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Abstract  

In this paper, we stude the influence of the perturbing term in equation    x’ = f(t, x) + 

g(t, x), on the asymptotically behavior of x’ = f(t, x). 
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1. Introduction 
Consider the following systems of diferential equations: 

x’ = f(t, x)                                                                               (1) 

x’ = f(t, x) + g(t, x)                                                                 (2) 

where f and g are n – vectors, continuous on the domain D =  ( , ) / ,t x t I x   with I := 0, +) 

and  is an open set of R
n
. Here x(t) and x(t, t0, x0) are solutions of systems (1) and (2) such that  x(t, t0, 

x0) = x0.   

Thorough this paper C(I), CI(I), CP(I) and CC(I) denote the families of continuous functions, continuous 

increasing functions, continuous and positive functions and continuous functions satisfying u f(u) > 0 for 

u  0 respectively, with f defined in the real interval I. We also consider the following functional classes 

(cf. 21): 

 

L = 

0

( ) ( ) / ( ) 0 ( )t C I t t dt  
 

    
 

  

P = 

0

( ) ( ) / ( ) 0 ( )p t C I p t t dt
 

    
 

  

F =  ( ) ( ) / ( ) 0t C R u      no decreasing

0
( )

du

u

 
 


  
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There are many results concerned with relationships between solutions of an unperturbed system and 

solutions of its perturbed system, especially concerning the stability of solutions of the perturbed system 

(we refer to reader to the bibliography and references cited therein). The purpose of this paper is to study 

the influence of the perturbing term g(t, x) in (2) on the asymptotic properties of (1) under non – usual 

assumptions, in particular aasumptions of type that g is small in some sense, are not consider here.  

The main tool used in this work is the second method of Lyapunov. Foundations of stability theory for 

ordinary differential equations can be found, for example, in Yoshizawa 34 and Demidovich 6.  

Denote by Ix the maximal interval in which the solution x(t) of (1) exists. For any solution x(t) of (1) we 

have either Ix = (0, t
+
) with 0 < t

+
  + or Ix =  (t

–
, t

+
) with       0  t

–
 < t

+
  +. In system (1) let f(t, x) be 

continuous on D. We say that x(t) of (1) is defined on the future (or continuable) if t
+
 = +. 

For a constant  > 0 and any convenient norm, let S =  /x x  .  

First of all, the definition of boundedness of solutions will be given (cf. 33). Suppose that through every 

point of D passes only one solution of (1).  

A solution x(t) of (1) is bounded, if there exists  > 0 such that x(t)  S for all t  t0, where  may 

depend on each solution.  

The solutions x(t) of (1) is equi – bounded, if for any  > 0 and t  I, there exists      = (t0, ) > 0 such 

that if x0  S, then x(t)  S. 

The solutions of (1) are ultimately bounded for bound B, if there exists  > 0 and    T > 0 such that for 

every solution x(t), x(t)  S for all t  t0 + T, where B is independent of the particular solution while T 

may depend on each solution.  

The solutions of (1) are equi – ultimately bounded for bound B, if there exists  > 0 and in corresponding 

to any  > 0 and t0  I, there exists T = T(t0, ) > 0 such that x0  S implies that x(t)  S for all t  t0 + 

T.  

Let x(t) be a solution of (1) defined in the future.  

We say that x(t) is stable (in the sense of Lyapunov) if given  > 0, t0  Ix, there exists  = (t0, ) > 0 

such that x0  S implies that x(t) exists in the future and     x(t)  S for all t  t0.  

We say that x(t) is asymptotically stable if it is stable and there exists  = (t0) > 0 such that 

0x
t
 


 for all x(t) such that x0  S.  

 

We say that x(t) is asymptotically stable in the whole if it is stable and for every solution x(t) of (1) : 

0x
t
 


. 

We say that x(t) is quasi – equiasymptotically stable if given  > 0, t0  Ix, there exists  = (t0) > 0 and T 

= T(t0, ) such that if x0  S, x(t)  S for all t  t0 + T.  

We say that x(t) is equiasymptotically stable if it is stable and is quasi – equiasymptotically stable.  

We say that x(t) is quasi – equiasymptotically stable in the whole if for any  > 0, any  > 0 and any t0  

Ix, there exists T = T(t0, , ) such that if x0  S then         x(t)  S for all t  t0 + T.  

We say that x(t) is equiasymptotically stable in the whole if it is stable and is quasi – equiasymptotically 

stable in the whole.  

Here, it is noticed that if x(t)  0 is the unique solution of (1) through (0, 0) quasi – asymptotically 

stability implies the stability of x(t)  0 (see 34).  

Other definitions of different types of stability and boundedness we can found in 2 and 34.  

2. Results 
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Given  > 0, suppose that there exists a Lyapunov function V(t, x) defined on I  S satisfying the 

conditions 

 

(3)                                     x.tA    V(t, x)     x.tB   

 

(4)                                               V’(1)     x.tC   

 

(5)                                          g.Vgrad      x.t   

where A, B, C  CP(I), such that 

(6)                                         tA   a  1   and   
 
 tB

tC
  b 

for some positive constants a, band where  is a positive and continuous increasing function on R such 

that 

(7)                                            
  t

t

0
)r(

rd
 

Under assmptions (3) y (4) we can conclude that the equi – boundedness of solutions of (1) (see Theorem 

10.1 of 34 or lemma 1 of 21), by other hand, using a simple variant of Theorem 10.5 of 34, the 

solutions of (1) are equi – ultimatelly bounded if (3) and (4) holds.  

Here will give some results on these properties of solutions of the perturbed system (2) under condition 

(7) on the perturbing term g(t, x) in which 

(8)                                       = 

0

1
limsup ( )

t

t

r dr
t




 
 
 
  < ab 

with  sufficiently small. We choose the solution x(t, t0, x0) of the system (2) which satisfies that:  

(9)                                             x(0) = x0 ; x0  S 

On this solution, the derivative V’(2)(t, x) satisfies (from conditions (3) and (4)): 

V’(2)(t, x) = ( )
V

f g gradV
t


 


     x.tC   +    x.t   

 

and from the condition (3) we have: 

(10)                         V’(2)(t, x)  
 

 x,tV.
)t(B

tC
  + 

 
 x,tV.

)t(A

t
 

It follows then, by using condition (6) that: 

(11)                                   V’(2)(t, x)  
 

 x,tV.b
a

t











 

Taking into account (3), and above result, we have that solutions of system (2) are equi – bounded in 

virtue of Theorem 10.1 of 34.  
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Since V(t, x) is continuous, there exists a K(t0, a) > 0 such that if x  Sa, V(t0, x0)   K(t0, a). Let x(t, t0, 

x0) be a solution of (2) such that x0  Sa. Suppose that for       t > t0 + 
 
  









 B

a,tK
log

c

1 0 , c = 
a

b


 , 

  00 x,t,tx,tV   (B), i.e.  00 x,t,tx   
c

BS which means the not equi – ultimately boundedness of 

the solutions of (2).  

Putting (t) = 
 

b
a

t



  L(I) in (11), we have by (8) that L(t)  c(t – t0), where L(t) = = 

t

t0

ds)s( . So, 

we obtain: 

(B)    00 x,t,tx,tV  <    0ttc

00 ex,tV


 <  
 

)B(

a,tK
log

0

0

ea,tK 


 = (B) 

which is a contradiction, therefore if t > t0 + T(t0, a) = t0 + 
 
  









 B

a,tK
log

c

1 0  we have x(t)  SB. Thus, the 

solutions of (2) are equi – ultimately bounded for bound B. Hence we have the following result: 

Theorem 1. Suppose that:  

 

1)  there exists a Lyapunov’s function V(t, x) which satisfies the conditions (3) – (5) and (7).   

2) the perturbing term g(t, x) satisfies the conditions (5) and (8).  

 

Then the solutions of system (2) are equi – bounded and equi – ultimately bounded.  

 

Remark 1. Hara in 12, studied the boundedness and asymptotic behavior of solutions of time – varying 

differential equations.  

 

(12)                                                 A(t) x + f(t, x) 

 

where x, f are n – vectors, A(t) is a bounded differentiable n  n matrix for t  0 and f(t, x) is continuous 

in (t, x) for t  0 and x  < . In that paper the following assumptions are considered: 

 

i)  x,tf     x1t  , with  a non – negative continuous function on I satisfying 

  0rdr
t

1t

t

 




 . 

 

In 30 the author deals with stability exponential of equation (12) using the exponential stability of linear 

term and a nonlinear nonstationary infinite dimensional difference equations analogous to (1).  

 

The solutions x(t) of (1) starting from x = 0 at zero is given by 

 

x(t) = (t, 0) x0 +     
t

0

dssx,sFs,t  

 

where F(t, s) is the fundamental solution matrix of linear system. Thus, applying a stability theorem 

obtained for the discrete – time system, derived the following sufficient condition for asymptotic stability 

of (12).  

 

ii) 30, Th. 3 Assume that: 
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 s,t   K e
 –  s

,  t, s  0 

 x,tf   a(t) 
m

x , t  0
  

if 0 < m < 1, 
  






1

0

m1sk

k

dsesuplim  = 0 

if m = 1,    


1

0
k

dsskasuplim  = 0 

if m > 1, 
    





 
0k

m1sk skae  <  

 

Hara, Yoneyama and Okasaki in 13, considered the following systems of differential equations:  

 

((L))     x´=a(t)x, 

 

((LP))     y´=A(t)y+g(t,y), 

 

((Ph))     y´=A(t)y+h(t), 

 

where x, y, g, h are n-vectors, A(t) is take as above, g is a continuous function on IxR
n
 and h is also a 

continuous function on I. Under conditions: 

 

iii)   )y,t(g  (t) y( ) for all tI and y R, 



0

.
)r(

dr
 

 

In that paper, they proved that if solutions of (L) are uniformly bounded (UB) and g satisfy ii), then 

solutions of (LP) are (UB). If solutions of (L) are (UB) and ultimately bounded (UltB) and g satisfy ii), 

then solutions of (LP) are (UB) and (UltB). If we consider that. 

 

iv)      



0

,dt)t(h  

 

then there exists a matrix A(t) such that the solutions of (L) are (UB) and (UltB) and solutions of (Ph) are 

not (UB). If in addition, there exists a sequence {tn} such that tn   and 
nt

0
ds)s(h as ,n   

then the matrix A(t) of the above assertion can be take bounded on I. 

 

Hara, Yoneyama and Sugie in [14], studied the continuability of solutions of system (1) and perturbed 

systems (2) and  

 

((2h))     x´=f(t,x)+h(t), 

 

with f, g continuous n-functions on IxR
n
 and h is continuous n-vectors function. 

Suppose that 

 

v) )x()t()x,t(f   and )x()t()x,t(g  on IxR
n
 with 






 )r(1

dr
 and )r(  is a 

bounded functions on .0r   

 

vi) F as above and h such that the solutions of (2h) are of global existence (GE). 
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Under that conditions, they showed that the solutions of (2) and (2h) are continuable. 

Notice the advantages of the condition (5) over assumptions of the perturbing term, i)-vi) above, in the 

referent to a priori bound of such term. Thus, a fundamental rol is played by the stronger hypotesys that 

(11) 





1t

t0t

.ds)s(sup  So, our results are obtained under milter conditions. By the other hand, 

the above theorem generalizes the results due to Hara [12]; Hara, Yoneyama and Okasaki [13]; and 

Onuchic [27], who considered the linear case f(t,x)=A(t)x, obtaining the boundedness property. Therefore, 

our result is also more general that cited above. 

 

Remark 2. The main purpose of sections 4.6 and 4.7 of [8] is to give theorems on uniform and global 

asymptotic stability of the zero solution 0x  of the system (12), under assumption of type 

 
nRx),b,a[t),x,t(L)x,t(f   

 

with  

 

,0vu),,[t),vu)(v,t(M)v,t(L)u,t(L0  M is nonnegative and continuous on 

.xR),[ n  

These results are obtained, in general, with additional integral boundedness conditions on M. It is clear 

using ideas presented here we can derive results on uniform and global asymptotic stability of solution 

0x  of (12) under milder assumptions (see Theorems 2 and 3 below). 

 

Remark 3. Without use of Theorem 10.1 of [34]. the Theorem 1 only cover the asymptotic stability (see, 

for example, pioneer results of this nature in Corduneanu [5] and Germanidze [11]). A result of this type, 

is consistent with the results obtained in [13] for asymptotically autonomous differential equations on a 

plane (and with a stronger version of Markus´ theorem [19], given in [1]), with the results of section 3 of 

[17] and with [24, Theorem 1.6]. 

 

Remark 4. Furumochi [10], employing Lyapunov´s second method, discussed the uniform 

asymptotically stability of the zero solution of (2), including the case when f satisfies weaker assumptions 

that those reported in the references. Later, unisng a result of Chow and Yorke [4], on integral attraction 

of zero solution of (1), obtained the integral attractivity of zero solution of perturbing equation (2), under 

suitable assumptions. So, taking in account the above remark, our Theorem 1 complete the study of 

asymptotic stability of zero solution of perturbing equation (2), under appropiate assumptions. That 

remark is still valid if we take in account [9]. 

 

Remark 5. In [23] Redheffer studied the Lotka-Volterra system 

 





m

1j

ijijii

´

i t0,0)0(x),xpe(xx  

where )p(p ij  is a real m by m matrix and where the equations are to hold for i=1,2,…,m. It is assumed 

that the constants ie are so choosen that a stationary point )q(q i in the first quadrant exists. By that 

study is considered an equation of the equation of the form ),t(h)x(f´x  a simple case of problem (1)-

(2). 

If RR:v  is a Lyapunov function for f, the function RR  defined by ))t(x(v)t(V  satisfies, not 

the usual condition 

 

0)x(f))x(vGrad())t(x(v
dt

d
)t´(V   

along trajectories, but the weaker condition ),t(g)t´(V  where the error term )t(h))x(vGrad()t(g   
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itself depends on the unknown solution x (see (7) above). The author assume that the integral 

 

 





0

t

0t
Lds)s(gLimds)s(g  

exists as a finite value. Let 
 be the w-limit set for a given trajectory, x(t), which remains fixed 

throughout the study. Redheffer obtained the following result. 

 

Lemma 2. Under the above conditions, the trajectories are bounded and v(x) is constant on .  

 

So, it is clear that the above result is equivalent to our Theorem 1. 

 

The following theorems are variant of the above and are essentially generalizations of results due to de 

Molfetta [20], Hara [12] and Onuchic [27] in the linear case. 

 

Theorem 2. Consider the systems (1) and (2) where f and g are continuous on D. Suppose in addition to 

conditions (5)-(7) and (9) that the Lyapunov function V satisfied the following hypothesis: 

 

(13)  ),x,t(W)x,t(V)t()x,t(Vand)x,t(V)x(a ´

)1(   

 

with a(r) a continuous and positive defined function satisfying )r(a as r and W is some 

defined positive functions on IxSr. Then the solution 0x  of (2) is equi-asymptotically stable in the 

whole. 

Proof. Under (13), we proved in [24] that solution 0x  of (1) is equi-asymptotically stable in the whole. 

As in the proof of the above theorem, we have that (11) still valid. So, we have that 

)),t(Lexp()x,t(V))x,t;t(x;t(V 0000  with L(t) as above. Let 

).
)(a

),t(M
(lnL),t,t(Tthatsuch),t,t(Tand)x,t(Vmax),t(M 01

0000
x

0



 


 Consequently, for 

),t,t(Ttt 00  we obtain that ).(a))x,tx(t;V(t; 00   

From assumptions (13) it follows that for ),,t,t(Tttfor)x,t;t(x 0000  which means the equi-

asymptotically stability in the whole of solution 0x  of system (2).   

 

By using Theorem 2 of [24] on the asymptotic stability in the whole of zero solution of system (1), and a 

similar idea to the above proof, we can prove the following result. 

 

Theorem 3. Consider the system (1) and (2) where f and g are continuous on D. Suppose in addition to 

conditions (5)-(7) and (9) that the Lyapunov function satisfy the following hypotheses: 

 

),x,t(W)t())x,t(V()t()x,t(V´

)1(   

 

where )R(CCf  and W is some defined positive function on rIxS . Then the solution 0x  of system 

(2) is asymptotically stable in the whole. 

 

Remark 6. Our results generalize, in particular, those of [20] and [27], who under the same conditions on 

the functions f and g, obtains only the asymptotic stability property. 

 

Remark 7. If in systems (1) and (2) we have that f(t,x)=f(x), our results are consistent with obtained by 

Hutson [15]. 
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Remark 8. During the last forty years, investigators have shown that if solutions of general differential 

equations (1) are uniformly bounded (UB) and uniformly ultimately bounded (UUB) and if x(t+T) is a 

solution whenever x(t) is a solution. Much less progress han been made in developing general techniques 

which imply that solutions are UB and UUB. It has seemed that Lyapunov´s second method is an 

appropiate vehicle fot this endeavor, but that path has been marked by persistent difficulties. Frecuently 

(2) has the form 

 

),t(g)x,t(f´x   

 

where g(t+T)=g(t) and (1) has the zero solution. In [3] the author conjectured that if (1) enjoyed strong 

global asymptotic stability, then solution of above equation should be UB and UUB. It is clear that our 

results is a partial answer to that question. 

 

3. SOME APPLICATIONS AND COMPARISONS. 

 

1) From the above theorems and results of [23], [25] and [26] (also cf. [22]), we can obtain 

some asymptotic properties of a perturbed bidimensional system, which contains the 

classical Liérard equation: 

 

(14)     .0)x(g)t(a´x)x(f´´x   

 

Thus, let 

 

(15)     ),x(g)t(a´y),x(f)y()y(´x   

 

where the continuous functions involved satisfying: 

 

i. ),R(CI  

ii. ,yallfor0band)R(CP   

iii.  
x

0
,xallfor),x(g)x(fdr)r(g)x(Gand)R(CCg,f  

iv. .0abc,0c)t´(aanda)t(aa0and.,e.i,boundedand)I(PCa 1 





 

 

Under this assumptions, we proved in [24] the asymptotic stability in the whole of zero solution 

of system (15). Taking the perturbed system: 

 

(16)   ).y,x,t(h)x(g)t(a´y),y,x,t(h)x(f)y()y(´x 21   

 

With the Lyapunov function 

 
y

0
.ds)s()y(A),x(G)t(a)y(A)y,x,t(V  

 

Making, )y,x(z),x(kG)y(Az  and k is some positive constant we have: 

 

Theorem 4. Under i-iv assumptions, if h satisfies (7), with (10) and (11), then the zero solution 

of system (16) is stable asymptitocally in the whole. 

Proof. Is enough to prove that all conditions of Theorem 1hold and consider the Remark 3.   
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2) Analogous result on the continuability of solutions of Liénard equation (16) under 

perturbations can be obtained, taking in account the paper [22] and idea presented 

here, without make use of system (17). 

3) The main result of [32] is a continuation theorem in the apirit of degree theoretic 

continuation theorems, for the existence of bounded solutions of ordinary differential 

equations of type (1) with f(t,x)=f(x) i.e. 

 

(17)     ),x,t(g)x(f´x   

 

where f is a homogeneous function of degree p at least one. The author assume x=0 is the only 

bounded solution (with )0}0{,(h   of ),x(f´x  and 

 

(18)     0
x

)x,t(g
Lim

p
x




 

 

and obtain that (17) has a full bounded solution. 

 

In [31] a related result is proved for differential equations of the form (1). It is assumed that f(t,x) 

is homogeneous in x of degree )x,t(g,1p  satisfies the growth (19) of earlier result, and both 

functions are uniformly almost periodic in t. Thus the conditions here on g are less restrictive, so 

that in the case of autonomous f, equation (18), the result here is much more general. Moreover, 

one could prove a more encompassing version of the above result, taking into account the 

Theorem 1. 

 

4) Marlin and Struble [18, Corollary 1] proved that the system (LP) and (L), with 

n,...,1j,iij ))t(a()t(A  are asymptotically equivalent under the following main 

assumptions: 

 

a. there exist continuous scalar function n,...,1k),t(Gk  such that 

.IxR)y,t(),t(G)x,t(g n

kk   

b.  





t

t

c
kkk

t
.n,...,1k,0dv]ds)s(a)[expv(GLim  

c.  





t

t

c
iiij

t
.ji,n,...,1j,i,0dv]ds)s(a[exp)v(aLim  

 

We note that the conditions of our results are independent of the above conditions. If we take 

j=1, it is clear that earlier result, can be obtained under milder assumptions. 

 

In [7]. Díblik considered systems: 

 

(19)   ),z,y,x(bz)x(Bź),z,y,x(ay)x(A´y   

 

and 

 

(20)    


 z)x(Bź,y)x(A´y  
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where the matrices n,...,1j,iijn,...,1j,iij ))x(b()x(Band))x(a()x(A   are real and continuous on I, 

a(x,y,z) and b(x,y,z) are real and continuous k-vector and continuous s-vector on region 
knxRIxR . Moreover, it is assumed the existence and continuous dependence of the solutions of 

(20) in the interval I. Under this assumptions showed that the systems (20) and (21) are k-

asymptotically equivalentt on I, i.e., for every solution (y(x),z(x)) of (20) there is at least a k-

parametric family of solutions of (21), and conversely, such that 

 

k,...,1i,0))x(y)x(y(Lim ii
x





 

and 

.s,...,1i,0))x(z)x(z(Lim ii
x





 

 

It is clear that the results of [7] can be formulated in terms of Theorem 1. If we take in (1) and 

(2) ),t(pAx)x,t(f  i.e., 

 

(21)     ),t(pAx´x   

 

(22)     ),x,t(g)t(pAx´x   

 

where A is a nxn constant matrix, p(t) is continuous on I and g(t,x) is continuous on .IxRn The 

following assumptions are considered in [34]: 

 

i. All solutions of (22) are bounded, 

ii. )x()t()x,t(f   where 0)t(  is continuous, 



0

dt)t(    

            and )r(,0rfor0)r(   is continuous, increasing and condition (10) holds. 

 

Then, the system (22) and (23) are asymptotically equivalent, that is, for any given solution of 

(22) as ,t   and conversely. It is clear that our conclusions are equivalent to Yoshizawa´s 

conclusion (see [34, Lemma 24.1] for other result quite different) and our hypotheses are 

stronger than his. But on the way can establish several results of independent interest and may 

prove useful in other applications. 
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