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Abstract. 

In this paper we obtain optimal control problems governed by variational inequalities of obstacle type for 

infinite order with finite dimension. We obtain the optimality condition under classical assumption using a dual 

regularized functional, to interpret the variational inequality we use a penalty method to get first - order 

conditions. 
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1    Introduction                                                            

The obstacle problem, in fact, is one of the main motivations for the development of the theory of variational 

inequalities, of which Signorini was one of the main architects. It is known that optimal control problems 

governed by variational inequality may be equivalently transformed into control problem with linear state 

equation and mixed type (state - control) constraints. This method was used by F. Mignot and J. P. Puel [12]. 

Gali et al [8] presented a set of inequalities defining a control of a system governed by elliptic operator of 

infinite order with finite dimension and in [9] Gali et al presented the distribution control problem for the 

infinite order. In [7] El-Zahaby presented the necessary conditions for control problems governed by elliptic 

variational inequalities of infinite order with finite dimension by using Mignot [11]. In the present paper, we 

use the theory of M. Bergounious et al [3] to obtain the necessary conditions of optimality for control problem 

governed by elliptic variational inequality of obstacle type of infinite order with finite dimension. By using a 

penalty method, we get the first order optimality conditions with additional assumptions. 

2  Some Function Spaces: 

We will define the infinite order sobolev space w {a ,2}

  
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n 2

2

1 1 0

w {a ,2} {u(x) C (R ), a || D u || }


  

 

 

    this space is sobolev of infinite order of periodic 

functions  

Defined on all 
nR  such that: 

      
1 n

1 n

1 n

| | ... ,D
x ... x





 


     

 
    a 0   

1 n( ,..., )     is a multi-index of differentiation  

2|| ||  is the norm of 
2

2L (R )  

In this case: 
n

2w {a ,2} L (R ) w {a ,2} 

    

w {a ,2}

  is the dual space of w {a ,2}

  with respect of 
n

2L (R )  

Now let us consider an elliptic operator of infinite order with finite dimension. 

                                         2

0

1Au a D u
 








   

3 Setting the problem: 

Consider the following problem: 

(P): min adJ(y,v), T(y,v),z y 0, z k,y k,v U         

                 V w {a ,2}

  

                   
2 nU L (R )  

adU  is non empty closed convex of U. 

                          T(y,v) Ay V f    , 
2 nf L (R )  

We define a non empty, closed, convex subset of v such that: 

nk {y v,y 0 a.e in R }    

And the cost function: 

                     2 n

2 2

d d L (R )

1
J(y,v) || y y || || v v ||

2
    
 

 

This functional is convex and lower semicontinous. 

The compactness of the injection of w {a ,2}

 in 
2 nL (R )  implies that T is  weakly-strongly continuous 

with respect to both variables y and v i.e. 

                    
w w str

n n n ny y and v v T(y ,v ) T(y,v)     
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The linearity of A gives that T is differentiable in the frèchet sense.  

We introduce a continuous bilinear  form on w {a ,2}


 

          : Va u,v V R   

           2 n2 n

| | 2

L (R )L (R )
a(u,v) ( 1) a D u(x),v(x) a(x)u(x),v(x) 

    

nx R ,q(x)  is a real valued function in 
n

2L (R )  

Such that q(x) ,0 1   

The ellipticity of A is sufficient for the coerciveness of a(u,v) on V . 

i.e. 
2a(u,u) C || u || , c 0, u V       

and we can write      a(u,v) Au,V ,u.v V    

2a(u,u) Au,u C|| u || ,c 0, u V        

According Barbu [1,2] the problem (P) has at least one optimal solution. 

Also we can use the dual methods of Bergounioux and Dietrich [3,4,5 ] which it is based on a functional.  

                         h :V U R    as following:  

                         
2

z k

1
h (y,v) sup T(y,v),z y || z y ||

2




 
       

 
 

Theorem 3.1:  For any 0   these two problems are equivalent:  

                     ad(P )minJ(y,v), h (y,v) 0,y k,v U      

           ad(P) :minJ(y,v), T(y,v),z y 0 z k,y k,v U       

4  The Penalty Method 

The classical mathematical programming problem is hopeless to obtain optimality systems so we use the dual 

penalty method: 

Let 
* *

ad(y ,v ) k U   be a solution of (P). 

We consider the following problem. 

                  
n(P )  which is a penalization of problem 2(P )  

                    
n

n ad(P ) :inf J (y,v), y k, v U      

With 
* 2 * 2

v 4

1 1
Jn(y,v) J(y,v) nh (y,v) || y y || || v v ||

2 2
       

For a n 0   it is clear what there exists an element n n ad(y ,v ) k U   such that:  
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* 2 * 2 n

n n n n n v n 4 n

1 1
J(J ,V ) nh (y ,v ) || y y || || v v || inf(P )

2 2
          

* 2 * 2 n
n n n n n v n n

n

1 1 y y
J(y ,v ) nh (y ,v ) || y y || || v v || || ||

v v2 2


          
 

* 2 * 2

v v ad

1 1
J(y,v) nh (y,v) || y y || || v v || , (y,v) k U

2 2
          

Theorem 4.1 

Assume that T is strongly monotone uniformly with respect to v U,i.e.  

2

V ad0, T(y,v) T(z,v),y z || z y || y,z k, v U
2


           

Then the sequence 
n n(y ,v )  converges strongly to 

* *(y ,v )inV U  

Proof: 

The cost function J : v u R   is convex, continuous and Gateaux - differentiable we obtain: 

From  1 ; 

                  
* 2 * 2

n n n v n u

1 1
0 nh (y ,v ) || y y || || v v ||

2 2
      

                    

*
* * n

*n n n
n

y y
J(y ,v ) J(y .v ) || || v U

v v

 
      

 

With 
* *(y,v) (y ,v )  

* 2 * 2

n n n v n u

1 1
0 nh (y ,v ) || y y || || v v ||

2 2
      

   
* *

* * n n
* *V U n V U

n n

y y y y
|| J`(y ,v ) || || || || || 2

v v v v 

    
        

 

It follows that the sequences n{V }  and n{y } are bounded there exist a weakly convergent subsequences of 

n{v } and n{y } still denoted n{v } and n{y } such that: 

w w

n nad
v v and y y KU     

We see that: n n
n
lim h (y ,v ) 0


  

The model of the system is strongly monotone so: 

2

n n n n n0 || y y || T(y ,v T(y,v ),y y
2


     such that:

1
 


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Since 
sup 2

n n n n n ny k

1
h (y ,v ) T(y ,v ),y y || y y ||

2
 

 
     

 
 

           
2

n n n n n n

1
h (y ,v ) || y y || T(y ,v ),y y

2
       

We find that:  

2

n n n n n n0 || y y || T(y ,v ),y y T(y,v ),y y
2


        

2 2

n n n n n n

1
0 || y y || h (y ,v ) || y y || T(y,v ),y y

2 2



        

2

n n n n n

1
|| y y || h (y ,v ) T(y,v ),y y

2


 
     

 
 

The mapping v T(y,v)  is strongly continuous for any y k  so: 
strongly

nT(y,v ) T(y,v)  

                         n

1
|| y y || 0

2


    

                                n
n
lim y y


   

Now we want to prove that: h (y,v) 0   

In fact:  
n

h (y,v) lim h (y,v) 


  

                           
2

n n
n n

1sup
lim T(y,v),y y || y y ||

y k 2

     
 

 

as nn y y      so        h (y,v) 0   

(y,v)  is a solution for 
* *(P ) (y ,v ) (y,v)    

 from: (2)  

* 2 * 2

n n n v n u

1 1
0 nh (y ,v ) || y y || || v v ||

2 2
      

* *

n nJ(y ,v ) J(y ,v ) 0    

            
* * 2

n n n n
n

1 1
limnh (y ,v ) || y y || || v v || 0

2 2



      

                   
* *

n ny y and v v   n n
n
lim nh (y ,v ) 0


   

To get the optimality system  we define a sequence n n np n(z y )   such that:  

       1

n k n n nZ P y T(y ,v )  note that n V
k 0; n N; p K      
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nz  is a bounded sequence, so we can extract a subsequence still denoted 
n{p }  weakly convergent towards 

*P as n  

*P is the adjoint state. 

We can prove that: 

           
*

ad v n n v n n n nu U , J` (y ,v ) T (y ,v )P ,u v     

                       
*

u n n n n(v v ),u v || u v || 0         

[one can refer to [Berg] for more details]. 

: w {a ,2} w {a ,2} 

    

Is the canonical isomorphism we recall that: 

         (y,z) V V          v(y,z) y,z  

Theorem 4.2 

Assume that 
2 n

adU L (R )  and let 
* *(y ,v )  be an optional solution of (P). then there exists 

* 2 nP L (R )  such that: 

* *

ad(P(v vd) P ) 0 , v U      

* n

* * * *

d L (R )
z ky .(y y A q ,z) 0      

Such that * 2 n

* *

y L (R )
ky {z k (f ,z) 0}    

* * *f Ay f v    

Proof: 

* *(y ,v )  is a solution of our problem, from (3) 

    adv U   n n ad(v ,y ) U k   

* *

v n n n n n n nJ` ( j ,v ,v T v̀ (y ,v )P ,v (v v ,v) || V || 0       

* *

n v n n(f (v vd),v) (P ,T` v) (v v ,v) || v || 0         

* *

d n n n(P(v v ) v v ,v) ( P ,v) || v || 0          

Passage to the limit: 

Use n  

 * *

dP(v v ),v (p ,v) 0    

* *

d(P(v v ) P ,v) 0     
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We can easily prove that:  

* * * * * * * * *J`y(y ,v ) T ỳ (y ,v )q ,2 y 0,q p     

See Bergounioux and Dietrich [ 3] th. 4.3.  

* * * * * *

dy y ,z y q ,T ỳ(y ,v ).(z y ) 0       

* * * * *

d(y y ,z y ) (A q ,z y ) 0       

Because A`=A 

* * * *

d(y y A q ,z y ) 0 , z k        (5) 

Let 
* *z` z y ,z` ky    

* * * *

d(y y A q ,z`) 0 , z` ky       
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