0, \infty[$ and d be the Euclidean metric on X. Let n = 2. We define the mappings $F, S_1, S_2, T_1, T_2 : X \to X$ as follows:

$$F(x) = \begin{cases} -\frac{7}{2}x + 21, & \text{for } x \in [0, 4], \\ 7, & \text{for } x \in [4, 7], \\ -\frac{1}{2}x + \frac{21}{2}, & \text{for } x \in [7, 21], \\ 0, & \text{for } x \in [21, \infty[. \end{cases}$$

and for i = 1, 2

$$S_i(x) = \begin{cases} (1 + \frac{1}{2i})x + i, & \text{for } x \in [0, 4], \\ 7, & \text{for } x \in [4, \infty[, \\ T_i(x) = \begin{cases} \frac{1}{2i}x + i + 4, & \text{for } x \in [0, 4], \\ 7, & \text{for } x \in [4, \infty[. \end{cases} \end{cases}$$

We have F(X) = [0,21], $S_i(X) = [i,7]$, $T_i(X) = [i+4,7]$, for i=1,2. We put $A_1 = A_2 = \frac{1}{2}$ and $B_1 = B_2 = \frac{1}{3}$. One can easily observe that the condition (2.1) is satisfied. For $x_0 = 2$ - by Definition 1.5 - we get the sequence $(Fx_m)_{m \in \mathbb{N}}$ as follows: $-14,6,7,7,7,\ldots$ So $v = \lim_{m \to \infty} Fx_m = 7$ is a unique point of coincidence of mappings F, S_1, S_2, T_1, T_2 . Since all pairs (F, T_i) , (F, S_i) , for $i \in \{1,2\}$ are weakly compatibles, then - by Lemma 2.1 - v = 7 is the unique common fixed point for mappings F, S_1, S_2, T_1, T_2 . Moreover, let us remark that if we change definition of the function F as follows

$$F(x) = \begin{cases} -\frac{7}{2}x + 21, & \text{for } x \in [0, 4], \\ 7, & \text{for } x \in [4, 7[, 6, 7], \\ 6, & \text{for } x = 7, \\ -\frac{1}{2}x + \frac{21}{2}, & \text{for } x \in [7, 21], \\ 0, & \text{for } x \in [21, \infty[, 7], \end{cases}$$

then there is no common fixed point for mappings F, S_1, S_2, T_1, T_2 . Since $7 = F(4) = S_1(4) = S_2(4) = T_1(4) = T_2(4)$, the point 7 is only the point of coincidence of a family F, S_1, S_2, T_1, T_2 . In this case the condition (2.1) is still satisfied but all pairs (F, S_i) , (F, T_i) for $i \in \{1, 2\}$ are not weakly compatibles.

Example 3.2. Let $X = [0, \infty[$ and d be the Euclidean metric on X. Let n = 3. We define the mappings $F, S_1, S_2, S_3, T_1, T_2, T_3 : X \to X$ as follows:

$$F(x) = x$$
, for $x \in X$.

and for i = 1, 2, 3

$$S_i(x) = \begin{cases} 3 - x^{i+1}, & \text{for } x \in [0, 1], \\ 2, & \text{for } x > 1. \end{cases}$$

$$T_i(x) = \begin{cases} 3 - x^{i+4}, & \text{for } x \in [0, 1], \\ 2, & \text{for } x > 1. \end{cases}$$

We have F(X) = X, $S_i(X) = T_i(X) = [2,3]$, for i = 1,2,3. We put $A_1 = A_2 = A_3 = \frac{1}{2}$ and $B_1 = B_2 = B_3 = \frac{5}{12}$. One can easily observe that the condition (2.1) is satisfied. For $x_0 = \frac{1}{2}$ - by Definition 1.5 - we get the sequence $(Fx_m)_{m \in \mathbb{N}}$ as follows: $\frac{1}{2}, \frac{95}{32}, 2, 2, 2, \ldots$ So $v = \lim_{m \to \infty} Fx_m = 2$ is a unique point of coincidence of mappings $F, S_1, S_2, S_3, T_1, T_2, T_3$. Since all pairs (F, T_i) , (F, S_i) , for $i \in \{1, 2, 3\}$ are weakly compatibles, then - by Lemma 2.1 - v = 2 is the unique common fixed point for mappings $F, S_1, S_2, S_3, T_1, T_2, T_3$.

Example 3.3. Let $X = [\frac{1}{4}, 4]$ and d be the Euclidean metric on X. Let n = 2. We define the mappings $F, S_1, S_2, T_1, T_2 : X \to X$ as follows:

$$F(x) = \frac{1}{x}$$
, for $x \in X$

and for i = 1, 2

$$S_i(x) = x^{\frac{1}{i+3}}, \quad T_i(x) = x^{\frac{1}{i+1}}.$$

All the pairs (F, T_i) , (F, S_i) , for $i \in \{1, 2\}$ are weakly compatibles. If we put $A_1 = A_2 = \frac{1}{4}$ and $B_1 = B_2 = \frac{5}{8}$ then the condition (2.1) is satisfied. By Definition 1.5 starting from $x_0 = 2$ we obtain the sequence $(Fx_m)_{m \in \mathbb{N}}$ as follows: $\frac{1}{2}, 2^{\frac{1}{2}}, 2^{-\frac{1}{8}}, 2^{\frac{1}{24}}, 2^{-\frac{1}{120}}, \ldots$, whence $v = \lim_{m \to \infty} Fx_m = 1$ is the unique common fixed point for mappings F, S_1, S_2, T_1, T_2 .

References

- M. Arshad, A. Azam, P. Vetro, Some common fixed point results in cone metric spaces, Fixed Point Theory Appl., 2009 (2009), Article ID 493965,11 pages.
- [2] A. Azam, I. Beg, Kannan type mapping in its TVS-valued cone metric space and their applications to Uryshon integral equations, Sarajevo Journal of Mathematics, Vol 9 (22) (2013), 243-255.
- [3] S. Banach, Sur les opération dans l'ensembles abstraits et leur application aux équations intégrales, Fundam. Math., 3 (1922), 133-181.

- [4] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Matematyczne, Tom 61 vol. I, PWN- Polish Scientific Publishers (1982).
- [5] J. Jachymski, Common fixed point theorems for some families of mappings, Indian J. Pure Appl. Math. 25 (1994), 925-937.
- [6] K. Jha, R. P. Pant, S. L. Singh, Common fixed points for comapatible mappings in metric spaces, Radovi Matematički, vol. 12 (2003), 107-114.
- [7] R. Kannan, Some results on fixed points II, Am. Math. Mon. 76(4) (1969), 405-408.
- [8] R. P. Pant, P. C. Joshi, V. Gupta, A Meir-Keeler type fixed point theorem, Indian J. Pure Appl. Math. 32(6) (2001), 779-787.

Faculty of Engineering and Economics
Department of Informatics
The State Higher School of Vocat. Education
Narutowicza 9
06-400 Ciechanów, POLAND