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Abstract.  

This paper presents a comparative effectiveness of stochastic approximation method and pseudo 
inversion method for American option valuation under the Black-Scholes model. The stochastic 
approximation method and pseudo inversion method base its analysis on a drifted financial derivative 
system. With finer discretization, space nodes and time nodes, we demonstrate that the drifted financial 
derivative system can be efficiently and easily solved with high accuracy, by using a stochastic 
approximation method and pseudo inversion method. The stochastic approximation method proves to be 
faster in pricing an American options than the pseudo inversion method which needs the system to be 
stabilized for its accuracy.  An illustrative example is given in concrete setting. 
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1. Introduction  

In this paper we compare the effectiveness of pricing an American options via two methods: Stochastic 

approximation and pseudo inversion method due to the use of the same system (drifted financial 

derivative system). During the last couple of decades, the trading of options has grown to tremendous 

scale. The most basic options give either the right to sell (put) or buy (call) the underlying asset with the 

strike price. European options can be exercised only at the expiry time while American options can be 

exercised any time before the expiry. Usually American options need to be priced numerically due to the 

early exercise possibility. One approach is to formulate a linear complementarity problem (LCP) or 

variational inequality with a partial (integro-)differential operator for the price and then solve it 

numerically after discretization. Another way is to discretize the Black-Scholes differential equation into 

system of ordinary differential equation and further transform into a drifted financial derivative system 

and then solve numerically using stochastic approximation method and pseudo inversion method.  

For pricing options, a model is needed for the behavior of the value of the underlying asset. Many such 

models of varying complexity have been developed. More complicated models reproduce more realistic 
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paths for the value and match between the market price and model prices of options, but they also make 

pricing more challenging. Black and Scholes (1973) discovered the partial differential equation which 

financial derivatives (the underlying assets of which are stocks) have to satisfy; furthermore, they found 

the evaluation formula when the financial derivative is a European call option. The partial differential 

equation is known as the Black-Scholes equation. Scholes obtained a Nobel Prize for economics in 1997 

for this contribution. In this paper, we use Black-Scholes model to ascertain the behavior of the 

underlying asset.  

The finite difference method for pricing American options was first presented in[1, 2, 3]. Jaillet et al. [4] 
showed the convergence of the finite difference method. Generally, there still exist some difficulties in 

using these numerical methods. For finite difference method, the difficulty arises from the early exercise 

property, which changes the original Black-scholes equation to an inequality that cannot be solved via 

fractional finite difference process. Therefore, finding the early exercise boundary prior to spatial 

discretization (discretization on underlying asset) is a must in each time step. Horng et al. [5] proposed a 

simple numerical method base on finite difference and method of lines to overcome this difficulty in 

American option valuation. Also,Osu and Solomon [6]proposed a stochastic approximation method for 

American option valuation based on the fact that financial derivative experience a drift which hardly can 

be brought to equilibrium state. By discretization of Black-Scholes equation using central finite-

difference approximation into first-order ordinary differential equation and later transformed to a drifted 

financial derivative system and solve the resulting drifted financial derivative system by employing a 

stochastic algorithm described and analyzed in [6] where each iteration requires the adjustment of the 

drift parameter based on the dividend yield.   

Although a comparism of different numerical methods for American options pricing have been discussed 

in [7, 8], a comparative effectiveness of stochastic approximation method and pseudo inversion method 

for American option valuation is proposed in this paper because the stochastic approximation method and 

pseudo inversion method base its’ analysis on a drifted financial derivative system. 

The outline of the paper is the following: In section 2 we review modeling of Black-Scholes, the partial 

differential equation which financial derivative have to satisfy and formulate Linear Complementary 

Problem (LCP) for an American option. In section, 3, we discretize the generic PDE into LCP and drift 

financial derivative system. Controllability and stability of a financial derivative system is presented in 

section 4. Numerical experiments are presented in section 5 and conclusions are given in section 6. 

2.  Option Pricing Model 

Here, we consider the Black and Scholes Model [9] and Merton [10] and the partial differential equation 

which financial derivative (stock) have to satisfy. The Black-Scholes Model assumes a market consisting 

of a single risky asset (S) and a risky-free bank account (r). This market is given by the equations; 

𝑑𝑆 = 𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧                                                                                                   (1) 

               𝑑𝐵 = 𝑟𝐵𝑑𝑡 .                                                                                                                 (2) 

 

Here (1) is a geometric Borwnian-Motion and (2) a non-stochastic. S is a Brownian-Motion, Z is a 

Wiener process  is a constant parameter called the drift. It is a measure of the average rate of growth of 

the asset price. Meanwhile,𝜎 , is a deterministic function of time. When 𝜎 is constant, (1) is the original 

Black-Scholes Model of the movement of a security, S. In this form is the mean return of S, and 𝜎 is a 

variance. The quantity 𝑑𝑍 is a random variable having a normal distribution with mean 0 and variance 𝑑𝑡. 

   𝑑𝑍 ∝ 𝑁(0, ( 𝑑𝑡)2) .   
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For each interval 𝑑𝑡, 𝑑𝑍 is a sample drawn from the distribution 𝑁(0, ( 𝑑𝑡)2), this is multiplied by 𝜎 to 

produce the term 𝜎𝑑𝑍. The value of the parameters  and 𝜎 may be estimated from historical data. 

Under the usual assumptions, Black and Scholes [9] and Merton [10] have shown that the worth 𝑉 of any 

contingent claim written on a stock, whether it is American or European, satisfies the famous Black-

Scholes equation: 

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+  𝑟 − 𝑞 𝑆 

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0 .                                                              (3) 

Where volatility𝜎, the risk-free rate𝑟, and dividend yield 𝑞 are all assumed to be constants. The value of 

any particular contingent claim is determined by the terminal and boundary conditions. For an American 

option, notice that the PDE only holds in the not-yet-exercised region. At the place where the option 

should be exercised immediately, the equality sign in (3) would turn into an inequality one. That means 

the option value 𝑉(𝑆, 𝑡) at each time follows either 𝑉(𝑆, 𝑡)  =∧  (𝑆, 𝑡) for the early exercised region or (3) 

for the not-yet-exercised region, where ∧ (𝑆, 𝑡) is the payoff of an American option at time t. 

The generic form of (3) is derived by the change of variable 𝜏 = 𝑇 − 𝑡  to 

𝜕𝑉

𝜕𝜏
 −  

1

2
𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 −  𝑟 − 𝑞  𝑆 
𝜕𝑉

𝜕𝑆
 +  𝑟𝑉 = 𝐿𝑉                                                                   (4) 

where 𝑉 . , 𝜏 ≡ 𝑉 . ,𝑇 − 𝜏 ,   𝜎  . , 𝜏 ≡  𝜎  . ,𝑇 − 𝜏 , 𝜏 = 0 𝑡𝑜 𝜏 = 𝑇  

𝑆𝑚𝑖𝑛 < 𝑆 < 𝑆𝑚𝑎𝑥 , subject to the initial condition  𝑉 𝑆, 0 =  ⋀ 𝑆 . 

For the computations, the unbounded domain is truncated to 

 𝑆, 𝑡  𝜖   0, 𝑆  𝑥  (0,𝑇]                                                                                                          (5) 

with sufficiently large  𝑆 ≡  𝑆𝑚𝑎𝑥 . 

 

The worth V of an American option under Black-Scholes model satisfies an LCP 

                        
𝐿𝑉 ≥ 0              
𝑉 ≥ ∧                 
 𝐿𝑉  𝑉 −∧ = 0 ,

                                                                                 (6) 

 

we impose the boundary conditions 

 

                   
𝑉 0, 𝑡 = 0                              

𝑉 𝑆, 𝑡 = ∧  𝑆 , 𝑆𝜖  0, 𝑆𝑚𝑎𝑥    .
                                                              (7) 

Beyond the boundary 𝑆 =  𝑆𝑚𝑎𝑥 , the worth 𝑉 is approximated to be the same as the payoff ∧ , that is 

𝑉  𝑆, 𝑡 = ∧ (𝑆) for 𝑆 ≥  𝑆𝑚𝑎𝑥 . 

3  Discretizing the financial PDE for American option 

American options can be exercised at any time before expiry. Formally, the value of an American put 

option with a strike price k is  

𝑉 0,𝑘 = sup(0 ≤ 𝜏∗ ≤ 𝑇:𝐸(𝑒−𝜏𝜏
∗
(𝑘 − 𝑆𝜏∗)+).            
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The optimal exercise time 𝜏∗ is the value that maximizes the expected payoff - any scheme to price an 

American must calculate this. 

For American options with payoff ∧ (𝑠), the equivalent of equation (4) is 

 

 
𝜕𝑉

𝜕𝜏
−

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
−  𝑟 − 𝑞 𝑆 

𝜕𝑉

𝜕𝑆
+ 𝑟𝑉 ≥ 0

𝑉 𝑆,𝑇 ≥ ∧  𝑆 
  

                                                                                                                                                       (8) 

 
𝜕𝑉

𝜕𝜏
−

1

2
 𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 −  𝑟 − 𝑞 𝑠
𝜕𝑉

𝜕𝑆
+ 𝑟𝑉  𝑉 −∧  𝑆 ] = 0 . 

 

 Consider a uniform spatial mesh on the interval  𝑠𝑚𝑖𝑛 , 𝑠𝑚𝑎𝑥  : 

 

𝑆𝑗 = 𝑆𝑚𝑖𝑛 + 𝑗𝛿𝑆, 𝑗 = 𝑂, 1,… ,𝑛 + 1, where  

 

𝛿𝑠 =
𝑆𝑚𝑎𝑥 −𝑆𝑚𝑖𝑛

𝑛+1
,   𝑆𝑚𝑎𝑥 = 𝑆0 exp   𝑟 − 𝑞 −

𝜎2

2
 𝑇 + 6𝜎 𝑇  .                                              (9) 

 

The truncated domain 𝐷  has the lower bound 𝑆𝑚𝑖𝑛 = 0 and upper bound 𝑆𝑚𝑎𝑥  as in (9).  

Replacing all derivatives with respect to S by their central finite-difference approximations, we obtain the 

following approximation to the Black-Scholes PDE (8) 

 

𝜕𝑉(𝜏, 𝑆)

𝜕𝜏
=

1

2
  𝜎2 𝑆  𝑆2

𝑉 𝜏,   𝑆 + 𝛿𝑆 − 2𝑉 𝜏, 𝑆  +  𝑉  𝜏, 𝑆 − 𝛿𝑆 

𝛿𝑆2
 

 

                  +  𝑟 − 𝑞  𝑆 
𝑉 𝜏 ,   𝑆+𝛿𝑆 − 𝑉  𝜏 ,   𝑆−𝛿𝑆 

2𝛿𝑆
− 𝑟𝑉  𝜏, 𝑆 + Ο 𝛿𝑆2 .                           (10) 

Let 𝑉𝑗  𝜏  denote the semi-discrete approximation to 𝑉(𝜏, 𝑆𝑗 ). Applying (10) at each internal node 𝑆𝑗 , 
we obtain the following system of first-order ordinary differential equations; 

𝑑𝑉𝑗  𝜏 

𝑑𝜏
=

1

2
  
𝜎 𝑆𝑗  𝑆𝑗

𝛿𝑆
 

2

−  
 𝑟 − 𝑞 𝑆𝑗

𝛿𝑆
 𝑉𝑗−1 𝜏 −  − 

𝜎 𝑆𝑗  𝑆𝑗

𝛿𝑆
 

2

−  𝑟 𝑉𝑗  𝜏  

+  
1

2
  

𝜎 𝑆𝑗  𝑆𝑗

𝛿𝑆
 

2

+  
 𝑟−𝑞 𝑆𝑗

𝛿𝑆
 𝑉𝑗+1(𝜏),     𝑗 = 1, 2,… ,𝑛 ;                                                      (11a) 

with discretized form given as 

𝑑𝑉𝑗  𝜏 

𝑑𝜏
= 𝐿𝑗 ,𝑗−1𝑉𝑗−1(𝜏) − 𝐿𝑗 ,𝑗𝑉𝑗 (𝜏) + 𝐿𝑗 ,𝑗+1𝑉𝑗+1(𝜏).                                                            (11b) 
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System (11) has n equation in 𝑛 + 2 unknown functions,𝑉0 𝜏 ,𝑉1 𝜏 ,… ,𝑉𝑛 𝜏 ,𝑉𝑛+1 𝜏 . Using the 

boundary conditions we have the functions 𝑉0(𝜏) and 𝑉𝑛+1(𝜏) which respectively approximate the 

solution at the boundary nodes 𝑆0 = 𝑆𝑚𝑖𝑛  and 𝑆𝑛+1 =  𝑆𝑚𝑎𝑥  .As a result, the system of differential 

equations (11) can be written as the following matrix-vector differential equation with an n-by-n tri-

diagonal coefficient matrix L whose entries are defined in (11) 

                    
𝑑𝑉(𝜏)

𝑑𝜏
= 𝐿𝑉 𝜏 +  𝑤𝐺(𝜏),                                                                                 (12) 

Subject to the initial condition  

               𝑉 0 =  Λ ∶= [Λ 𝑆1   ,Λ 𝑆2 ,… ,Λ 𝑆𝑛) 
𝑇
  .                                                          (13) 

Here we use the notation: 

𝐿 =

 

 
 
 

𝐿11 𝐿12 0
𝐿21 𝐿22 𝐿23

0
⋮
0
0

𝐿32

⋮
0
0

𝐿33

⋮
0
0

⋯ 0 0
⋯ 0 0

⋯
⋱…
…

0
⋮

𝐿𝑛−1,𝑛−1

𝐿𝑛 ,𝑛−1

0
⋮

𝐿𝑛−1,𝑛

𝐿𝑛 ,𝑛  

 
 
 

,𝑉 𝜏 =

 

 
 

𝑉1(𝜏) 
𝑉2(𝜏)
⋮

𝑉𝑛−1(𝜏)
𝑉𝑛(𝜏)  

 
 

. 

 

The vector 𝐺 𝜏 𝜖 𝑅𝑛  is given by  

  
𝜎2 𝑆0 𝑆0

2

2𝛿𝑆2  −   
 𝑟−𝑞 𝑆0

2𝛿𝑆
 𝑉0 𝜏 , 0 ,… , 0,  

𝜎2 𝑆𝑛+1 𝑆𝑛+1
2

2𝛿𝑆2 +  
 𝑟−𝑞 𝑆𝑛+1

2𝛿𝑠
  𝑉𝑛+1 𝑟  

𝑇

. 

𝐺 (𝜏) contains boundary values of the mesh solution.  

The spatial discretization leads to: 

Semi-discrete LCP, according to [11] from (9), (12) and (13), we have 

 

                   

𝐿𝑗𝑉𝑗+1  ≥  𝑔𝑗

𝑉𝑗+1  ≥  Λ  

 𝑉𝑗+1  − Λ 
𝑇
 𝐿𝑗𝑉𝑗+1 −  𝑔𝑗  = 0

 ,                                                                     (14) 

where L is n-by-n tri-diagonal coefficient matrix, g is a vector resulting from the second term in equation 

(11) V and  are vectors containing the grid point values of the worth V and the pay off , respectively. 

This again must be solved at every time step. A crude approximation is to solve the system 𝐿𝑗  𝑋 =  𝑔𝑗 , 
then set 𝐿𝑗+1 = max 𝑋,Λ . 

Drifted financial derivative system: 

According to [12], 𝐺(𝜏) term in (12) can be treated as an enforced input to the financial derivative 

system, resulted from boundary condition, defined in (7). With zero boundary condition, equation (12) 

yields. 

 𝑉 = 𝐿𝑉  ,                                                                                                                        (15) 

which represents a pfaftian differential constraints (see [13] for pfaftian differential  constraints) but not 

of kinematic nature arises from the conservation on non-zero financial derivatives. The transformed 

financial derivative system (15) can be re-expressed as 
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 𝐿 𝑉 = 𝑑                                                                                                                         (16) 

System (16) represents a drifted financial derivative system with a drift term d. In such a system the 

derivative value V can be solved by computing the stochastic algorithm used by Osu and Solomon [6], 

and the pseudo inversion 𝐿∗ of the positive definite matrix L expressed as follows 

          𝑉 = 𝐿∗𝑑                                                                                                                         (17) 

in which  

          𝐿∗ = 𝐿(𝐿𝑇𝐿)−1                                                                                                                           (18) 

4. Controllability and Stability of Financial Derivatives  

    

 d  𝑉(𝜏) 

  

  

   

Figure 1. Open-loop financial controlled system 

   

 d  𝑉(𝜏) 

  

 

  

   

 

Figure 2. Closed-loop controlled financial system with 𝑤 =  − 𝐾𝑣 

In the theory of linear time-invariant dynamical control systems the most popular and the most frequently 

used mathematical model is given by the following differential state equation (12). Stability, 

controllability, and observability introduced by Kalmanplay an essential role in the development of 

modern mathematical control theory. There are important relationships between stability, controllability, 

and observability of linear control systems. Controllability and observability are also strongly connected 

with the theory of minimal realization of linear time invariant control systems. If a control system is not 

stable, it is usually of no use in practice.  

Consider the continuous-time system shown in figure 1, the system described in Equation (12) is said to 

be state controllable at 𝑡 = 𝑡0 if it is possible to construct an unconstrained control signal that will transfer 

an initial state to any final state in a finite time interval 𝑡0 ≤ 𝑡 ≤ 𝑡1. If every state is controllable, then the 

system is said to be completely state controllable [14]. The system is said to be controllable if and only if 

the following nx n matrix is full rank n. 

                     [𝐺 𝐿𝐺 𝐿2𝐺 ⋯ 𝐿𝑛−1𝐺]                                                                             (19) 

This matrix is called controllability matrix. A system is said to be observable at time 𝑡0 , if with the 

system in state 𝑣(𝑡0), it is possible to determine its state from the observation of the output over a finite 

time interval. The concept of observability is very important because, in practice, the difficulty 

encountered with state feed-back control is that some of the state variables are not accessible for direct 

G  
  

L 

G 
  

 L 

− 𝐾 
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measurement, with the result that it becomes necessary to estimate the unmeasurable state variables in 

order to construct the control signals. The system is said to be observable if and only if the following n x 

nm matrix is of full rank n. 

This following analysis presents a design method commonly called the pole-placement technique. We 

assume that all state variables are measureable and are available for feedback. It is shown that if the 

system considered is completely state controllable, then poles of the closed- loop system may be placed at 

any desired locations by means of state feedback through an appropriate state feed-back gain matrix as 

displayed in Figure 2. Let us assume the desired closed-poles are to be at𝑠1 = 𝑢1, 𝑠2 = 𝑢2 ,… , 𝑠𝑛 = 𝑢𝑛 . 

We shall choose the control signal to be  

                              𝑤 = −𝐾𝑣                                                                                                  (20) 

 This means that the control signal is determined by an instantaneous state. Such a scheme is 

called state feed- back. The 1 x n matrix K is called the state feedback gain matrix. Substituting 

(20) into Equation (12) gives  

                           𝑣  𝑡 = (𝐿 − 𝐺𝐾)𝑣(𝑡)                                                                                  (21) 

The solution of this equation is given by  

                           𝑣 𝑡 = 𝑣(0)𝑒(𝐿−𝐺𝐾)𝑡                                                                                      (22) 

where v(0) is the initial state caused by external disturbances. The stability and transient 

response characteristics are determined by the eigenvalues of matrix −𝐺𝐾 . If matrix K is chosen 

properly, the matrix 𝐿 − 𝐺𝐾 can be made asymptotically stable matrix.  Define a transformation 

matrix T by  

          𝑇 = 𝑀𝑊                                                                                                                       (23) 

where M is the controllability matrix (19) and  

                           𝑊 =

 

 
 

𝑎𝑛−1 𝑎𝑛−2 ⋯ 𝑎 1
𝑎𝑛−2 𝑎𝑛−3 ⋮ 1 0
⋮
𝑎1

1

⋮
1
0

⋮  ⋮ ⋮
… 0 0
… 0 0 

 
 

 ,                                                             (24) 

where the 𝑎𝑖’s are the coefficients of the characteristic polynomial  

                𝑠𝐼 − 𝐿 = 𝑠𝑛 + 𝑎1𝑠
𝑛−1 + ⋯+ 𝑎𝑛−1𝑠 + 𝑎𝑛 .                                                            (25) 

Let us choose a set desired eigenvalues as𝑠1 = 𝑢1 , 𝑠2 = 𝑢2,… , 𝑠𝑛 = 𝑢𝑛 .Then the desired 

characteristic equation becomes  

          𝑠 − 𝑢1  𝑠 − 𝑢2 ⋯ (𝑠 − 𝑢𝑛) = 𝑠𝑛 + 𝛼1𝑠
𝑛−1 + ⋯+ 𝛼𝑛−1𝑠 + 𝛼𝑛 .                               (26) 

The sufficient condition for the system to be completely controllable with all eigenvalues 

arbitrarily placed is by choosing the gain matrix 

          𝐾 = [ 𝛼𝑛 − 𝑎𝑛  𝛼𝑛−1 − 𝑎𝑛−1 ⋯  𝛼2 − 𝑎2  𝛼1 − 𝑎1 ]𝑇
−1                                         (27) 
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5.   Numerical Experiment: 

In our numerical example, we compare the effectiveness of stochastic approximation method 

and pseudo inversion method for pricing American put options. The parameters for the Black-

Scholes model are the same as in [11] and they are defined below: 

Table 1: Estimated parameters for the Black-Scholes model 

Parameter Notation Value 

Risk free interest rate r 0.2 

Dividend yield  q 0.1 

Strike price  k 7 

Volatility  𝜎 0.3 

Time to expiry  T  2 

Spot price S0 10 

Ratio of Nodes 𝜗 30 

We illustrate the method in a concrete setting, using the parameter in table 1 and substitute in 

(10 and 11), with time nodes 3𝑥103 and space nodes 9𝑥104 satisfying the ratio of nodes 𝜗 as 

stipulated, we have the financial matrix (3 by 3 tri-diagonal coefficient matrix) . 

 

                            L =   
   0.2     0.05 0
−0.1     0.2 0.1

 0 −0.15 0.2
   .                                                                       (28) 

 

By using the equation of total investment return; 

                                           𝑟 = 𝑑 + 𝑞                                                                                         (29) 

where𝑟 is the risk adjusted discount rate for V (the worth); 𝑞 is the dividend yield ( or 

convenience yield in case of commodities) and 𝑑 is the drift (or capital gain rate). Hence 𝑑 = 0.1  

for  𝑞 = 0.1  and  𝑑 = 0.2 for  𝑞 = 0.0  (No dividend yield). 

From (16), we have  

                               
    0.2   0.05 0
−0.1 0.2 0.1

  0 −0.15 0.2
  

𝑉1

𝑉2

𝑉3

     =     
0.2
0.2
0.2

 ,                                                  (30) 

the actual solution by [11] is 𝑉 𝑆, 𝑡 = 1.171339, the PDE result is 0.14459568, which 

Bjerksunet Stensland (2002) gives 0.14275. Approximations such as Bjerksunet and Stensland 

(2002) [23] are not accurate enough to test the accuracy of the finite different scheme. The 

stochastic approximation method in [16] starting at 𝑉0 = (0  0  0) gives after one iteration  
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𝑉1 = (1.2  1.2  1.2),𝑎𝑛𝑑  𝑉∗ 𝑆, 𝑡 =  1.2, for both values of the drift, which gives a fixed point. 

This solution is the same as in [11]. Using the financial matrix (28) in the pseudo inversion 

method (18)we have 

𝐿∗ =  
 0.3   0.8 1.3
1.3 0.03 0.3
  0.4 0.8 −0.6

 ,                                                                  (31) 

applying the inversion matrix  𝐿∗ to (17) gives 𝑉1 = (0.48  0.33  0.12), and𝑉∗ 𝑆, 𝑡 =  0.31 for 

both values of the drift, and is not a fixed point and also not equal to the solution in [16]. It is 

desired to check the controllability condition (19). It can be easily validated that the 

controllability matrix  

                                    𝑀 =  
 1   0.25 0.06
1 0.2 0.02
1 0.05 −0.02

                                                                 (32) 

is of full rank 3. Since the system is controllable the pole placement design can be implemented 

to stabilize the system. Placing the pole 𝑠1 = −1, 𝑠2 = −2,𝑎𝑛𝑑 𝑠3 = −3 alongside with the 

original system (28) we have the original and desired characteristic equations from (25) as  

𝑎 𝑠 =  𝑠𝐼 − 𝐿 = 𝑠3 − 0.6𝑠2 + 0.14𝑠 − 0.01                                                                        (33) 

𝛼 𝑠 =  𝑠𝐼 − 𝐴 = 𝑠3 + 6𝑠2 + 11𝑠 + 6 ,                                                                                 (34) 

where A is the pole placement diagonal matrix. The transformation matrix(23) is 

𝑇 =  
 1   0.25 0.06
1 0.2 0.02
1 0.05 −0.02

  
 0.14  −0.6 1
−0.6 1 0

1 0 0
 =  

0.05   0.35 1
0.04 −0.4 1
0.09 −0.55 1

 .                                (35) 

The sufficient condition for the system to be completely controllable with all eigenvalues 

arbitrarily placed is by using the gain matrix (27) 

𝐾 = [ 6 + 0.01  11 − 0.14  6 + 0.6 ] 
 37.5 −50 12.5
12.5 −10 −2.5
3.5 −1 −1.5

  

                          𝐾 = [384.23 − 415.7   38.08].                                                                    (36) 

Normalizing the gain matrix yield  

                        𝐾∗ =  [3.8423 − 4.157   0.3808]                                                                  (37) 

For a negative feedback controlled financial system as shown in Figure 2, according to [12] it 

implies that to stabilize such a system, the drift parameter d should increase the stock by 4.157 

times (from 0.2 to 0.8), the risk free rate r should be decreased by 3.8423 times (from 0.2 to 

−0.77) and the volatility should also be decrease by 0.3808 times (from 0.3 to -0.11). From 

physical point of view, the negative sign is to balance the increase of the stock and comply with 

the conservation of financial money.  Some systems reveal a conservation nature such as 

mechanical systems which comply with the principle of conservation energy. 

Applying the stability condition to the pseudo inversion method (17) using (31) we have  
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𝑉1 = (1.92  1.304  0.48), and 𝑉∗ 𝑆, 𝑡 =  1.2347(𝑉∗ 𝑆, 𝑡 ≈ 1.2).This shows that a stochastic 

approximation method and pseudo inversion method can be used on a discretized financial PDE 

to price an American option and European option with a considerable success. 

6. Conclusion 

In this paper we compare the effectiveness of stochastic approximation and pseudo inversion 

methodon a drifted financial derivative system for pricing American options under the Black-

Scholes model.For the Black-Scholes partial derivative, we employed central finite-difference 

approximation into first-order ordering differential equation and later transformed to a drifted 

financial derivative system. In numerical experiment, we formed a financial matrix and the 

value of the drift parameter using Table 1.With finer discretization, space nodes and time nodes, 

we demonstrate that the drifted financial derivative system can be efficiently and easily solved 

with high accuracy, by using a stochastic approximation method and pseudo inversion method. 

The stochastic approximation method proves to be faster in pricing an American options than 

the pseudo inversion method which needs the system to be stabilized for its accuracy. 
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