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Abstract.  

In this paper we recall the definition of fuzzy distance space on a fuzzy set then we define a compact 

fuzzy distance space and fuzzy totally bounded after that we prove that fuzzy totally bounded fuzzy 

complete fuzzy distance space is fuzzy compact.  Moreover we recall the definition of fuzzy continuous 

and uniform fuzzy continuous function to prove that fuzzy continuous function and uniform fuzzy 

continuous functions are equivalent on a fuzzy compact  fuzzy distance spaces . 
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1. Introduction 

Theory of fuzzy sets was introduced by Zadeh in 1965 [21]. Many authors have introduced the concept of fuzzy 

metric in different ways [1,2,3,7,8,9,10,13,16,17]. Kramosil and Michalek in 1975 [6] introduced the definition of 

fuzzy metric space which is called later KM-fuzzy metric space .George and Veeramani in 1994[3] introduced the 

definition of continuous ⃰ t-norm to modify the concept of KM-fuzzy metric space which was introduced by 

Kramosil and Michalek which is called later GV-fuzzy metric space. In section two of this paper we recall the 

definition of fuzzy distance space on fuzzy set [9] which is a modification of the definition GV-fuzzy metric space 

after that we introduce basic definitions ,basic concepts and properties of  fuzzy distance space . 

 In section three the notion of fuzzy compact fuzzy distance space is introduced, we try to prove results similar to 

that in the ordinary case. The aim of studying a fuzzy continuous function on fuzzy compact spaces in section four 

is to prove that fuzzy continuous function and uniform fuzzy continuous functions are equivalent on fuzzy  compact  

fuzzy distance space. 

2. FUZZY DISTANCE SPACE ON FUZZY SET 

Definition 2.1:[21] 

  Let X be a nonempty set of elements, a fuzzy set  in X is characterized by a member ship function, 

(x): X→ [0,1]. Then we can write  = {(x, (x)): xX, 0 (x)  1}. 

We now recall an example of a continuous fuzzy set. 

Example 2.2:[18]  

Let X =  and let  be a fuzzy set in   with membership function by: (x) =  .   

Definition 2.3:[4] 

Let Ã and  be two fuzzy sets in X. then  
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1- Ã   if and only if (x) ≤ (x) for all xX 

2- Ã =  if and only if (x) = (x) for all xX 

3-  Ã  if and only if (x) = (x) ˅ (x) for all xX 

4-  Ã  if and only if (x) = (x) ˄ (x) for all xX 

5- (x) = 1- (x) for all xX 

Definition 2.4:[18] 

If Ã and  are fuzzy sets in a nonempty sets X and Y respectively then the Cartesian product 

 Ã    of  Ã and  is defined by: (x, y) = (x) ˄ (y) for all (x, y) X  

Definition 2.5:[20] 

A fuzzy point p in X is a fuzzy set with member p(x) =  if  x = y and  p(x) = 0 otherwise.                               

For all y in X  where 0 α 1. We denote this fuzzy point by  . Two fuzzy points   and 

  are said to be distinct if and only if x≠ y. 

Definition 2.6:[21] 

Let  be a fuzzy point and Ã be a fuzzy set in X. then  is said to be in Ã or belongs to 

 Ã which is denoted by  Ã if and only if (x) α. 

Definition 2.7:[11] 

Let f be a function from a nonempty set X into a nonempty set Y. If  is a fuzzy set in Y 

 then  is a fuzzy set in X defined by: 

(x) = (x) for all x in X. Also if Ã is a fuzzy set in X then f(Ã) is a fuzzy set in Y defined 

by: 

(y) = ˅ { (x): x ,   if ≠ Ø and (y) = 0, otherwise.              

Proposition 2.8:[12] 

Let  : X→ Y be a function. Then for a fuzzy point  in X, f( ) is a fuzzy point 

 in Y and  f( )=  . 

Definition 2.9:[3]  

A binary operation : [0,1] × [0,1] → [0,1] is a continuous t-norm if  satisfies the following conditions: 

1-  is associative and commutative. 

2-  is continuous. 

3- a 1 = a for all a  [0,1]. 

4- a b ≤ c d whenever a ≤ c and b ≤ d where a, b, c, d [0,1]. 

Remark 2.10:[3] 

 For any a > b we can find c such that a c ≥ b  and for any d we can find an e such that e e ≥ d where a, b, 

c ,d ,e (0,1). 
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We introduce the following definition. 

Definition 2.11:[14] 

 A triple ( , , ) is said to be fuzzy distance space if  is a fuzzy set of the nonempty set X,  is a 

continuous t- norm and  is a fuzzy set on  satisfying the following conditions: 

(FD1)  ( , ) > 0 for all  ,    

(FD2)  ( , ) = 1 if and only if =  

(FD3)  ( , ) = ( , ) for  all  ,    

(FD4)  ( , ) ≥ ( , ) ( , )  for  all  ,  and     

(FD5)  ( , )   is a continuous fuzzy set 

Example 2.12:[14] 

 Let X= , and let  be a fuzzy set in X. Suppose that a b = a.b for all a, b [0,1]. 

  Define ( , ) = If  x ≤ y and  ( , ) =       If  y ≤ x,  for all x, y  . 

Then ( , , )   is a  fuzzy distance  space. 

Example 2.13:[14] 

 Let X=  and  let  be a fuzzy set in X. Suppose that a b = a.b for all a, b  [0,1]. 

Define ( , ) =   for all ,   . 

Then ( , , )     is a  fuzzy distance space. 

Definition 2.14:[14] 

 Let (Ã, ,)  be a fuzzy distance space then  is continuous fuzzy  set if whenever ( , )  and 

( , )→  in Ã then (( , ),( , )) → ( , )  that is (( , ),( , ))  

= ( ,  ) . 

Lemma 2.15:[14] 

Suppose that (X,d) is an ordinary metric space and assume that Ã is a fuzzy set in X. Define d( , ) = 

d( , ) for all ,  Ã. Then (Ã, d) is a metric space.  

Example 2.16:[14] 

 Let X=  and let Ã=[2, ]  be a fuzzy set in X. consider the mapping   : Ã Ã→ [0, 1]  

 defined by : 

  ( , ) = 1 if a = b and  ( , ) =   + (       if a ≠ b, where         

   α  β = α. β for all α, β [0,1] 

( ) We show that ( , ) ( , ) ( , ) is not satisfied for all  , ,  . 

 Let =10,  = 3 and = 100 where α=  ,  , 
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σ = Since a ≠ b ≠ c 

Then ( , )=(  +  =0.01+0.111= 0.121 

  And ( , )=  + =    +  =0.111+0.0001= 0.1112 

( , )= (   =   +  =0.01+0.0001= 0.0101  

Therefore ( , ) ( , ) ( , )=(0.121)+(0.1112) =0.0134552  0.0101 

Thus (Ã, , )   is not a fuzzy distance space  

Proposition 2.17:[14]  

Suppose that (X,d) is an ordinary metric space and assume that a b = a.b for all a, b[0,1].  

Then by lemma 2.15, (Ã, d) is a metric space. Define ( , ) =   ,  then (Ã, , ) 

 is a fuzzy distance space and it is called the fuzzy distance on the fuzzyset Ã induced by  d. 

Definition 2.18:[14]  

Let (Ã, , ) be a fuzzy distance space on the fuzzy set Ã, we define ( ,r) = { Ã: 

 ( , )  (1- r) } then ( ,r) is called an fuzzy open fuzzy ball with center the 

 fuzzy point Ã and radius  0  r  1. 

Proposition 2.19:[14]  

Suppose that ( , ) and ( , ) be two fuzzy open fuzzy balls with the same center Ã 

 and with radiuses ,  (0,1). Then we either have ( , ) ( , ) or ( , ) ( , ). 

Definition 2.20:[14] 

A sequence )} of fuzzy points in a fuzzy distance space (Ã, , ) is called fuzzy 

 converges to a fuzzy point Ã if whenever 0   1, we can find a positive integer K 

 with, ( ), )  (1-   whenever m  K. 

Definition 2.21:[14] 

A sequence )} of fuzzy points in a fuzzy distance space (Ã, , ) is called fuzzy  

converges to a fuzzy point Ã if  ( ), ) = 1. 

Theorem 2.22:[14]  

Definition 2.21 and definition 2.20 are equivalent. 

Proposition 2.23:[14] 

Suppose that (X,d) is a metric space and assume that (Ã, , ) is the fuzzy distance space 

 induced by d. Let )} be a sequence of fuzzy points in Ã. Then )} 

 converges to Ã in (Ã, d) if and only if )}fuzzy converges to  in (Ã, , ). 

Definition 2.24:[14] 
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 A fuzzy subset  of a fuzzy distance space (Ã, , ) is called fuzzy open if for each     

there is ( ,q)    with 0  q  1. A fuzzy set   Ã is said to be  fuzzy closed if its  

complement is fuzzy open that is  = Ã \  is fuzzy  open. 

Theorem 2.25:[14] 

If ( ,q) is  fuzzy open fuzzy ball in a fuzzy distance space (Ã, , ) on a fuzzy  set Ã then 

 ( ,q)  is a fuzzy open fuzzy set with 0  q  1.  

Definition 2.26:[14] 

 Suppose that (Ã, , ) is a fuzzy distance space on a fuzzy  set Ã and let Ã then the  

fuzzy closure of  is denoted by  or FCL( ) and is defined to be the smallest fuzzy closed 

 fuzzy set contains . 

Definition 2.27:[14] 

  A fuzzy subset  of a fuzzy distance space (Ã, , ) on a  fuzzy set Ã is said to be  fuzzy  

dense in Ã if   = Ã. 

Lemma 2.28:[14]  

 Let  be a fuzzy subset of Ã and let (Ã, , ) be a fuzzy distance space on the fuzzy set Ã  

then   if and only if there is a sequence {( , )} in  such that ( , )→ ,  

where α, [0,1]. 

Theorem 2.29:[14] 

  Suppose that  is a fuzzy subset of a fuzzy distance space (Ã, , ) then   is fuzzy dense in 

 Ã if and only if for every Ã there is    such that  ( , )  (1-  for some 

 0  1. 

Definition 2.30:[14]  

 A sequence )} of fuzzy points in a fuzzy distance space (Ã, , ) is said to be fuzzy  

Cauchy if whenever 0  1 we can find K with ( ) , ) )  (1-   for all n, 

 m K. 

Theorem 2.31:[14]  

 Let (Ã, , ) be a fuzzy distance space on the fuzzy set Ã if )} is a sequence of fuzzy 

 points in Ã that is fuzzy converges to  Ã then  is fuzzy Cauchy. 

Proposition 2.32:[14] 

Suppose that (X,d) is a metric space and let =  where t= min{α,β}. 

 Then )} is a Cauchy sequence in ( ,d) if and only if )}  is a fuzzy 
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 Cauchy sequence in (Ã, , ). 

Definition 2.33:[14]  

Suppose that (Ã, , ) be a fuzzy distance space. A fuzzy subset  of Ã is called fuzzy 

 bounded if we can find 0  q  1 with,    (1 q), whenever  ,  . 

Proposition 2.34:[14]  

Let (X,d) be a metric space and let ( ) =   where t = α ˄ β then a fuzzy subset  

 of Ã is fuzzy bounded if and only if it is bounded. 

Definition 2.35:[14]   

  Let (Ã, , ) be a fuzzy distance space, then we define a fuzzy closed fuzzy ball with center 

 Ã and radius r, 0  r  1 by [ ,r] = { X:  (1- r)}. 

Lemma 2.36:[14]  

 If [ ,q] is  fuzzy closed fuzzy ball in a fuzzy distance space (Ã, , ) on a fuzzy  set Ã 

 then [ ,q]  is a fuzzy closed fuzzy set with 0  q  1.  

Theorem 2.37:[14] 

Suppose that (Ã, , ) is a fuzzy distance space . Put = { Ã :   if and only if there is  

 0  q  1 with ( , q) }.Then  is a fuzzy topology on Ã. 

Proposition 2.38:[14]   

  Suppose that  (X,d) is an ordinary metric space. Let =  be the fuzzy  

distance induced by d. Then the topology  induced by d and the  fuzzy topology   

induced by  are the same. That is .  

Theorem 2.39:[14] 

Every fuzzy distance space on a fuzzy set is a fuzzy Hausdorff space. 

Definition 2.40:[14] 

 Suppose that (Ã, , ) and ( , , ) are fuzzy distance spaces and    Ã.The mapping h: 

 →  is said to be fuzzy continuous at  , if  whenever 0  1, we can find 0  1, 

 with (h( ),h( ))  (1- ) whenever    and ( , )  (1- ). When f is  

fuzzy continuous at every fuzzy point of , then it is called to be fuzzy continuous on . 

Theorem 2.41:[14]  

 Let (Ã, , )  and ( , , ) be fuzzy distance spaces and   Ã. The mapping h:  →  is 

 fuzzy continuous at    if and only if whenever a sequence of fuzzy points {( )} 

 in   fuzzy converge to , then sequence of fuzzy points {(h( ))} fuzzy converges to 
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 h( ). 

Proposition 2.42:[11]  

  Let Ã be a fuzzy set in X and let  be a fuzzy set in Y. let f: Ã →  be a function and 

 let    and   Then f( )   if and only if    ( ). 

Theorem 2.43:[14] 

A mapping f: Ã →  is fuzzy continuous on Ã if and only if  the inverse image of  is fuzzy open 

 in Ã for all fuzzy open fuzzy subset  of . Where Ã and  are fuzzy distance  spaces. 

Theorem 2.44:[14] 

 A mapping f: Ã →  is fuzzy continuous on Ã  if and only if the inverse image of  is fuzzy 

 closed in Ã for all fuzzy closed fuzzy subset of . 

3. FUZZY COMPACT FUZZY DISTANCE SPACE 

Definition 3.1: 

Suppose that ( , , ) is  a fuzzy distance space and   . Let  = {  :  is a fuzzy open fuzzy  

sets in  } such that   . That is for each    there is   such that  . Then  is 

 said to be a fuzzy open fuzzy cover  of  . 

Definition 3.2: 

  A fuzzy distance space ( , , ) is called fuzzy compact if for all fuzzy open fuzzy covering  

 of  we can find { , , ,…, }   such that  = . 

Definition 3.3: 

  Suppose that ( , , ) is  a fuzzy distance space and    with    is called a fuzzy compact 

 if   is fuzzy compact with the fuzzy distance induced on it by . 

Example 3.4: 

Let X=  and let  be a fuzzy set in X. let  ={((0,1), )} be a fuzzy subset of  then the 

 fuzzy set  in the fuzzy distance space ( , , ) where ( , ) =  , a b = a.b for 

 all a, b[0,1], is not fuzzy compact. The fuzzy open fuzzy covering {( , ): n = 2, 3...}  of   

 does not contains a finite set that we can cover  . 

Remark 3.5: 

Suppose   that   ( , , ) is fuzzy distance space and assume that   . If  is finite then  is  

fuzzy compact. 

Definition 3.6: 

  Suppose   that   ( , , ) is fuzzy distance space and  = {  : j  I } where  are fuzzy sets in 
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 . Then  is said to has the finite intersection property  if  for  every  , ,…   [finite],  

we have   . 

Definition 3.7: 

Suppose that ( , , ) is a fuzzy distance space and   . Then  is said to be fuzzy  

totally bounded if for each 0 1 , we can find a finite fuzzy set of fuzzy points {( , ), 

 ( , ), ( , ),….., (  , )}   with the property for any   in , ( ,( , )) (1- ) for 

 some ( , ) {( , ), ( , ), ( , ),….., (  , )}.This fuzzy set of fuzzy points {(  , ),  

(  , ), (  , )…(  , )} is called fuzzy r-net. 

Proposition 3.8: 

Suppose that ( , , ) is a fuzzy totally bounded  fuzzy distance space. Then   is fuzzy bounded. 

Proof: 

  For 0 1  we can find a finite fuzzy q- net for , say . Since  is a finite fuzzy set of  

fuzzy points 0 ( )  1, where ( ) = sup{ ( , ): ,  }. Now let and 

  be any two fuzzy points of . There exists fuzzy points  and  in  such 

 that (( , )  (1 q  and ( , )  (1 q  . Now for ( )  and q there is  

(1  r), where 0  r 1 such that ( )  (1 q)  (1 q)  (1 r). It follows that ( , 

) ( , ) ( , ) ( , )  (1 q) ( ) (1 q)  (1 r) So,  

( )= sup{ [ , ]: ,  }  (1 r). Hence,  is fuzzy bounded  

Theorem 3.9: 

Suppose that ( , , ) is fuzzy metric space and assume that   . Then  is fuzzy  

totally bounded if and only if  for all {( )} in  has {( )} which is a fuzzy Cauchy. 

Proof:  

  Let  be a fuzzy totally bounded. Suppose that {( )} be a sequence of fuzzy points in . 

 Take fuzzy  –net {(  ( ),…( )} in . Choose ( ) then ( )  

contains {( )} of {( )}. Nowtake fuzzy   –net {(  ( ),…( )}  

 in . Choose ( ) then ( ) contains {( )} of  {( )}. After kth steps we 

 have {( )} is in the fuzzy ball ( ). Now {( )} is a subsequence of {( )}. 

 Let 0  1 be given. Choose K so large that (1- )  (1- )  … (1-  )   

(1- ). Whenever m  n  K, we have  
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[( ), ( )]  [( ), ( )] [( ), 

( )] … [( ),( )] 

 (1- )  (1- )  … (1-  )  (1- ) 

Hence {( )} is a fuzzy Cauchy sequence. 

For the converse, suppose that every {( )} in  contains {( )} which  is a fuzzy  

Cauchy.We will prove that  is fuzzy totally bounded. Assume that 0  1 and let ( ) 

 . If \ (( ), ) = , we get a fuzzy -net, which is, the fuzzy set {( )}. If it is not 

 take ( ) \ (( ), ). If \[ (( ), )  (( ), )]= . We get a fuzzy -net, which 

 is  {( ),( )}. After finite steps this process stop. If it dose not stop, we will get an  

infinite sequence {( )} with property that [( ),( )]  (1- ), n ≠ m.  

Consequently, the sequence {( )} does not contains a fuzzy Cauchy subsequence of  

fuzzy points,  this  is a contradiction.  

Proposition 3.10: 

Suppose that ( , , ) is a fuzzy compact fuzzy distance space. Then  is fuzzy totally bounded. 

Proof: 

Whenever   0  1, the set { ( ,r) :   } is a fuzzy open fuzzy cover of . But   is 

 fuzzy   compact  we  have { ( ,r): j=1, 2,…n} with  = ( ,r). Hence the  

centers {( ),( ),…( )}  form a finite fuzzy r-net for .  Therefore,  is fuzzy  

totally  bounded.  

Proposition 3.11: 

If ( , , ) be a fuzzy compact fuzzy distance space. Then ( , , ) is fuzzy complete. 

Proof: 

Let ( , , ) be a fuzzy compact fuzzy metric space and  is not fuzzy complete. So we can  

find a fuzzy Cauchy sequence {(  of fuzzy points in ( , , ) not having a fuzzy limit 

 in . Let  , since {( dose not fuzzy converge to  there exists 0  r 1 such 

 that (( , )  (1- r) for infinitely many values of n, since {(  is fuzzy Cauchy, 

 we can find K with k, j  K. With (( ,( )  (1- r) . Choose k  K for  

which (( , )  (1- ) . So, the fuzzy open fuzzy ball ( , ) contains a finite number 

 of ( . In this step, we can put for each   a fuzzy ball ( ,r( )) ,where 0 ( )  

 1 depends on , and the fuzzy ball ( ,r( )) contains a finite number of ( . Notice 
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 that   = ( ,r( )) which means that { ( ,r( )):  } is a fuzzy covering of . But 

  is fuzzy compact so we can  find  ( , ( )),  i = 1, 2, …, n. But each fuzzy 

 ball has finite number of ( , hence,  , will contains (  for only a finite number 

 of values of n. This is impossible. Therefore  is a fuzzy complete  

Theorem 3.12: 

  If ( , , ) be fuzzy totally bounded and fuzzy complete fuzzy metric space then ( , , ) is  

fuzzy compact. 

Proof: 

Let ( , , ) be fuzzy totally bounded and fuzzy complete but not fuzzy compact. So we can  

find a fuzzy open fuzzy cover { :  } of   dose not have a finite fuzzy subcovering.  

But ( , , ) is fuzzy totally bounded,  hence it is fuzzy bounded, so for some 0  r  1 and  

some  , we have    ( ,r). Observe that   ( ,r) implies  = ( ,r). 

Let =  . Now (( , ) is   fuzzy totally bounded ["any nonempty fuzzy subset of  

fuzzy totally bounded fuzzy set is fuzzy totally bounded"], then there exists ,  [( , ] such 

that [( , ] cannot be fuzzy covered  

by a finite number of fuzzy sets  By this process, a sequence of fuzzy  

points {(  can be found with the conduction  that for all n, (( , ) will 

 not be fuzzy covered by a finite number of fuzzy sets   

and ( ,  (( , ).We next show that the sequence of fuzzy  

points {( )} is fuzzy convergent.  

Since( ,  (( , ) it follows that (( , ,( , )  (1- . 

Let 0   1 such that (1-  (1- ….. (1-  (1-  

Hence (( , )) (( , ,( , ) …… (( , ,( , )   

(1-  (1- ….. (1- (1-  

So {( )} is a fuzzy Cauchy sequence in  but  is fuzzy complete, so  fuzzy converges 

 to  . Since   we can find such that  . Because is fuzzy open it 

 contains ( , ) for some 0  1. Choose N so large that, (( , )  (1-  and 

 (1-  (1- ). Then, for any   such that  ( , ))  (1- .It follows that  

( , )  ( , ))  ( ), )  (1- )  (1- )  (1- r), for some 0  r  1.  

So that (( , )  ( ,r). Therefore (( , ) have a finite fuzzy subcovering,  
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defined by the fuzzy set . But this contradicts (( , ) will not be fuzzy covered  

by a finite number of fuzzy sets  .  

Theorem 3.13: 

 (X,d) is a compact metric space if and only if ( , , ) is a fuzzy compact fuzzy distance 

 space where ( , ) =  . 

Proof: 

 Suppose that (X,d) is  compact. Let {( )} be a sequence of fuzzy points in ( , , ) then  

( ) is a sequence in (X,d). But (X,d) is compact hence ( ) has a convergent subsequence.  

Then {( )} has a   convergent sequence in ( , , ) by Proposition 2.23. Hence ( , , ) 

 is fuzzy compact. In similar way we can prove that if ( , , ) is fuzzy compact then (X,d) 

 is compact by using Proposition 2.23  

Proposition 3.14: 

  Suppose that ( , , ) is a fuzzy distance space. Then   

(i) For any {( )} in   there is   such that ( ) . 

(ii) For any {( )}  in  there is {( )} and   such that( )  

are equivalent 

Proof of (ii): 

   Suppose that {( )} is a sequence of fuzzy points in . If the fuzzy set{ , , 

….,} is finite, then the sequence of the fuzzy points, ( ),( ),… or ( ),( ),… 

 or ( ),( ) are all constant sequences which is a subsequences of  

{ , ,….,}fuzzy converges. Suppose that the fuzzy set { , ,….,} . 

By (i), the  fuzzy  set { , ,….,} have a fuzzy limit fuzzy point  .  suppose   

    with ( , )  0.Having defined , let  be the smallest integer such 

 that  And (( ), )  (1- ). Then the sequence {( )} of fuzzy 

 points fuzzy converges to   

Proof  of (i): 

   Suppose that    and  is infinite fuzzy set. Now we can find a sequence {( )} of  

fuzzy points in  of distinct terms. By (ii) {( )} contains {( )} such that  

{( )}  and   . So every ( , r) contains an infinite number of {( )}. 

 But the terms are distinct; hence every ( , r)  contains  an infinite number of fuzzy points  
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of . Hence    is a fuzzy limit 

 point of  

Theorem 3.15: 

  A fuzzy distance space ( , , ) is fuzzy compact if and only if every sequence {( )}  in 

  has {( )}  such that ( )   . 

Proof: 

  Let  be a fuzzy compact   and let {( )} be any sequence of fuzzy points in . Since  

 is fuzzy totally bounded, it follows, using Theorem 3.9, that {( )} contains a fuzzy  

Cauchy subsequence {( )}. But {( )} fuzzy converges to a fuzzy point    

because  is fuzzy complete.  

Conversely, suppose that every sequence {( )}  in   has {( )}   

such that ( )   . Suppose that {( )} is a fuzzy Cauchy sequence of fuzzy  

points in .By assumption {( )} has a subsequence {( )} that fuzzy converges to  

a fuzzy  point   . We shall show that → . Let 0  1 be given by Remark 

 2.5, there is 0  p  1 with   (1- p) (1- p)  (1- q) . 

Now ( )→ , there exist  such that (( ), )  (1- p) for all .Since 

 the sequence of fuzzy points {( )} is fuzzy Cauchy, there exists  with (( , 

)   (1- p) for all m, n . Let K = min{ , } then  

(( , )  (( ,( ))  (( ), )  (1- p) (1- p)  (1- q)  with n  K.  

The results of this section can be summed up as follows: 

Corollary 3.16: 

  Suppose   that   ( , , ) is a fuzzy compact  fuzzy distance space, and    . If  is a 

 fuzzy closed fuzzy then  is fuzzy compact. 

Proof: 

  Let {( )} be a sequence of fuzzy points in . Then {( )} is a sequence of fuzzy points 

 in  , contains {( )}  such that ( )   . But then   since  is a fuzzy 

 closed. But {( )} was arbitrary in . By Theorem 3.15   is a fuzzy compact  

Theorem 3.17: 

  Suppose   that   ( , , ) is a fuzzy distance space, and     If  is fuzzy compact then  

 is a fuzzy closed. 

Proof: 
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 Assume that    is a fuzzy limit point  of . So we can find a sequence {( )} of  

fuzzy points in  fuzzy converges   to  . But then {( )} is a  fuzzy   Cauchy  sequence  in  

 . Since  is a fuzzy complete, ( )    in  . Therefore  =  and so    . Thus 

  contains all its fuzzy limit fuzzy points. Hence is fuzzy closed  

4. FUZZY CONTINUOUS FUNCTION ON FUZZY 

 COMPACT SPACE 

Theorem 4.1: 

Suppose that ( , , ) is a fuzzy compact fuzzy distance space and assume that ( , , ) is a 

 fuzzy distance space. If g:     is a continuous  mapping  then g( )   is  fuzzy compact. 

Proof: 

Suppose that { : } is  a fuzzy open covering of g( ). But g is continuous so the inverse  

image of  is fuzzy open  in  . Moreover { ( ): } is an fuzzy open covering of  .  

Since  is fuzzy compact, there  exists  , , ,…,  in   such that  = ( ). 

 Now g( ) = g( ( )) = ( ))   So {  , i = 1, 2, …, n} is a finite 

 fuzzy sub covering of g( ). Hence, g( ) is fuzzy compact  

Corollary 4.2: 

Suppose that ( , , ) is a fuzzy distance space and assume that ( , , ) is a fuzzy distance  

space. If g:     is a fuzzy homeomorphism. Then  is fuzzy compact if and only if  is 

 fuzzy compact. 

Corollary 4.3: 

Suppose that ( , , ) is a fuzzy compact fuzzy distance space and assume that ( , , ) is a  

fuzzy distance space. If g:     is a fuzzy continuous function.Then g( ) is fuzzy bounded 

 and fuzzy closed fuzzy subset of  . 

Theorem 4.4: 

Suppose that ( , , ) is a fuzzy compact fuzzy distance space and assume that ( , , ) is a  

fuzzy distance space. If g:    is a one-to-one, onto fuzzy continuous mapping then  

is fuzzy continuous  and therefore,  is fuzzy homeomorphism. 

Proof: 

Let g: →  be one-to-one and onto. So  its inverse exists. Assume that    and  is a  

fuzzy closed. By Corollary 3.16,  is fuzzy compact. By Theorem 4.1 g( ) is fuzzy compact 

 and therefore, a fuzzy closed fuzzy subset of  by Theorem 3.17. Since g( ) = ( ( ) and  

then ( ) is fuzzy closed in . Hence by Theorem 2.44  is fuzzy continuous  
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Definition 4.5: 

  Let { : } be a fuzzy open covering of the fuzzy distance space ( , , ). Any number 

 0  1 such that for each   there exists (dependent on ) for which ( , ) 

   is said to be a fuzzy Lebesgue number of  { : }. 

Theorem 4.6: 

Suppose that ( , , )  is a fuzzy compact fuzzy distance space, and assume that ( , , ) 

 is  another fuzzy distance space and g: →  is fuzzy continuous. So for any 0  1, 

 there we can find a , 0  1 ( depending on r ) with g( ( , ))  (g( ),r) for every 

  . Hence g is uniformly fuzzy continuous. 

Proof: 

Let 0  r  1 such that (1- r) (1- r)  (1- ) .The collection of fuzzy ball { ( ,r): 

  } constitutes an fuzzy open fuzzy cover of . The fuzzy set { ( ( ,r)):  } hence 

 is a fuzzy open fuzzy cover of the fuzzy compact fuzzy distance space . Assume that  is 

 a Lebesgue number of { ( ( ,r)):  }. But  each  ( , ) is a subset of ( ( ,r)),  

so g( ( , ))  ( ,r) for some  . Because g( ) ( ,r), we find for any  ( , )  

that (g( ),g( )) (g( ), ) ( ,g( )) (1- r) (1- r)  (1- ) i.e, g( ( , )) 

  (g( ), ).   
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