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Abstract: The aim of this paper is to obtain at least three solutions for a Neumann problem involving the
p(x)-biharmonic operator. The main tool used for obtaining our result is a three critical points theorem
established by Ricceri.
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1 Introduction

In recent years, increasing attention has been paid to the study of various mathematical problems.
The interest in studying such problems was stimulated by their applications in nonlinear electrorheological
fluids and elastic mechanics (such as [2, 3]). In addition, we point out that the fourth order equations can
describe the satics from change of bean or the sport of tigid body, there are many authors have pointed out
that type of nonlinearity furnishes a model to study traveling waves in suspension bridge(see [4, 5]). It is
well known that, comparing with the p-biharmonic operator, the p(x)-biharmonic operator possesses more
complicated nonlinear properties; for example, it is not homogeneous. This causes many problems, and
some classical theories and methods, such as the Lagrange Multiplier Theorem, are not applicable.

In this paper, we consider the following p(Xx)-biharmonic problem with Neumann boundary
condition,

A ppu+a(x) [u P u=af (x,u) + zg(x,u), inQ,
1.1
( %“zo, g(MUVJ(X)_Z Au) =0, on oQ.

where QR (N >1) isanonempty bounded open domain with a sufficient smooth boundary 6, and

v is the outward unit normal to 6Q . Azp(x)u = A(A|u P72 Au) is the so called p(x)-biharmonic operator

of fourth order with pe C(f_z),1< p(x) < p,(x) , where
Np(x)

P (X):={N-2p(x)’
+ 00, if 2p(x)>N.

if 2p(x) <N,
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A, uel0,0), ael”(Q) suchthat infa(x)=a  >0.
xeQ)

Denote by F(x,t) = j;f (x,5)ds, G(x.t) = I;g(x,s)ds, b =inf p(X),p* =sup p(x) and f,g:QxR—R
XeQ)

xeQ

are Carathe’odory functions.

Currently, several variations of problem (1.1) have been studied in the literature. For instance Li,
Feng and Pan [13] studied the problem

(12 A U+ U PP U= AF (x,u) + pg(x,u), inQ,
“lu=0, Au=0, on oQ.

In this article, using the three critical points theorem by Ricceri, the existence of at least three solutions
was proved.

Abdel Rachid EI Amrouse and Anass Ourraoui [11] studied the problem as follows

A pu+a(x) [ulP??u=f(x,u)+Ag(x,u), inQ,
1.3
( %“:0, %(AMP(X)_2 Au) =0, on oQ.

They proved that there exists A. >0 such that for any A €]0,A.[, the problem (1.3) has at least
three weak solutions. Their technical approach is based on theorem obtain by B.Ricceri’s variational
principle and local mountain pass theorem without (PS) condition.

Motivated by these nice thoughts, we use Ricceri’s three critical points theorem, which is a powful
tool to study boundary problem of differential equation [10, 12, 13, 14], to study the problem (1.1).
Moreover, we list an example, which meets the assumptions of the main theorem in our paper, cannot
satisfy the result in [11,Theorem 1.2].

This paper consists of four sections. In section 2, we start with some preliminary basic results on
theory of Lesbegue-Sobolev spaces with variables exponent ([6, 7]), we recall Ricceri’s three critical points
theorem [8] and prove several lemmas which are needed later. In section 3, we give the proof of the main
result. In section 4, we present one example to illustrate the main result.

2 Preliminaries

In this part, we introduce some definitions and results which will be used in the next section.

Firstly, we introduce some results on the space LP™(Q) and W P™(Q) , and properties of
p(x)-biharmonic operator.

Forany p(x)eC,(Q),and C,(Q)={p:peC(Q), p(x)>1 forall xe(Q)}.

Denote p* =sup p(x) and p~ =inf p(x), and for any xeQ, k=1,

xeQ XeQ)

Np(x) .
P():={N-p(x) if p(x)<N,
+, if p(x)>N.
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Np(X) .
009 = N —kp()’ if kp(x)<N,

+ 0, if kp(x)>N.

We define the variable exponent Lebesgue space
LP®(Q)={u: uisameasurable real-valued function '[Q |ulP® dx<oo }

with the norm
= =1 . U(X) X
[l gy =IU o= inFEA>0: ] | = dx <1

The space (LP®(Q),|- lo) is aseparable and reflexive Banach space.
Define the variable exponent Sobolev space W P (QQ) by

W k, p(x) (Q) ={U c LP(X) (Q) ‘D% e LP(X) (Q),| a |S k},

o
where D“u:a— with « = (o, a,,-++,y) amulti-index and |« |= _hiai.
aox‘lla‘;‘z AN =1
2 N

The space W*P™(Q) with the norm [l ;=
space.

| DU, Is @ separable and reflexive Banach

ler|<k

Proposition 2.1 ([1]) For p,r eC,(Q) suchthat r(x)< p;(x) forall xeQ, there is a continuous and
compact embedding

ALY (Q)>—>Lr(x) Q).
We denote by W,“"®(Q) the closure of C7(©2) in W*P®(Q).

Proposition 2.2 ([1]) For any u e LP®(Q),ve LY (Q), we have
1 1
[y (= 22Ul VI,

where g(x) is the conjugate function of p(x); i.e. 1 + !

= =1,
p(x) a(x)

Note that the weak solutions of (1.1) are considered in the generalized Sobolev space X :=W?P®(Q)),
equipped with the norm

|lu|=inf{1>0: j’gq AUT(X) P® +a(x)]| @ P)dx <1}
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Remark 2.1 By [15], the norm |ul, o 1S equivalentto the norm |Aul,, in the space X. Consequently,

it is easy to see that [u, |u] and |Aul,,, areequivalent. In this paper, for the convenience of

2,p(x)

discussion, we use the norm |ul for X.

Proposition 2.3 ([11]) Set p, (u) = jg(| AuP® a(x) [u[P®)dx. For u,u, eW?>P® (), we have,
DOu[ < E>)Ne p,(u) < (=>)1.
@lul<1=uf" < pu@ <|ul”
@lulz1=u]" 2 o) 2]yl

(4)

B)||u,| =+ < p,(u,) > +.

—->0< p,(u,) —>0.

un

Definition 2.1 Let ue X, u is called a weak solution of problem (1.1) if forall ve X,
p(x)-2 p(x)-2 _
_[Q |Au | AuAvdx+ '[Qa(x) [ul uvdx= AIQf (x,u)vdx+ ngg(x,u)vdx

The energy functional corresponding to problem(1.1) is defined on X as
H(u) = ®(u) + AP (U) + 1 (u) .

where,
O(u) = Lﬁ“ Au PP ta(x)|u [P™)dx, (2.1)
P(u)=— IQF(x,u)dx, (2.2)
Ju)=— J.QG(x,u)dx. (2.3)

Lemma 2.4 ([8]) Let X be a reflexive Banach space. ®: X — R is a continuously Gateaux differentiable
and sequentially weakly lower semicontinuous functional whose Gateaux derivative admits a continuous

inverse on X and @ is bounded on each bounded subset of X; ¥: X —R isa continuously Gateaux
differentiable functional whose Gateaux derivative is compact; | < R an interval.

Assume that
lim (®(x) + A¥(X)) = +o0 (2.4)

[[X]—>-+00

for all A1 ,and that there exists he R such that
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sup inf (@ (x) + A(W(x) + h)) < infsup (P(x) + A(¥Y(x)+h)) (2.5)

Ael xeX xeX Zel
Then, there exists an open interval A < | and a positive real number p with the following property: for

every AeA andevery C! functional J: X R with compact derivative, there exists & >0 such that,
for each 1 <[0,5] the equation

O (X)+ AP (X)+ 3 (xX)=0
has at least three solutions in X whose norms are less than p.

Proposition 2.5 ([9]) Let X be a non-empty set and ®,W two real functions on X. Assume that there are
r>0 and Xx,,% € X suchthat

D(x,) =-P(x)=0, D(x)>r, sup —P(x)<r—== F(x)
xedL(-o0,r) D(x,)
Then, for each h satisfying
x@*sll(jﬁw,r]) -¥P(x)<h< r%)(:;)
one has
sup inf (P(X) + A(Y(X) +h)) <inf sup (P(x) + A(¥(X) +h)).

A>0 XeX xeX 1>0
Lemma 2.6 Forany p(x)eC, (g_z) , we have

(1) The functional @:X —»R (X =W?2P™) s sequentially weakly lower semi continuous,
®eCY(X,R).
(2) (@)*':X"— X exists and it is continuous.

Proof. (1) Itis clear that @ iswell definedand @ eC'(X,R). By the continuity and convexity of @, we
deduce that @ is sequentially weakly lower semi continuous.

(2) We only need to prove that @ is coercive, hemicontinuous, uniformly monotone.

(@ (u),u) _ p,(u) 2||u||p_

Firstly, for any ueX with [u[>1, we have, = and thus
Jul Jul

m—— <q) (u.u =o0,s0 @ is coercive.

e ]

Secondly, @ is hemicontinuous can be verified using standard arguments.

Thirdly, we have,
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(D' (U)-D(V),u-v) = J.Q[(|Au |PO=2 Au—| Av [P®72 Av)(Au — Av)

+a()(Ju P72 u—|v|P®2 v)(u —v)]dx

2 2p1(x) _[Q“ AU =) [P +a(x)|u—v|"®]dx
2 21p+ L[M(U —v) [PY 4a(x)|u—v|P®]dx
= 21-+ pa(u _V),VU,VE X

Next, we define the function y:[0,c0) —[0,0) by

Lo s,
p

yO=4%
—tP 7 if t>1
2P

It is easy to find that y is an increasing function with y(0)=0 and |im y(t) = .

(@ U)-D(V),u-vy = y(u-v]-Ju-v| YuveX.

So, @ is uniformly monotone.
Consequently, we conclude that (@)™ exists and it is continuous.

Py (%)
Lemma2.7 ([1]) If f:QxR—R isa Carathe’odory functionand | f(x,s)|<a(x)+b|s]| 20 wxeQ,
seR,where p,(x),p,(x)eC,(Q)a(x)eL”* a(x)=0 and b>0 is a constant, then the Nemytski
operator from L% (Q) to L"2%(Q), defined by (N (u))= f (x,u(x)) is a continuous and bounded
operator.

Lemma28 If f:QxR—R isa Carathe’odory functionand sup [T (x9)| < +o0, Where

(x,s)exr 1+ | S |t(><)—1

t(x) eC,(Q), t(xX) < p,(x), Set F(x,u)=J-:f(x,t)dt, X =W 2P (Q)) lI’(u):—J.QF(x,u(x))dx,then

¥(u) eC*(X,R), D¥(u,@)=(¥ (u).p)= —.[Qf (%, u(x))edx.

And, the operator ¥ : X — X~ is compact.
| f(x,9)]

Proof. From  sup O

<+, we have 3C, >0,C, >0, such that
(x,5)exR 1+ | S |

| £(X,8)[<C, +C,|s[™7 V(x,5) eQxR (2.6)

Also from the Mean-Value Theorem, we have (where 0<8(x,u(x),te(x))<1)
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Y(u+te)—¥(u)

D\P(U,¢) = !Ing
- PO ) FO10)

==lim ) T (xU(X) +10p(x))p(x)dx
And using the inequality
(x+y)? <2 (Ix” +]y["), p=1 (2.7)
By (2.6), (2.7) and Young’s inequality, we obtain

| £ (x,u(x) +t8p()e(x) [ [C, +C, [u(X) +t0p(x) 7] [o(x) |

100 1e, -, g ) [T 1 9
) - t(x)

<

t(x) -1 tll tt(X)l t(x)-1 tt(X)l t t
<H 200 2 O ) [+ 00Ty

1 t(x)
+—1] (X for|t|<1.
g PO orlt

From Proposition 2.1, we have
[V]y<C|V|,, Yve X (2.8)
So, by the Lebesgue dominated convergence theorem and the continuity of f, we get

D¥(u, ) = _IQ!"TO‘ f (X, U(X) +t0p(X))p(X)dx = — ij (%, U(x))p(x)dx (2.9)

From Lemma 2.7, we know that the Nemytski operator N: u(x) — f (x,u(x)) is a continuous bounded
t(x)
operator from L' to L'™ also in view of (2.8) and (2.9), we get

| D¥ () [ f (6 u())p()dx|

<2| F U | 10 1209 |

t(x)-1

<2C| F(6U(X) | 0y 6], .

t(x)-1

which shows that DW(u,¢) is a linear bounded functional. Therefore the Gateaux derivative of the linear
bounded functional W(u) exists and

DY (u,p) =(D¥(u),p) = —Lf (X, u(x))e(x)dx, Yu,p e X. (2.10)

In the following, we need to prove that W : X — X is completely continuous. For any u,v,@ < X, from
(2.8) and (2.10), we get
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[(D¥(u) - DY (v).9) || IQ[f (x,v(x)) = £ (x,u(x))Jp(x)dx|

<20 F(xu(x) = F VO 1 100X sy

t(x)-1

<2C| f(x,u(x)— F (V)| o X

t(x)-1

which implies that |DW(u) — D‘P(v)||x* <2C| Fu(x)) = F (X, V())| ()

t(x)-1

t(x)
So, the operator Y :L'™7 — X™ defined by Y(f(x,u(x)))=D¥(u(x)) is continuous. Moreover, the

identity operator | from X to L'® is continuous, so the composite operator D¥ =Y oN o | :u — D¥(u)
from X to X" is continuous. Therefore, this shows that W¥(u)eC'(X,R) , and

D¥(u,9) = (¥ (u),p) = —IQf (x,u(x))edx. What’s more, the identity operator I is compact, so the operator

¥ X —> X" is compact.

3 Main result

We need the following assumptions

(f,) sup Lt's)_|1<+oo,where t(x) eC,(Q), t(x)< py(X),
(x.sexR) 1+ | S | 9

(f;) 3a >0, such that F(x,s)>0 fora.e. xeQ andall s€[0,a],

(f,) 3h>0 and a function q(x)eC(Q), 1<q <q* < p~, such that,
|F(x,8)|<h(1+|s|'™) forae. xeQ andall seR,
(f,) Ir(x)eC(Q), and p* <r~ <r(x) < p,(x), such that
F(x,s)

r(x)

limsup < +o0

s—0 xe | S |
Theorem 3.1 Assume that (f,),(f,),(f,) and (f;) hold, then, there exist an open interval A < (0,4+x)
and | >0 with the following property: for each 1 A and each function

9(xs):QxR>R satisfying  sup 9% (p(x)eCL@),p, (0 < P3(0)
(x,5eQxR) 14| S |p2
There exists 6 >0 such that, for each <[0,0], problem (1.1) has at least three weak solutions whose

norms in X are less than 1.

Proof. There, ®(u), ¥Y(u) and J(u) as(2.1) (2.2) (2.3). So, for each u,ve X, one has
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(3" (u),v) = —IQg(x, u)vdx.
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From Lemma 2.6, it is easy to see that @ is a continuous Gateaux differentiable and sequentially weakly

lower semicontinuous functional whose Gateaux derivative admits a continuous inverse on X ', and under
our assumptions @ is bounded on each bounded subset of X. From Lemma 2.8, ¥ and J are

continuously Gateaux differentiable functionals whose Gateaux derivative is compact.

From Proposition 2.3, we can conclude: if |u]|>1, then

1
p+

uf’ < i jQ(| AU PP +a(x) [u [P®)dx < d(u)
p

<[ (18u [ +a(x)u[")dxs ]
p-e p
Moreover, using condition (f,), we can obtain, for each 1€ A,
2P(U) = -4 jQF(x,u)dx

_ a(x)
> 1th(1+|u [109)dx
— (x)
=—Ah(1Q[+]ulge)
> —h[| Q| +(C|p])*™]

>~ 2h[| Q] +C| 9],

From [u]|>1, we get ||U||q(x) > ||u||q+ , also we have C% >maxC® ,CY }.

So

AW (u) = —Ah[ Q[ +max{C®,C" }-[u" ]

>—C,(1+u]").

forany ue X, where C, is positive constant. Combining (3.1) and (3.2), we obtain
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1

+

D)+ AP (U) = —|u]” —C,(1+[u]").

Since q* < p~, we have

lim (@(u) + A¥(u)) = +o Yue X, 1e[0+x).

u—>-+e0

So, assumption (2.4) in Lemma 2.4 is satisfied.

Next,we will prove that assumption (2.5) in Lemma 2.4 is also satified. Let u, =0, we can easily have
D(uy) =-¥(u,)=0.
We’ll apply proposition 2.5 to verify (2.5).
From (f;) thereexist p<[0,1], C, >0, such that

F(x,8)<C,|s|"W<C,|s|" Vse[-p,p] ae xeQ.

Then, from (f,), we can find a positive constant M such that
F(x,s)<M]s|"

for all seR and ae. xeQ. Consequently, by the Sobolev embedding theorem ( X —L" (Q) is
continuous), we have

—¥(u) = IQF(x,u)dx <M IQ| U dx<C,ul <CJ

p+
when % <|I. It follows from r> p* that

. uP /et
lim ——" =0. (3:3)

10" |

Let u, eC*(Q) be a function positive in Q, with u, l.o=0 and maxu, <« . Consequently, we have,
Q

u, € X and ®(u;)>0. Under the assumption (f,), we also have

~P(u,)= IQF(x,ul(x))dx >0.
Therefore, from (3.3), we can find | (0,m in{cD(ul),%}) such that
Y

-¥(u)

sup (—Y))<lI OB

.
Pt

Now, we’ll show @ *((—o0,1]) ={u e X :i+||u||p+ <I}. Let ued*((—o0,1]).
P
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Then, p,(u)= IQ(|Au P® +a(x) |u[P*)dx<Ip* <1. From Proposition 2.3, |ul| <1. Consequently,

1 + 1
— P <[ —=—=(AulP® +a(x)|u["¥)dx<I.
p 2 p(x)

Therefore,

sup  —Pu)< ndCOR
ued L] D(uy)

From Proposition 2.5, for each h satisfying sup —-YP(x)<h< r%(x;), (2.5) holds. By
X

xed L (Q0,r]) 1
Lemma 2.4, there exists an open interval Ac | and a positive real number p with the following

property: for every 1eA and every C' functional J; X — R with compact derivative, there exists
6 >0 such that, for each x€[0,6] the equation
O (X)+ AP (X)+ 3 (X)=0

has at least three solutions in X whose norms are less than p . That is, the problem (1.1) has at least
three weak solutions whose norms in X are less than p.

4 Example
Let

f(x,5)s|P™?s—s, a(x)=1,

where p(x)eC(s_)) , 1< p(x) <minf2, p,(x)}, we can easily verify that f(x,u) satisfies
condition (f,), (f,), (f,) and (f;), and then the conclusion of Theorem 3.1 holds true. But we cannot
use the main result in [11,Theorem 1.2] to solve this problem, since the function f (x,u) does not satisfy

condition (F,) in [11].
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