

SCITECH Volume 6, Issue 2

RESEARCH ORGANISATION| Published online: January 25, 2016|

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Generalized* ⊕ **Z* Supplemented Modules and Generalized*** ⊕ **Co- finitely Supplemented Modules**

Wasan Kh.Alobaidy¹ , Aseel A. Alatuany²

¹Departement of Mathematics, College of Science, Baghdad University, Baghdad, Iraq, ²Departement of Mathemetics, College of Science, Baghdad University, Baghdad, Iraq.

Abstract: Let R be a commutative ring with identity, an R- module M is called $G^*\oplus Z^*$ supplemented modules, if every sub module containing $Z^*(M)$ has generalized* supplemented in M that is a direct summand of M . and an R-module M is called generalized* Co-finitely supplemented, if every Co-finitely has sub module of M has a generalized* supplemented in M and M is called \bigoplus Co-finitely generalized* supplemented, if every Co-finite sub module of M has G*S that is direct summand of M**.**

Keywords: Generalized*⊕Z* supplemented; ⊕ Co-finitely generalized* supplemented modules; Generalized*Co-finitely supplemented modules.

In this paper we will prove some properties of these types of modules.

§**1 Introduction**

Let R be an associative ring with identity and let M be a unital left R-module a submodule N of an R-module M is called small in denoted by $N \ll M$, if whenever $N + L =$ M for some submodule L of M, then $L = M$ equivalently for any proper submodule L of M, $N + L \neq M[1]$, let N and L be a submodule of M.N is called supplement of L in M if $M = N$ + L and N is minimal with respect to this property equivalently, $M = N + L$ and $N \cap L \ll N$ **[1]**.M is called supplemented, if every submodule of M has a supplemented in M **[2]**

For any R-module M, $Z^*(M) = \{m \in M, Rm \ll E(M)\}\$ where $E(M)$ is the injective hull of M . equivalently $Z^*(M) = M \cap \text{Rad}(E(M)) = M \cap \text{Rad}(E1)$ for any injective $E1 \geq M$, where $Rad(E(M))$ and $Rad(E1)$ denoted the Jacobson radical of $E(M).E1$ respectively $Z^*(M)$ is called the co-singular submodule of M see^[3], Notice that Rad (M) $\leq Z^*(M)$.But the converse does not hold in general for example Z as Z-module, $Z^*(Z) = Z \neq \text{Rad } (Z)$.

Let M be module, if N, $L \leq M$, and $M = N + L$, then L is called generalized supplement of N in case N \cap L \leq Rad(L), M is called generalized supplemented or (briefly GS)in case each submodule N has generalized supplement in M[**4].** A module M is called generalized \oplus supplemented, if every submodule has a generalized supplement that is a direct summand of M **[5**] As a generalization of ⊕ supplemented modules .In **[6]** anther were notation introduced called generalized⊕ radical supplemented module .A module M is called generalized ⊕ radical supplemented, if every submodule containing radical has a generalized supplement that is a direct summand of M.

 The concept generalized* supplement modules were introduced in **[7]** .Let M be a module, if N, $L \leq M$ and $M = N + L$ then L is called a generalized* supplement of L in case N ∩ L ≤ Z*(L) .A submodule K of M is called co- finite if M / K is finitely generated. In **[8]** M is called \oplus co-finitely supplemented (briefly) \oplus cof- supplemented, if every co-finitely submodule of M has a supplement that is a direct summand of M.

In this paper we define generalized*⊕ Z^* supplemented as a generalization of \oplus supplemented module .A module M is called $G^* \oplus Z^*$ supplemented if every submodule containing $Z^*(M)$ has generalized* supplement in M that is a direct summand of M (i.e. $\forall N$ $\leq M$, $Z^*(M) \leq N$, N has generalized* supplement L in M and L is direct summand .Clearly every semi-simple module is a $G^*\oplus Z^*S$ and every \oplus

As a generalization of \oplus cof-supplemented we define \oplus co-finitely generalized* supplement (briefly) ⊕cof-generalized* supplement, if every co-finitely submodule of M has generalized* supplement that is direct summand of M for short G*⊕CS. Clearly \oplus supplement are G*⊕CS module and the converse is true if M is finitely generated.

§2 Generalized* ⊕ **Z* supplemented**

In this section we define G*⊕Z* supplemented module as a generalization of \oplus supplemented in **[6]** and study some of properties of G*⊕Z*S supplemented module. Cleary every ⊕ supplemented module is a G*⊕Z*S module, but the converse does not hold in general, for example Z-module, Q is a G^* $\bigoplus Z^*S$ module which is not \bigoplus supplemented module.

Definition (2.1) :- A module M is called $G^*\oplus Z^*$ supplemented if every sub module containing $Z^*(M)$ has generalized* supplement in M that is a direct summand of M (i.e. $\forall N$ $\leq M$, $Z^*(M) \leq N$, N has generalized* supplement L in M and L is direct summand (i.e. there exist L, K $\leq M$ such that M = L + N = L \oplus K and N \cap L \leq Z^{*}(L).

Recall that a sub module N of M is called fully invariant if for every h \in End (M), h (N) \leq N and M is called a duo module, if every sub module of M is fully invariant. [1]

Lemma (2.2):-Let M be a duo module, if M= $M_1 \oplus M_2$ then N= (N∩M₁) \oplus (N∩M₂) for N is submodule of M.

Proof:- see**[9]**

Lemma (2.3):- Let M be any R-module, and let N be a submodule of M, then $Z^*(N) = Z^*(M)$ ∩ N**. [10]**

Proposition (2.4):- Let M be a $G^* \oplus Z^*S$ module, if N is a fully invariant submodule of M, then N is a G*⊕Z*S module.

Proof:- Let $K \le N \le M$ with $Z^*(N) \le K$, then $Z^*(M) \le K + Z(M)$ since M is a $G^* \bigoplus Z^*S$ module, then there exist L, $L' \leq M$ such that $M = (K + Z^*(M)) + L = L \bigoplus L'$ and $(K +$ $Z^*(M)$) \cap $L \leq Z^*(L)$. Now $N = (K + Z^*(M)) + L$) \cap $N = K + (Z^*(M) \cap N) + (L \cap N)$, hence N = (K + Z*(N)) + ((L ∩ N) = K + (L ∩ N) since Z*(N) \le K and K \cap (L \cap N) = (K ∩ L) ∩ N ≤ ((K + Z*(M)) ∩ L) ∩ N ≤ Z*(L) ∩ N = (Z*(M) ∩ (L ∩ N)) = Z* (L ∩ N) since M = L \oplus L', hence N = (L ∩ N) \oplus (L' ∩ N) therefore N is a G* \oplus Z*S submodule of M.

Proposition (2.5):-If M is a G*⊕Z*S module, then M / N is a G*⊕Z*S for every fully invariant submodule of M.

Proof:- Let N be a fully invariant submodule of M and let K / N $\leq M$ / N with $Z^*(M/N) \leq K$ / N, since $Z^*(M) + K / N \le Z^*$ (M / N) by [11], then $Z^*(M) \le K$, then by assumption there exist L ≤M such that M = L + K with L ∩ K ≤ Z*(L) and M = L \oplus L' for some L' ≤ M , thus $M/N = K/N + (L+N)/N$ and $K/N \cap (L+N)/N = (K \cap L) + N/N \le Z*(L) + N/N \le$ $Z^*(L + N)$ N. Since N is a fully invariant submodule of M then $N = (N \cap L) + (N \cap L')$ and $(N + L) / N \cap (N + L') / N = 0$ then $M / N = N + L / N \oplus N + L' /$, hence M / N is a G*⊕Z*S module.

Corollary (2.6) :- The homomorphic image of a duo $G^* \oplus Z^*S$ is a $G^* \oplus Z^*S$ module

Proof: Clear sine every homomorphic image is isomorphic to a quotient module.

 The following theorem shows that when M is a duo module, the direct sum of G*⊕Z*S is again a G*⊕Z*S.

Theorem (2.7):- If $M = M_1 \oplus M_2$, if M is a duo module and M_1 , M_2 are G* \oplus Z*S, then M is a G*⊕Z*S.

Proof:- Let $N \le M$ with $Z^*(M) \le N$, then $Z^*(M_1) \le N \cap M_1$ \forall i= 1,2 hence there exist V_i , V'_i of Mⁱ $(\forall i=1,2)$ such that $M_i = (N \cap M_i) + V_i$, $(N \cap M_i) \cap V_i \leq Z^*(V_i)$ and $M_i = V_i \bigoplus I_i$ V'_i since N is fully invariant submodule of M hence N = N \cap M₁ \oplus N \cap M₂, let V = V₁ \oplus V₂, $V' = V'_{1} \oplus V'_{2}$, hence there exist V, $V' \leq M$ such that $M = M_{1} \oplus M_{2} = (N \cap M_{1}) \oplus (N \cap M_{2})$ $+$ ($V_1 \oplus V_2$)= N + V and N \cap V = (N \cap M₁) + (N \cap M₂) \cap ($V_1 \oplus V_2$) \leq Z^{*}(V₁) \oplus Z^{*}(V₂) $= Z^*(V)$ by [11] and V $\bigoplus V' = (V_1 \bigoplus V_2) \bigoplus (V'_1 \bigoplus V'_2) = M_1 \bigoplus M_2 = M$, hence M is G*⊕Z*S

Corollary (2.8) :- Let $\{M_i\}_{i=1}$ be any infinite collection of R-modules and M= $\bigoplus_{i\in I} M_i$ is duo module, then M is $G^* \oplus Z^*S$ if M_i are $G^* \oplus Z^*S$ for each i $\in I$.

Lemma (2.9):- For any R-module $M \neq 0$, $Z^*(M) = 0$ if and only if Rad(E (M)) = 0.

Proof:- see [11]

Proposition (2.10) :- Let M be a non –zero R-module with Rad($E(M) = 0$ then M is G*⊕Z*S if and only if M is semi- simple.

Proof: \Rightarrow Clear since Rad (E(M)) = 0 then by Lemma (2.9) $Z^*(M) = 0$, hence \forall 0 < N \leq M, N has generalized* supplement in M i.e. there exist K \leq M such that M = N + K and N $\bigcap K = Z^*(K) = 0 \Rightarrow N$ is a direct summand of M

⇐) Clearly since every semi-simple is a G*⊕Z*S.

§**3** ⊕**Co-finitely generalized* supplemented modules**

 In this section we introduce a ⊕co-finitely generalized* supplemented module as a generalization ⊕ co-finitely generalized module**.[8]**

Definition (3.1):- An R-module M is called generalized*co-finitely supplemented if every cofinite has submodule of M has a generalized* supplement in M for short we will refer to these module by G*CS. M is called \oplus co- finitely generalized* supplemented or (briefly) \oplus -cof G*S, if every co- finite submodule of M has G*S that is direct summand of M for short (G* \bigoplus CS)(i.e. $\forall N \leq M$ with M / N is finitely generated, there exist L $\leq M$ such that L is a G*S of N in M ($M = N + L$), N $\cap L \leq Z^*(L)$ and there exist K $\leq M$ such that $M = L \oplus K$.

 It easy to see that ⊕ supplement modules are G*⊕CS module and the converse is true if M is finitely generated, Notice that hollow modules are G*⊕CS modules.

The following proposition shows that under certain condition the quotient of $G^* \oplus CS$ is a G*⊕CS

Proposition (3.2):- Assume that M is a $G^* \oplus CS$ due module then M / N is a $G^* \oplus CS$ module.

Proof:- Let $N \le K \le M$ with K / N a co- finite submodule of M / N, then M / K \simeq (M / N) / (K/N) is finitely generated since M is a G* \bigoplus CS module, there exist a submodule L and L' of M such that $M = K + L = L \oplus L'$ and $K \cap L \leq Z^*(L)$.

Notice that M / N = K/ N + (L + N) / N by modularity K \cap (L + N) = (K \cap L) + N since K $\cap L \leq Z^*(L)$, we have K / N \cap (L + N) / N = [(K \cap L) + N] / N $\leq Z^*$ (L + N) / N this implies that (L + N) / N is G*S of K / N in M / N .Now N = (N \cap L) \bigoplus (N \cap L) by lemma(2.2) implies that $(L+N) \cap (L'+N) = N + (L+N+L+N \cap L') \cap L'$ it following that $(L + N) \cap (L' + N) \le N$ and $M/N = (L + N) / N \bigoplus (L' + N) / N$ then $(L + N) / N$ is direct summand of M / N. Consequently M / N is a $G^* \oplus CS$ module.

Proposition (3.3):-):- For any ring R, if $M = M_1 \oplus M_2$ with M_1 and M_2 are G* \oplus CS module if M is a duo module, then M is a $G^* \bigoplus CS$.

Proof: - Let L be a co-finite submodule of M i.e. M / L is finitely generated. Now $M = M_1 +$ M_2 + L then $M_1 + M_2 + L$ has a G*S 0 in M i.e. $M = M_1 + M_2 + L + 0$ and $M_1 + M_2 + L \cap \{0\}$ $\leq Z^*(0) = 0$ and so M / L + M₁ is finitely generated. Notice that M / L + M₁ = (M₂+ (M₁ + L) / $M_1 + L \simeq M_2 / M_2 \cap (M_1 + L)$ hence $M_2 / M_2 \cap (M_1 + L)$ is finitely generated, but M_2 is a G* \oplus CS module, then there exist H $\leq M_2$ such that $M_2 = M_2 \cap (L + M_1) + H$ and $M_2 = H \oplus$ H' for some $H' \le M_2$ also $M = M_1 + M_2 = M_1 + M_2 \cap (L + M_1) + H$, hence $M = (M_1 + L) +$ H and $(M_1 + L)$ \cap H \leq Z^{*}(H), thus H is a G^{*}S of $M_1 + L$ in M. Note that M $/L + H = M_1 + C$ $L + H$) $/(L + H) \simeq M_1/M_1 \cap (L + H)$, then $M_1 \cap (L + H)$ is co-finite submodule of M, since M₁ is a G*⊕CS module then there exist K $\leq M_1$ such that M₁ = M₁ \cap (L + H) + K with $M_1 \cap (L + H) \cap K = (L + H) \cap K \leq Z^*(K)$ and there exist $K' \leq M_1$ such that $M_1 = K$ $\bigoplus K'$, hence L is a G*S of H + K in M i.e. M = M₁ + M₂ = (L + H + K) + (M₂ \cap (L + M₁) $+ H = L + H + K$ and $L \cap (H + K) \leq Z^*(K) \leq Z^*(K + H)$ and $H + K = H \bigoplus K$ since H is a direct summand of M₁, hence H \oplus K is a direct summand of M.

Corollary (3.4):- Any finite direct sum of G*⊕CS module is a G*⊕CS module.

Proof:-follows from proposition (3.3)

Before we give next result we need the following definitions:-

Definition (3.5): A module M is said to be have the summand intersection property (SIP) if the intersection of any pair of direct summands of M is a direct summand of M (i.e. if N and K are direct summand of M then $N \cap K$ is also a direct summand of M).

 A module M is said to have the summand sum property (SSP) if the sum of any pair of direct summand of M is a summand of M(i.e. if N and K are direct summand of M then $N +$ K is also a direct summand of M.

Recall that a module M distributive if for submodule K, L, N of M N+(K \cap L) = (N + K) $\bigcap (N+L)$ or $N \bigcap (K+L) = (N \bigcap K) + (N \bigcap L)$.

Hence we have the following:-

Theorem (3.6):- 1- Let M be a G*⊕CS-module and N a submodule of M, if for every direct summand K of M, $(N+K)/N$ is direct summand of N / M then M / N is a $G^*\oplus CS$ module.

 2- Let M be a G*⊕CS-distributive module then M / N is a G*⊕CS module for every submodule N of M.

3- Let M be a G*⊕CS module with SSP then every direct summand of M is a G*⊕CS module.

Proof: 1- Any co -finite submodule of M / N has the form L / N where L there exist a direct summand K of M such that $M = L + K = K \bigoplus K'$ and $L \cap K \leq Z^*(K)$ for some submodule K' $\leq M$. Now M / N = L / N + (K + N) / N, by hypothesis (K + N) / N is direct summand of M / N, Note that $(L/N) \cap (K+N)/N = [(L \cap (K+N)]/N = [N+(K \cap L)]/N$ since $L \cap K \leq$ Z*(K).we have $[(K \cap L + N] / N \leq Z^*(K + N) / N]$. This implies that $(K+N)/N$ is G^*S submodule of L/N in M / N .hence M / N is a $G^* \oplus CS$ module.

Proof: 2- Since M is a G*⊕CS then any co-finite submodule of M has a G*S that is a direct summand of M. Let L be a direct summand of M i.e. $M = L \bigoplus L'$ for some submodule L' of M .Now M/ N = $[(L+N)/N] + [(L'+N)/N]$ and N = N+ (L \cap L') = (N + L) \cap (N +

L') since M is distributive , thus M / N $[(L+N)/N] \bigoplus [(L'+N)/N]$ by(1) hence M / N is G*⊕CS module.

Proof:3- Let N be a direct summand of M i.e. $M = N \bigoplus N'$ for some $N' \leq M$, to prove that M/N' is a G*⊕CS module .Let L be a direct summand of M, since M has the SSP, then L + N' is a direct summand of M. i.e. $M = (L + N') \oplus K$ for some K<M, then $M/N' = L + N'/N$ $N' \bigoplus K + N'/N'$, hence by (1) M / N' is a G* $\bigoplus CS$ module.

 Weimin Xue in **[12]** introduce the notation of generalized projective covers to characterize semi perfect modules and rings.

An epimorphism f: $P \rightarrow M$ is called a generalized cover in case kerf \leq Rad (P), when P is a projective module then f is called a generalized projective cover.

As a generalization of this concept we introduce the following definition:

Definition (3.7):- If P and M are modules, we call an epimorphism f: $P \rightarrow M$ a (generalized*) cover in case (kerf $\leq Z^*(P)$), If P is a projective module, then f is called (generalized*) projective cover .Clearly every projective cover is generalized* projective cover.

We have the following basis properties of generalized* cover.

Lemma (3.8):1- If f: $P \rightarrow M$ and g: $M \rightarrow N$ are generalized* cover for M and N, with f($Z^*(P)$)= $Z^*(M)$, then g $\circ f: P \to N$ is a generalized*cover for N.

Proof: - If both f and g are covers, then gof is cover by [2], Now let both f and g be generalized* cover .It is enough to prove that ker ($g \circ f$) $\leq Z^*(P)$. Let x ϵ ker ($g \circ f$), then $g \circ f(x) = 0$, hence $f(x) \in \text{ker } g \leq Z^*(M)$, since kerf $\leq Z^*(P)$, then there exist $x' \in Z^*(P)$ such that $f(x) = f(x')$, for some $x' \in Z^*(P)$, hence $x - x' \in \text{ker} f \leq Z^*(P)$, therefore $x \in Z^*(P)$.

2- If each $f_i : P_i \to M_i$, $i = 1,...,n$, is a generalized* cover, then $\bigoplus_{i=1} f_i: \bigoplus_{i=1} P_i \to \bigoplus_{i=1} M_i$ is a generalized* cover.

Proof: Since kerf_i $\leq Z^*(P_i)$, \forall i= 1,2,...n we have ker($\bigoplus_{i=1} f_i$) = $\bigoplus_{i=1}$ ker f_i, thus ker ($\bigoplus_{i=1} f_i$ $\leq \bigoplus_{i=1} Z^*(P_i)$, i.e. $\bigoplus_{i=1} f_i$ is a generalized* cover.

Lemma (3.9):- Let N be a submodule of the module M and f: $M \rightarrow M / N$ be canonical epimorphism also, let P any module, g: P \rightarrow M /N and h: P \rightarrow M with h(Z*(P)) = Z*(M) such that g is h composed with f. Then the map g is a generalized* cover epimorphism if and only if Im (h) is a generalized*supplemented of N and kerh $\leq Z^*(P)$.

Proof:- \Rightarrow) Let $x \in N$ \cap Imh, then $x \in N$ = kerf and $x \in I$ mh i.e. there exist $y \in P$ such that $x =$ h(y).Now g(y)= f(h(y)) = f(x) = 0(since $x \in \text{kerf} = N$), thus $y \in \text{kerg}$ and $h(y) \in h(\text{kerg})$.Now let $x \in h(\text{ker}g)$, then $x=h(y)$, $y \in \text{ker}g(i.e. g(y) = 0$, hence $fh(y) = g(y) = 0$, $f(x) = g(y) = 0$, thus N \cap Imh =h (kerg) $\leq Z^*$ (Imh) = $Z^*(h(P))$ then Imh = h (P) is a generalized* supplement of N, since g is an epimorphism then kerh \leq kerg thus kerh \leq Z*(P).

 \Leftarrow) the converse is clearly by lemma (3.8 (1))

 Recall that an R-module M is called semi perfect module if every factor module has a projective cover. As a generalization of semi perfect modules, we will introduce the following **[1].**

 An R-module M is called a generalized* co-finitely semi perfect, if every finitely generated factor has a generalized* projective cover. Clearly every semi perfect module is a generalized* co-finitely semi perfect.

Theorem (3.10):- Let M be a module in which every generalized* projective cover f satisfies f $(Z^*(P)) = Z^*(M)$, the following are equivalent:

1. M is a generalized* co-finitely semi perfect module.

2. M is a generalized* co-finitely module by supplements which have generalized* projective cover.

Proof:- $1 \Rightarrow 2$) Let $M = N + L$ with M / N is finitely generated projective cover for M / N, P is a projective R-module .Now M / N = N + L / N \simeq L / L + N since P is projective ,then the map f lefts $g : P \longrightarrow L$, and since f is a generalized* cover , then by Lemma(3.9), we get Img is a generalized* cover of (L ∩ N) i.e. Img + (L ∩ N) = L and Img \cap (L \cap N) \leq Z* (Img), kerg \leq ker (π $OiOg$) = kerf < Z*(P).

 $2\Rightarrow 1$) Let N be a co-finite submodule of M, then M / N is finitely generated by (2) there exist L ≤ M such that M = L + N and L ∩ N ≤ Z*(L). Let f: P \rightarrow L be a generalized* projective cover of L the natural epimorphism g: L \rightarrow L / L \cap N \simeq N + K / N = M / N is a generalized* cover (for kerg = L ∩ N \leq Z* (L)), hence h= g \circ f: P \rightarrow M / N is generalized* projective cover for M / N by Lemma (3.8).

Corollary (3.11):-Let M be a projective $G^* \oplus CS$ module, then M is a generalized* co-finitely semi perfect module.

Proof:- Let N be a co-finite submodule of M, i.e. M / N is finitely generated since M is a G*⊕CS module, then there exist K, K' $\leq M$ such that M = N + K = K \oplus K' and N \cap K \leq Z* (K), K is projective, let i: K $\rightarrow M$ be the inclusion homomorphism and let $\pi : M \rightarrow M / N$ be the natural epimorphism ,hence $\pi \circ i: K \to M / N$ is an epimorphism, ker($\pi \circ i$) = N $\cap K$ < $Z^*(K)$ thus M is a generalized* co-finitely semi perfect module.

References

[1] **W**isbauer, R, (1991)Foundations of modules and Ring theory,*Gordon and Breach , Reading*,

- [2] **M**ohamed S.H and Muller, B.J, (1990),Continuous and discrete modules,*London Math.Sco.LNS.147, Cambridge University Press, Now York Sydny,*
- [3] **H**arade, M.,(1978), Non-small modules and non-cosmall modules, In Ring Theory Proceedings Antwerp Conference, F.Van Oystaeyened .*New York: Marcel Dekker*.
- [4] **W**an,Y, and Ding N,(2006)"Generalized supplemented Modules"Taiwanese *Journal of Math.vol.10.no.6, pp.1589-1601.*
- [5] **C**alisici,Hand Turkmen E,(2010),"Generalized ⊕ supplemented modules" Algebra and discrete Mathematics*" V0l .10, no .2, pp.10-18,*
- [6] **T**urkmen, B, N,and A.pancar,(2014) "Generalized ⊕-Radical supplemented modules" Volume , *Article ID 603851,4 pages*.
- **[7] K**halid,W, and Amer,A,(2014),Generalized* supplemented modules, Vol.55,No.4A,(1614- 1617), *science College the university of Baghdad.*
- [8] **T**amer kosan M, (2009),Generlized semiperfact Modules *Vol.5,58-69*.
- [9] **L**eghwel A,, Kosan T, N. and Harmanc,A,(2006) Duo modules and duo ring, *Far East J.Math., 341-346*.
- [10]**O**zcan, A,C,(2002),Modules with small cyclic submodules in their injective hulls,*Comm.Alg, 30(4),1575-1589.*
- [11]**O**zcan ,A,C, (1998),some characterizations of V-modules and rings, *Vietnam J.Math., 26(3),253- 258.*
- [12]**X**ue,W,(1996) Characterizations of Semiperfact andPerfact rings*, Publications Matematiques, 40, 115-125.*
- [13] **A**nderson,F,W, and Fuller,K,R,(1992), Rings and Categories of modules, *Graduate Texts Mathematics, vol.13, 2nd edition, Springer- Verlag, New York .*