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1  Introduction 

  In recent years, increasing attention has been paid to the study of various mathematical problems. 

The interest in studying such problems was stimulated by their applications in nonlinear electrorheological 

fluids and elastic mechanics (such as [2, 3]). In addition, we point out that the fourth order equations can 

describe the satics from change of bean or the sport of tigid body, there are many authors have pointed out 

that type of nonlinearity furnishes a model to study traveling waves in suspension bridge(see [4, 5]). It is 

well known that, comparing with the p-biharmonic operator, the p(x)-biharmonic operator possesses more 

complicated nonlinear properties; for example, it is not homogeneous. This causes many problems, and 

some classical theories and methods, such as the Lagrange Multiplier Theorem, are not applicable. 

 In this paper, we consider the following p(x)-biharmonic problem with Neumann boundary 

condition,  
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 where 1)>(NRN  is a nonempty bounded open domain with a sufficient smooth boundary  , and 

v is the outward unit normal to  . )||(= 2)(2
)( uuu xp

xp  
 is the so called p(x)-biharmonic operator 

of fourth order with )(<)(<1),( *
2 xpxpCp  , where  
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are Carathe odory  functions. 

 Currently, several variations of problem (1.1) have been studied in the literature. For instance Li, 

Feng and Pan [13] studied the problem  
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 In this article, using the three critical points theorem by Ricceri, the existence of at least three solutions 

was proved. 

 Abdel Rachid El Amrouse and Anass Ourraoui [11] studied the problem as follows  
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        They proved that there exists 0>*  such that for any []0, * , the problem (1.3) has at least 

three weak solutions. Their technical approach is based on theorem obtain by B.Ricceri’s variational 

principle and local mountain pass theorem without (PS) condition. 

 Motivated by these nice thoughts, we use Ricceri’s three critical points theorem, which is a powful 

tool to study boundary problem of differential equation [10, 12, 13, 14], to study the problem (1.1). 

Moreover, we list an example, which meets the assumptions of the main theorem in our paper, cannot 

satisfy the result in [11,Theorem 1.2]. 

 This paper consists of four sections. In section 2, we start with some preliminary basic results on 

theory of Lesbegue-Sobolev spaces with variables exponent ([6, 7]), we recall Ricceri’s three critical points 

theorem [8] and prove several lemmas which are needed later. In section 3, we give the proof of the main 

result. In section 4, we present one example to illustrate the main result. 

2  Preliminaries 

  In this part, we introduce some definitions and results which will be used in the next section. 

  Firstly, we introduce some results on the space )()( xpL  and )()(, xpkW , and properties of 

p(x)-biharmonic operator. 

  For any )()(  Cxp , and 1>)(),(:{=)( xpCppC   for all )}(x . 

Denote )(sup= xpp
x 


 and )(inf= xpp

x 

 , and for any x , 1k ,  
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We define the variable exponent Lebesgue space 

 )()( xpL ={ u :  u is a measurable real-valued function  <|| )( dxu xp
 }  

 with the norm  
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xpL   is a separable and reflexive Banach space. 

Define the variable exponent Sobolev space )()(, xpkW  by 
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The space )()(, xpkW  with the norm )(||)(, ||:= xpkxpk uDu 

 
  is a separable and reflexive Banach 

space. 

Proposition 2.1 ([1]) For )(,  Crp  such that )()( * xpxr k  for all x , there is a continuous and 

compact embedding 

 )()( )()(,  xrxpk LW  . 

We denote by )()(,
0 xpkW  the closure of )(0 C  in )()(, xpkW . 

Proposition 2.2 ([1]) For any )()(  xpLu , )()(  xqLv , we have  

 )()( ||||)
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uvdx


 , 

 where q(x) is the conjugate function of p(x); i.e. 1=
)(

1

)(

1
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 .  

 

Note that the weak solutions of (1.1) are considered in the generalized Sobolev space )(:= )(2, xpWX , 

equipped with the norm 
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Remark 2.1 By [15], the norm 
2, ( )p x

u  is equivalent to the norm )(|| xpu  in the space X. Consequently, 

it is easy to see that u ,
2, ( )p x

u  and )(|| xpu  are equivalent. In this paper, for the convenience of 

discussion, we use the norm u  for X.  

Proposition 2.3 ([11]) Set dxuxauu xpxp
a )||)(|(|=)( )()(  . For )(, )(2,  xp

n Wuu , we have,  
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Definition 2.1 Let Xu , u is called a weak solution of problem (1.1) if for all Xv , 
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 The energy functional corresponding to problem(1.1) is defined on X as 

)()()(=)( uJuuuH   . 

where,  
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                              ,),(=)( dxuxFu   (2.2) 

  

                              .),(=)( dxuxGuJ   (2.3) 

Lemma 2.4 ([8]) Let X be a reflexive Banach space. RX  :  is a continuously Gateaux differentiable 

and sequentially weakly lower semicontinuous functional whose Gateaux derivative admits a continuous 

inverse on 'X  and   is bounded on each bounded subset of X; RX  :  is a continuously Gateaux 

differentiable functional whose Gateaux derivative is compact; I   R an interval. 

Assume that  

 ( ( ) ( )) =lim
x

x x


     (2.4) 

for all I ,and that there exists Rh  such that  
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 Then, there exists an open interval I  and a positive real number   with the following property: for 

every   and every 1C  functional J: RX   with compact derivative, there exists 0>  such that, 

for each ][0,  the equation 

0=)()()( ''' xJxx    

has at least three solutions in X whose norms are less than  .  

Proposition 2.5 ([9]) Let X be a non-empty set and ,  two real functions on X. Assume that there are 

0>r  and Xxx 10 ,  such that 
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Lemma 2.6 For any )()(  Cxp , we have  

(1) The functional )=(: )(2, xpWXRX   is sequentially weakly lower semi continuous, 

),(1 RXC . 

(2) XX   *1' :)(  exists and it is continuous.  

Proof. (1) It is clear that   is well defined and ),(1 RXC . By the continuity and convexity of  , we  

deduce that   is sequentially weakly lower semi continuous. 

(2) We only need to prove that '  is coercive, hemicontinuous, uniformly monotone. 

Firstly, for any Xu  with > 1u , we have, 

'
1( ), ( )

=
pau u u

u
u u
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=lim

u

u u
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 , so '  is coercive. 

Secondly, '  is hemicontinuous can be verified using standard arguments. 

Thirdly, we have,  
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 Next, we define the function )[0,)[0,: y  by  
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It is easy to find that y  is an increasing function with 0=(0)y  and 
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=)(lim ty
t

. 
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So, '  is uniformly monotone. 

Consequently, we conclude that 1')(   exists and it is continuous.  

Lemma 2.7 ([1]) If RRf :  is a odoryeCarath   function and  xsbxasxf
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L , defined by ))(,(=))(( xuxfuN f  is a continuous and bounded 

operator.  
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 And, the operator *' : XX   is compact.  

Proof. From 
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<
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|),(|
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Rsx s
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, we have 0>0,> 21 CC , such that  

 RsxsCCsxf xt   ),(,|||),(| 1)(
21  (2.6) 

 Also from the Mean-Value Theorem, we have (where 1))(),(,(0  xtxux  )  
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 From Proposition 2.1, we have  

 ( )| | ,t x X
v C v v X    (2.8) 

So, by the Lebesgue dominated convergence theorem and the continuity of f, we get  
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 From Lemma 2.7, we know that the Nemytski operator N: ))(,()( xuxfxu   is a continuous bounded 
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 which shows that ),( uD  is a linear bounded functional. Therefore the Gateaux derivative of the linear 

bounded functional )(u  exists and  

 .,,)())(,(=)),((=),( XudxxxuxfuDuD     (2.10) 

 In the following, we need to prove that *' : XX   is completely continuous. For any Xvu ,, , from 

(2.8) and (2.10), we get  
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from X to *X  is continuous. Therefore, this shows that ),()( 1 RXCu  , and 

dxxuxfuuD  ))(,(=)),((=),( '

 . What’s more, the identity operator I is compact, so the operator 

*' : XX   is compact. 

 

3  Main result 

   We need the following assumptions 
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Theorem 3.1 Assume that )( 0f , )( 1f , )( 2f  and )( 3f  hold, then, there exist an open interval )(0,  
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||1

|),(|
sup

*
2221)(

2),(

xpxpCxp
s

sxg
xp

Rsx







. 

There exists 0>  such that, for each ][0, , problem (1.1) has at least three weak solutions whose 

norms in X are less than l . 

Proof. There, )(u , )(u  and )(uJ  as (2.1) (2.2) (2.3). So, for each Xvu , , one has 
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 ,)|||(|=),( 2)(2)(' dxuvuvuuvu xpxp 


   

  

 ,),(=),(' vdxuxfvu   

  

 .),(=),(' vdxuxgvuJ   

From Lemma 2.6, it is easy to see that   is a continuous Gateaux differentiable and sequentially weakly 

lower semicontinuous functional whose Gateaux derivative admits a continuous inverse on 'X , and under 

our assumptions   is bounded on each bounded subset of X. From Lemma 2.8,   and J are 

continuously Gateaux differentiable functionals whose Gateaux derivative is compact. 

From Proposition 2.3, we can conclude: if 1u  , then  

 
( ) ( )1 1

(| | ( ) | | ) ( )
p p x p xu u a x u dx u

p p



  
      

  

   




 

pxpxp u
p

dxuxau
p


1

)||)(|(|
1 )()(

      (3.1) 

 Moreover, using condition )( 2f , we can obtain, for each  ,  

 dxuxFu ),(=)(    

           dxuh xq )||(1 )(   

         )|||(|= )(
)(

xq
xquh   

         ])(|[| )(xquCh    

         ].|[| )()( xqxq uCh    

 From 1u  , we get 
( )q x q

u u


 , also we have },{)( 

 qqxq CCmaxC . 

     So  

 ( ) [| | { , } ]
qq qu h max C C u 
 

       

  

                  1(1 ).
q

C u


    (3.2) 

 for any Xu , where 1C  is positive constant. Combining (3.1) and (3.2), we obtain 
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1

1
( ) ( ) (1 )

p q
u u u C u

p


 


      . 

Since  pq < , we have  

( ( ) ( )) =lim
u

u u u X


      , )[0, . 

So, assumption (2.4) in Lemma 2.4 is satisfied. 

 Next,we will prove that assumption (2.5) in Lemma 2.4 is also satified. Let 0=0u , we can easily have  

0=)(=)( 00 uu  . 

We’ll apply proposition 2.5 to verify (2.5). 

 From )( 3f  there exist [0,1],  0>2C , such that 

rxr sCsCsxF ||<||<),( 2
)(

2   ],[ s , a.e. x . 

 Then, from )( 2f , we can find a positive constant M such that 

rsMsxF ||<),(  

for all Rs  and a.e. x . Consequently, by the Sobolev embedding theorem ( )(
rLX  is 

continuous), we have 

( ) /

3 4( ) = ( , ) < | |
rr x r pu F x u dx M u dx C u C l
  

 
    , 

when 

p
u

l
p




 . It follows from pr >  that  

 
/

0

( )

= 0.lim
p

u p l

l

sup u

l








 (3.3) 

 Let )(2
1 Cu  be a function positive in  , with 0=|1 u  and 


1maxu . Consequently, we have, 

Xu 1  and 0>)( 1u . Under the assumption )( 1f , we also have  

0>))(,(=)( 11 dxxuxFu  . 

Therefore, from (3.3), we can find })
1

),({(0, 1 


p
uminl  such that 

)(

)(
<))((sup

1

1

/
u

u
lu

lp
p

u










. 

 Now, we’ll show 
1 1
(( , ]) { : }

p
l u X u l

p





     . Let ]),((1 lu   .  
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Then, 1<)||)(|(|=)( )()( 


 lpdxuxauu xpxp

a . From Proposition 2.3, < 1u . Consequently, 

ldxuxau
xp

u
p

xpxpp  



)||)(|(|

)(

11 )()( . 

Therefore,  

)(

)(
<)(sup

1

1

]),(]1 u

u
lu

lu







. 

From Proposition 2.5, for each h satisfying 
)(

)(
<<)(sup

1

1

]),(]1 x

x
rhx

rx







, (2.5) holds. By 

Lemma 2.4, there exists an open interval I  and a positive real number   with the following 

property: for every   and every 1C  functional J: RX   with compact derivative, there exists 

0>  such that, for each ][0,  the equation 

0=)()()( ''' xJxx    

has at least three solutions in X whose norms are less than  . That is, the problem (1.1) has at least 

three weak solutions whose norms in X are less than  . 

4  Example 

Let  

 ssssxf xp 2)(|=|),( , 1=)(xa , 

 where )()( Cxp , )}({2,<)(<1 *
2 xpminxp , we can easily verify that ),( uxf  satisfies 

condition )( 0f , )( 1f , )( 2f  and )( 3f , and then the conclusion of Theorem 3.1 holds true. But we cannot 

use the main result in [11,Theorem 1.2] to solve this problem, since the function ),( uxf  does not satisfy 

condition )( '
2F  in [11]. 
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