Oscillatory Behavior of Even Order Quasilinear Delay Difference Equations

R. Arul 1, K. Alagesan ${ }^{2}$ and G. Ayyappan ${ }^{3}$
${ }^{1 \& 2}$ Department of Mathematics, Kandaswami Kandar’s College, Velur-638182, Namakkal Dt., Tamil Nadu, India. Email: rarulkkc@gmail.com
${ }^{3}$ Department of Mathematics, Periyar University College of Arts and Science, Pappireddipatti - 636905, Tamil Nadu, India. Email: ayyapmath@ gmail.com

Abstract

In this paper, we consider the quasilinear delay difference equation of the form $$
\Delta\left(a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}\right)+q_{n} x_{\tau_{n}}^{\beta}=0, n \in \mathbb{N}_{0}
$$ and obtained sufficient conditions for the oscillation for all solutions. Examples are given to illustrate the main results.

Keywords and Phrases. Oscillation; even order; delay difference equations.

1. Introduction

In this paper, we study the oscillatory behavior of even order quasilinear delay difference equation of the form

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}\right)+q_{n} x_{\tau_{n}}^{\beta}=0, n \in \mathbb{N}_{0} \tag{1.1}
\end{equation*}
$$

where Δ is the forward difference operator defined by $\Delta x_{n}=x_{n+1}-x_{n}$ and $\mathbb{N}_{0}=\left\{n_{0}, n_{0}+1, n_{0}+2, \ldots\right\}$ and n_{0} is a nonnegative integer, subject to the following conditions:
$\left(C_{1}\right) \alpha$ and β are ratios of odd positive integers;
$\left(C_{2}\right)\left\{q_{n}\right\}$ and $\left\{a_{n}\right\}$ are positive real sequences with $\sum_{n=n_{0}}^{\infty} \frac{1}{a_{n}^{1 / \alpha}}<\infty$ and $\Delta a_{n} \geq 0$ for all $n \in \mathbb{N}_{0} ;$
$\left(C_{3}\right)\left\{\tau_{n}\right\}$ is a nondecreasing sequence of integers and $\tau_{n} \leq n$ with $\tau_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
By a solution of equation (1.1), we mean a real sequence $\left\{x_{n}\right\}$ defined and satisfying equations (1.1) for all $n \in \mathbb{N}_{0}$. Such a solution is said to be oscillatory if it is neither eventually positive nor eventually negative and nonoscillatory otherwise.

In $[2-5,9-11,13,14,16,17]$, the authors investigated the oscillatory behavior or higher order difference equations.

In [11], the authors studied the nonoscillatory solutions fo higher order linear difference equation of the form

$$
\Delta^{m} x_{n}+\delta a_{n} x_{n+1}=0
$$

where $m \geq 2$ and $\delta= \pm 1$.

Consider the following equation

$$
\begin{equation*}
\Delta\left(4^{n} \Delta^{3} x_{n}\right)+4^{n-3} x_{n-3}=0 \tag{1.2}
\end{equation*}
$$

Using matlab we found that equation (1.2) has two nonoscillatory solutions $x_{n}=\left\{(0.5)^{n}\right\}, x_{n}=\left\{(0.3831)^{n}\right\}$ and two oscillatory solutions $x_{n}=r^{n} \sin n \theta, x_{n}=r^{n} \cos n \theta$ where $r=1.2116$ and $\theta=12.39^{\circ}$. Now the question is: Can one obtain conditions under which all solutions of equation (1.1) are oscillatory?. The purpose of this work is to give an affirmative answer to this question. Therefore in this paper, we obtain some new sufficient conditions for the oscillation of all solutions of equation (1.1).

In Section 2, we establish some sufficient conditions for the oscillation of all solutions of equation (1.1) and in Section 3, we present some examples to illustrate the main results. The results established in this paper are discrete analogue of that in [15].

2. Main Results

To obtain our main results, we need the following lemmas.
Lemma 2.1. Let $\left\{x_{n}\right\}$ be defined for $n \geq n_{0}$ and $x_{n}>0$ with $\Delta^{m} x_{n}$ of constant sign for $n \geq n_{0}$ and not identically zero. Then, there exists an integer $k, 0 \leq k \leq m$ with $(m+k)$ odd for $\Delta^{m} x_{n} \leq 0$ and $(m+k)$ even for $\Delta^{m} x_{n} \geq 0$ such that
(i) $\quad k \leq m-1$ implies $(-1)^{m+i} \Delta^{i} x_{n}>0$ for all $n \geq n_{0}, k \leq i \leq m-1$;
(ii) $\quad k \geq 1$ implies $\Delta^{i} x_{n}>0$ for all large $n \geq n_{0}, 1 \leq i \leq k-1$.

Lemma 2.2. Let $\left\{x_{n}\right\}$ be defined for $n \geq n_{0}$ and $x_{n}>0$ with $\Delta^{m} x_{n} \leq 0$ and not identically zero. Then, there exists an integer $n_{1} \geq n_{0}$ such that

$$
x_{n} \geq \frac{1}{(m-1)!}\left(n-n_{1}\right)^{m-1} \Delta^{m-1} x_{2^{m-k-1} n}, n \geq n_{1}
$$

where k is defined as in Lemma 2.1. Further, if x_{n} is increasing, then

$$
x_{n} \geq \frac{1}{(m-1)!}\left(\frac{n}{2^{m-1}}\right)^{m-1} \Delta^{m-1} x_{n}, n \geq 2^{m-1} n_{1}
$$

The proof of Lemma 2.1 and 2.2 can be found in [1].
In the sequel, we use the following notations:

$$
\delta_{n}=\sum_{s=n}^{\infty} \frac{1}{a_{s}^{1 / \alpha}}, \quad R_{n}=\sum_{s=n}^{\infty} \frac{(s+1-n)^{(m-3)}}{(m-3)!} \delta_{s}, \text { and } Q_{n}=\sum_{s=n}^{\infty} \frac{(s+1-n)^{(m-4)}}{(m-4)!} \delta_{s}
$$

Theorem 2.1. Let $m \geq 4$, be even and $\left(C_{1}\right)-\left(C_{3}\right)$ hold. Assume that the difference equation

$$
\begin{equation*}
\Delta y_{n}+q_{n}\left(\frac{\tau_{n}^{m-1}}{(m-1)!a_{\tau_{n}}^{1 / \alpha}}\right)^{\beta} y_{\tau_{n}}^{\beta / \alpha}=0 \tag{2.1}
\end{equation*}
$$

is oscillatory. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{0}}^{n-1}\left[M^{\beta-\alpha} q_{s} \frac{2^{(4-2 m) \beta} \tau_{s}^{\beta(m-2)}}{((m-2)!)^{\beta}} \delta_{s}^{\alpha}+\frac{\Delta \delta_{s}^{\alpha}}{\delta_{s}^{\alpha}}\right]>1, \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{0}}^{n-1}\left[M^{\beta-\alpha} q_{s} R_{s}^{\alpha}-\frac{\alpha^{\alpha+1}}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta R_{s}\right)^{\alpha+1}}{R_{s} Q_{s}^{\alpha}}\right]>1, \tag{2.3}
\end{equation*}
$$

hold for every constant $M>0$, then every solution of equation (1.1) is oscillatory.
Proof: Let $\left\{x_{n}\right\}$ be a nonoscillatory solution of equation (1.1). Without loss of generality we may assume that $\left\{x_{n}\right\}$ is eventually positive. It follows from equation (1.1) and Lemma 2.1 that there exists three possible cases:
(i) $\quad x_{n}>0, \Delta x_{n}>0, \Delta^{m-1} x_{n}>0, \Delta^{m} x_{n} \leq 0$ and $\Delta\left(a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}\right) \leq 0$;
(ii) $\quad x_{n}>0, \Delta x_{n}>0, \Delta^{m-2} x_{n}>0, \Delta^{m-1} x_{n} \leq 0$ and $\Delta\left(a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}\right) \leq 0$;
(iii) $\quad x_{n}>0, \Delta^{j} x_{n}<0, \Delta^{j+1} x_{n}>0 \quad$ for every odd integer $j=1,2, \ldots, n-s$ and $\Delta^{m-1} x_{n}<0$, $\Delta\left(a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}\right) \leq 0$ for all $n \geq n_{1}$.

Assume that Case(i) holds. From Lemma 2.2, we have

$$
\begin{equation*}
x_{n}=\frac{1}{(m-1)!a_{n}^{1 / \alpha}}\left(\frac{n}{2^{m-1}}\right)^{m-1} a_{n}^{1 / \alpha} \Delta^{m-1} x_{n} \tag{2.4}
\end{equation*}
$$

where $n \geq n_{2}=2^{m-1} n_{1}$. Hence by equation (1.1), we see that $y_{n}=a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}$ is a positive solution of the difference inequality

$$
\Delta y_{n}+q_{n}\left(\frac{\tau_{n}^{m-1}}{(m-1)!a_{\tau_{n}}^{1 / \alpha}}\right)^{\beta} y_{\tau_{n}}^{\beta / \alpha} \leq 0, \quad n \geq n_{2}
$$

Therefore by Lemma 5 of Section 2 in [9], the difference equation

$$
\Delta y_{n}+q_{n}\left(\frac{\tau_{n}^{m-1}}{(m-1)!a_{\tau_{n}}^{1 / \alpha}}\right)^{\beta} y_{\tau_{n}}^{\beta / \alpha}=0
$$

has an eventually positive solution for $n \geq n_{2}$. This contradicts the fact that (2.1) is oscillatory.

Assume Case(ii) holds. Define the function w_{n} by

$$
\begin{equation*}
w_{n}=\frac{a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}}{\left(\Delta^{m-2} x_{n}\right)^{\alpha}}, n \geq n_{1} \tag{2.5}
\end{equation*}
$$

Then $w_{n}<0$ for $n \geq n_{1}$. Taking into consideration that $a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}$ is decreasing, we have

$$
a_{s}^{1 / \alpha} \Delta^{m-1} x_{s} \leq a_{n}^{1 / \alpha} \Delta^{m-1} x_{n}, \quad s \geq n \geq n_{1}
$$

Dividing the above inequality by $a_{s}^{1 / \alpha}$ and summing from n to $\ell-1$, we obtain

$$
\Delta^{m-2} x_{\ell} \leq \Delta^{m-2} x_{n}+a_{n}^{1 / \alpha} \Delta^{m-1} x_{n} \sum_{s=n}^{\ell-1} \frac{1}{a_{s}^{1 / \alpha}}
$$

Letting $\ell \rightarrow \infty$, we have

$$
0 \leq \Delta^{m-2} x_{n}+a_{n}^{1 / \alpha} \Delta^{m-1} x_{n} \delta_{n}
$$

or

$$
-\frac{a_{n}^{1 / \alpha} \Delta^{m-1} x_{n}}{\Delta^{m-2} x_{n}} \delta_{n} \leq 1
$$

Then, by (2.5), we obtain

$$
\begin{equation*}
-\delta_{n}^{\alpha} w_{n} \leq 1 \tag{2.6}
\end{equation*}
$$

In view of (2.5), we have

$$
\begin{align*}
\Delta w_{n} & =\frac{\Delta\left(a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}\right)\left(\Delta^{m-2} x_{n}\right)^{\alpha}-a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha} \Delta\left(\Delta^{m-2} x_{n}\right)^{\alpha}}{\left(\Delta^{m-2} x_{n}\right)^{\alpha}\left(\Delta^{m-2} x_{n+1}\right)^{\alpha}} \\
& =\frac{\Delta\left(a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}\right)}{\left(\Delta^{m-2} x_{n+1}\right)^{\alpha}}-\frac{a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}\left(\left(\Delta^{m-2} x_{n+1}\right)^{\alpha}-\left(\Delta^{m-2} x_{n}\right)^{\alpha}\right)}{\left(\Delta^{m-2} x_{n}\right)^{\alpha}\left(\Delta^{m-2} x_{n+1}\right)^{\alpha}} \\
& =\frac{\Delta\left(a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}\right)}{\left(\Delta^{m-2} x_{n+1}\right)^{\alpha}}-\frac{a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}}{\left(\Delta^{m-2} x_{n}\right)^{\alpha}}+\frac{a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}}{\left(\Delta^{m-2} x_{n+1}\right)^{\alpha}} \\
& \leq-q_{n} \frac{x_{\tau_{n}}^{\beta}}{\left(\Delta^{m-2} x_{n+1}\right)^{\alpha}}-w_{n}+w_{n} \frac{\left(\Delta^{m-2} x_{n}\right)^{\alpha}}{\left(\Delta^{m-2} x_{n+1}\right)^{\alpha}}, \tag{2.7}
\end{align*}
$$

we observe that since $\Delta^{m-1} x_{n}<0$, we deduce that $\Delta^{m-2} x_{n}$ is decreasing. Therefore $\Delta^{m-2} x_{n} \geq \Delta^{m-2} x_{n+1}>0$ and

$$
w_{n} \frac{\left(\Delta^{m-2} x_{n}\right)^{\alpha}}{\left(\Delta^{m-2} x_{n+1}\right)^{\alpha}} \leq w_{n} \text { for all } n \geq n_{1}
$$

Hence, (2.7) becomes

$$
\Delta w_{n} \leq q_{n} \frac{x_{\tau_{n}}^{\beta}}{\left(\Delta^{m-2} x_{n}\right)^{\alpha}}
$$

On the other hand, by Lemma 2.2, we get

$$
x_{n} \geq \frac{1}{(m-2)!} \frac{n^{m-2}}{2^{2 m-4}} \Delta^{m-2} x_{n}, \quad n \geq n_{2}=2^{m-2} n_{1}
$$

Thus we have

$$
x_{\tau_{n}} \geq \frac{1}{(m-2)!} \tau_{n}^{m-2} 2^{4-2 m} \Delta^{m-2} x_{\tau_{n}}
$$

for sufficiently large $n \geq n_{3} \geq n_{2}$. Then, there exists a constant $M>0$ such that

$$
\begin{aligned}
\Delta w_{n} & \leq-q_{n}\left(\frac{2^{(4-2 m)}}{(m-1)!} \tau_{n}^{m-2}\right)^{\beta} \frac{\left(\Delta^{m-2} x_{\tau_{n}}\right)^{\beta}}{\left(\Delta^{m-2} x_{n}\right)^{\alpha}} \\
& \leq-q_{n}\left(\frac{2^{(4-2 m)}}{(m-1)!} \tau_{n}^{m-2}\right)^{\beta} M^{\beta-\alpha}, n \geq n_{3}
\end{aligned}
$$

Multiplying the above inequality by δ_{n}^{α} and summing from n_{3} to $n-1$, we obtain

$$
\delta_{n}^{\alpha} w_{n}-\delta_{n_{3}}^{\alpha} w_{n_{3}}-\sum_{s=n_{3}}^{n-1} w_{s} \Delta \delta_{s}^{\alpha}+\sum_{s=n_{3}}^{n-1} M^{\beta-\alpha} q_{s} \frac{2^{(4-2 m) \beta}}{((m-1)!)^{\beta}} \tau_{s}^{(m-2) \beta} \delta_{s}^{\alpha} \leq 0
$$

or

$$
\sum_{s=n_{3}}^{n-1}\left(M^{\beta-\alpha} q_{s} \frac{2^{(4-2 m) \beta}}{((m-1)!)^{\beta}} \tau_{s}^{(m-2) \beta} \delta_{s}^{\alpha}+\frac{\Delta \delta_{s}^{\alpha}}{\delta_{s}^{\alpha}}\right) \leq \delta_{n_{3}}^{\alpha} w_{n_{3}}+1 \leq 1
$$

By using (2.5) and fact that $\Delta \delta_{s}^{\alpha}<0$, which contradicts to (2.2).
Assume Case(iii) hold. Taking into consideration that $a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}$ is nonincreasing, we have

$$
a_{s}^{1 / \alpha} \Delta^{m-1} x_{s} \leq a_{n}^{1 / \alpha} \Delta^{m-1} x_{n}, \quad s \geq n \geq n_{1}
$$

or

$$
\Delta^{m-1} x_{s} \leq \frac{a_{n}^{1 / \alpha} \Delta^{m-1} x_{n}}{a_{s}^{1 / \alpha}} .
$$

Summing the last inequality from n to $\ell-1$, we have

$$
\Delta^{m-2} x_{\ell}-\Delta^{m-2} x_{n} \leq a_{n}^{1 / \alpha} \Delta^{m-1} x_{n} \sum_{s=n}^{\ell-1} \frac{1}{a_{s}^{1 / \alpha}}
$$

Letting $\ell \rightarrow \infty$, we get

$$
0-\Delta^{m-2} x_{n} \leq a_{n}^{1 / \alpha} \Delta^{m-1} x_{n} \sum_{s=n}^{\infty} \frac{1}{a_{s}^{1 / \alpha}}
$$

or

$$
-\Delta^{m-2} x_{n} \leq a_{n}^{1 / \alpha} \Delta^{m-1} x_{n} \delta_{n} .
$$

Summing the above inequality from n to ∞, we have

$$
-\Delta^{m-3} x_{n} \geq-a_{n}^{1 / \alpha} \Delta^{m-1} x_{n} \sum_{s=n}^{\infty} \delta_{s} .
$$

Again summing the last inequality from n to ∞ a total of ($n-4$) times, we have

$$
\begin{equation*}
-\Delta x_{n} \geq-a_{n}^{1 / \alpha} \Delta^{m-1} x_{n} \sum_{s=n}^{\infty} \frac{(s+1-n)^{(m-4)}}{(m-4)!} \delta_{s} . \tag{2.8}
\end{equation*}
$$

Summing the above inequality from n to ∞ implies that

$$
\begin{equation*}
x_{n} \geq-a_{n}^{1 / \alpha} \Delta^{m-1} x_{n} \sum_{s=n}^{\infty} \frac{(s+1-n)^{(m-3)}}{(m-3)!} \delta_{s} . \tag{2.9}
\end{equation*}
$$

Define

$$
\begin{equation*}
u_{n}=\frac{a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}}{x_{n}^{\alpha}} . \tag{2.10}
\end{equation*}
$$

Then $u_{n}<0$ for all $n \geq n_{1}$, we have

$$
\Delta u_{n}=\frac{\Delta\left(a_{n}\left(\Delta^{m-1} x_{n}\right)^{\alpha}\right)}{x_{n}^{\alpha}}-\frac{a_{n+1}\left(\Delta^{m-1} x_{n+1}\right)^{\alpha}}{x_{n}^{\alpha} x_{n+1}^{\alpha}} \Delta x_{n}^{\alpha} .
$$

Using (1.1) and (2.10) in the last inequality, we have

$$
\begin{equation*}
\Delta u_{n} \leq-q_{n} \frac{x_{\tau_{n}}^{\alpha}}{x_{n}^{\alpha}}-u_{n+1} \frac{\Delta x_{n}^{\alpha}}{x_{n}^{\alpha}} . \tag{2.11}
\end{equation*}
$$

By Mean Value Theorem, we have

$$
\Delta x_{n}^{\alpha}=\alpha t^{\alpha-1} \Delta x_{n} .
$$

where $x_{n} \leq t \leq x_{n+1}$. Since $\alpha \geq 1$, we have

$$
\begin{equation*}
\Delta x_{n}^{\alpha} \geq \alpha x_{n}^{\alpha-1} \Delta x_{n} . \tag{2.12}
\end{equation*}
$$

Again using the inequality (2.12) in (2.11), we obtain

$$
\Delta u_{n} \leq-q_{n} \frac{x_{\tau_{n}}^{\alpha}}{x_{n}^{\alpha}}-\alpha u_{n+1} \frac{\Delta x_{n}}{x_{n}}
$$

Using the inequality (2.8) in the last inequality, we have

$$
\Delta u_{n} \leq-q_{n} \frac{x_{\tau_{n}}^{\alpha}}{x_{n}^{\alpha}}-\alpha u_{n+1}^{1+1 / \alpha} \sum_{s=n}^{\infty} \frac{(s+1-n)^{(m-4)}}{(m-4)!} \delta_{s}
$$

We observe that $\Delta x_{n}<0$ and $\tau_{n}<n$, then there exist a constant $M>0$, such that

$$
\begin{aligned}
\Delta u_{n} & \leq-q_{n} \frac{x_{\tau_{n}}^{\alpha}}{x_{n}^{\alpha}} x_{\tau_{n}}^{\beta-\alpha}-\alpha u_{n+1}^{1+1 / \alpha} \sum_{s=n}^{\infty} \frac{(s+1-n)^{(m-4)}}{(m-4)!} \delta_{s} \\
& \leq-q_{n} M^{\beta-\alpha}-\alpha u_{n+1}^{1+1 / \alpha} \sum_{s=n}^{\infty} \frac{(s+1-n)^{(m-4)}}{(m-4)!} \delta_{s} .
\end{aligned}
$$

Multiplying the above inequality by R_{n}^{α} and summing the resulting inequality from n_{1} to $n-1$, we have

$$
R_{n}^{\alpha} u_{n}-R_{n_{1}}^{\alpha} \Delta u_{n_{1}} \leq-\sum_{s=n_{1}}^{n-1} R_{s}^{\alpha} M^{\beta-\alpha} q_{s}+\alpha \sum_{s=n_{1}}^{n-1} u_{s} R_{s}^{\alpha-1}\left(\Delta R_{s}\right)-\alpha \sum_{s=n_{1}}^{n-1} R_{s}^{\alpha} u_{s+1}^{1+1 / \alpha} Q_{s}
$$

or

$$
\begin{equation*}
R_{n}^{\alpha} u_{n}-R_{n_{1}}^{\alpha} \Delta u_{n_{1}}-\alpha \sum_{s=n_{1}}^{n-1} u_{s} R_{s}^{\alpha-1}\left(\Delta R_{s}\right)+\sum_{s=n_{1}}^{n-1} R_{s}^{\alpha} M^{\beta-\alpha} q_{s}+\alpha \sum_{s=n_{1}}^{n-1} R_{s}^{\alpha} u_{s+1}^{1+1 / \alpha} Q_{s} \leq 0 \tag{2.13}
\end{equation*}
$$

By setting $A=R_{n}^{\alpha} Q_{n}, B=-\left(\Delta R_{n}\right) R_{n}^{\alpha-1}$ and $v=-u_{n}$. Using the inequality $A v^{\frac{\alpha+1}{\alpha}}-B v \geq-\frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}} \frac{B^{\alpha+1}}{A^{\alpha}}$, $A>0$ in (2.13), we have

$$
\sum_{s=n_{1}}^{n-1}\left[M^{\beta-\alpha} q_{s} R_{s}^{\alpha}-\frac{\alpha^{\alpha+1}}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta R_{s}\right)^{\alpha+1}}{R_{s} Q_{s}^{\alpha}}\right] \leq R_{n_{1}}^{\alpha} u_{n_{1}}+1 \leq 1
$$

Letting the limit supreme in the last inequality, we get a contradiction to (2.3). This completes the proof.
From Theorem 2.1, we obtain the following corollaries.
Corollary 2.1. Let $m \geq 4$ be even, and $\left(C_{1}\right)-\left(C_{3}\right)$ hold. Further, assume that $\alpha=\beta$ and $\tau_{n}=n-k, k$ is a positive integer. If

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \sup \sum_{s=\tau_{n}}^{n-1} q_{s} \frac{\left(\tau_{s}^{m-1}\right)^{\alpha}}{a_{\tau_{s}}}>((m-1)!)^{\alpha}\left(\frac{k}{k+1}\right)^{\alpha} . \tag{2.14}\\
& \limsup _{n \rightarrow \infty} \sum_{s=n_{0}}^{n-1}\left[q_{s} \frac{2^{(4-2 m) \beta} \tau_{s}^{\beta(m-2)}}{((m-2)!)^{\beta}} \delta_{s}^{\alpha}+\frac{\Delta \delta_{s}^{\alpha}}{\delta_{s}^{\alpha}}\right]>1, \tag{2.15}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{0}}^{n-1}\left[q_{s} R_{s}^{\alpha}-\frac{\alpha^{\alpha+1}}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta R_{s}\right)^{\alpha+1}}{R_{s} Q_{s}^{\alpha}}\right]>1, \tag{2.16}
\end{equation*}
$$

hold, then every solution of equation (1.1) is oscillatory.
Corollary 2.2. Let $\alpha>\beta, \quad m \geq 4$ be even, and $\left(C_{1}\right)-\left(C_{3}\right)$ hold. Assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{0}}^{n-1} q_{s}\left(\frac{\tau_{s}^{m-1}}{a_{\tau_{s}}^{1 / \alpha}}\right)^{\beta}=\infty \tag{2.17}
\end{equation*}
$$

If (2.2) and (2.3) hold for every constant $M>0$, then every solution of equation (1.1) is oscillatory.

3. Examples

In this section, we present some examples to illustrate the main results.
Example 3.1. Consider the fourth order difference equation

$$
\begin{equation*}
\Delta\left(e^{n} \Delta^{3} x_{n}\right)+(n+1) e^{n-1} x_{n-1}=0, n \geq 3 \tag{3.1}
\end{equation*}
$$

Here $a_{n}=e^{n}, q_{n}=(n+1) e^{n-1}, \tau_{n}=n-1, m=4$ and $\alpha=\beta=1$. It is easy to see that all conditions of Corollary 2.1 are satisfied. Hence every solution of equation (3.1) is oscillatory.

Example 3.2. Consider the fourth order difference equation

$$
\begin{equation*}
\Delta\left(e^{n} \Delta x_{n}\right)^{3}+(n+1) e^{\frac{n-1}{3}} x_{n-1}=0, n \geq 3 \tag{3.2}
\end{equation*}
$$

Here $a_{n}=e^{n}, q_{n}=(n+1) e^{\frac{n-1}{3}}, \tau_{n}=n-1, m=4, \alpha=3$ and $\beta=1$. It is easy to see that all conditions of Corollary 2.2 are satisfied. Hence every solution of equation (3.2) is oscillatory.

References

[1] Agarwal.R.P (2000). Difference Equations and Inequalities, Second Edition, Marcel Dekker, New York.
[2] Agarwal.R.P (2005). On the oscillation of higher order difference equations, Sochow J.Math., 31(2), 245-259.
[3] Agarwal.R.P, Bohner.M, Grace.S.R and O’Regan.D (2005). Discrete Oscillation Theory, Hindawi Publ. Corp., New York.
[4] Agarwal.R.P, Thandapani.E and Wong.P.Y.Y (1997). Oscillation of higher order neutral difference equations, Appl. Math. Lett., 10(1), 71-78.
[5] Bolat.Y and Alzabut.J.O (2012). On the oscillation of higher order half linear delay difference equations, Appl. Math. Inf. Sci., 6(3), 423-427.
[6] Bolat.Y, Akin.O and Yildirim.H (2009). Oscillation criteria for a certain even order neutral difference equations with an oscillating coefficient, Appl. Math. Lett., 22(2009), 590-594.
[7] Dosla.Z and Kobza.A (2004). Golbal asymptotic properties of third order difference equations, Comp. Math. Appl., 48, 191-200.
[8] Elaydi.S (2005). An Introduction to Difference Equations, Third Edition, Springer, New York.
[9] Ladas.G and Qian.C (1992). Comparison results and linearized oscillations for higher order difference equations, Int. J. Math. Sci., 15, 129-142.
[10] Li.W.T (1998). Oscillation of higher order neutral nonlinear difference equations, Appl. Math. Lett., 11(4), 1-8.
[11] Migda.M (2004). Existence of nonoscillatory solutions of higher order difference equations, Appl. Math. ENotes, 4, 33-39.
[12] Thandapani.E, Vijaya.M and Li.T (2011). On the oscillation of third order half linear neutral type difference equations, Elec. J.Qual. Theo. Diff. Equ., 76, 1-13.
[13] Yildiz.M.K and Ocalan.O (2007). Oscillation results for higher order nonlinear neutral difference equations, Appl. Math. Lett., 20, 243-247.
[14] Zafer.A (1995). Oscillatory and asymptotic behavior of higher order difference equations, Math. Comput. Model., 21(4), 43-50.
[15] Zhang.C, Agarwal.R.P, Bohner.M and Li.T (2013). New results for oscillatory behavior of even order half linear delay differential equations, Appl. Math. Lett., 26, 179-183.
[16] Zhou.X.L and Yan.J.R (1996). Oscillatory property of higher order nonlinear difference equations, Comput. Math. Appl., 31(12), 61-68.
[17] Zhou.X and Zhang.W (2008). Oscillatory and asymptotic properties of higher order nonlinear neutral difference equations, Appl. Math. Comput., 203, 679-689.

