Differential Sandwich Theorems for p-valent Analytic Functions Defined by Cho-Kwon-Srivastava Operator

Badriah A.S.Alamri
Mathematics Department, Faculty of Sciences, King Abdulaziz University,Jeddah, Saudi Arabia.

Abstract

. By using of Cho-Kwon-Srivastava operator, we obtain some subordinations and superordinations results for certain normalized p-valent analytic functions.

Mathematics Subject Classification: 30C45.
Key words and phrases: Analytic function; Hadamard product; differential subordination; superordination; linear operator.

1. Introduction.

Let $H(U)$ be the class of analytic functions in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$, and let $H[a ; p]$ be the subclass of $H(U)$ consisting of functions of the form :

$$
f(z)=a+a_{p} z^{p}+a_{p+1} z^{p+1}+\ldots \quad(a \in \mathbb{C}),
$$

For simplicity, $H[a]=H[a ; 1]$. Also, let $A(p)$ denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n} z^{n+p} .(p \in \mathrm{~N}=\{1,2, \ldots\}), \tag{1.1}
\end{equation*}
$$

Which are analytic and p-valent in U.
If $f, g \in H(U)$, we say that the function f is subordinate to g ,or the function g is superordinate to f, if there exists a Schwarz function ω, i.e., $\omega \in H(U)$ with $\omega(0)=0$ and $|\omega(z)|<1, z \in U$, such that $f(z)=\mathrm{g}(\omega(z))$ for all $z \in U$. This subordination is usually denoted by $f(z) \prec \mathrm{g}(z)$. It is well known that, if the function g is univalent in U , then $f(z) \prec \mathrm{g}(z)$ is equivalent to $f(0)=\mathrm{g}(0)$ and $f(U) \subset \mathrm{g}(U)$ (cf., e.g., [9], see also [5]).

Supposing that p, h are two analytic functions in U, let

$$
\varphi(r, s, t ; z): C^{3} \times U \rightarrow C .
$$

If $p(z)$ and $\varphi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right)$ are univalent functions in U and $p(z)$ satisfies the second-order differential subordination

$$
\begin{equation*}
h(z) \prec \varphi\left(p(z), z p^{\prime}(z), z^{p} p^{\prime \prime}(z) ; z\right), \tag{1.2}
\end{equation*}
$$

then $p(z)$ is called to be a solution of the differential superordination (1.2). An analytic function $q(z)$ is called a subordinant of the solution of the differential superordination (1.2), if $q(z) \prec p(z)$ for all the functions $\mathrm{p}(\mathrm{z})$ satisfying (1.2). A univalent subordinant \tilde{q} that satisfies $q(z) \prec \tilde{q}(z)$ for all of the subordinants q of (1.2), is called the best subordinant (cf., e.g., [9], see also [5]).

Recently, Miller and Mocanu [10] obtained sufficient conditions on the functions h, q and φ for which the following implication holds:

$$
h(z) \prec \varphi\left(p(z), z p^{\prime}(z), z^{p} p^{\prime \prime}(z) ; z\right) \Rightarrow q(z) \prec p(z) .
$$

For functions $f_{j}(z) \in A(p)$, given by

$$
f_{j}(z)=z^{p}+\sum_{n=1}^{\infty} a_{n, j} z^{n+p} \quad(j=1,2)
$$

we define the Hadamard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$ by

$$
\left(f_{1} * f_{2}\right)(z)=z^{p}+\sum_{n=1}^{\infty} a_{n, 1} a_{n, 2} z^{n+p}=\left(f_{2} * f_{1}\right)(z) \quad(z \in U) .
$$

In terms of the Pochhammer symbol $(\theta)_{n}$ given by

$$
(\theta)_{n}= \begin{cases}1, & (n=0) \\ \theta(\theta+1) \ldots(\theta+n-1), & (n \in N=\{1,2, \ldots\})\end{cases}
$$

we now define a function $\varphi_{p}(a, c ; z)$ by

$$
\begin{align*}
& \varphi_{p}(a, c ; z)=z^{p}+\sum_{n=1}^{\infty} \frac{(a)_{n}}{(c)_{n}} z^{n+p} \tag{1.3}\\
& \left(a \in R ; c \in R \backslash Z_{0}^{-} ; Z_{0}^{-}=\{0,-1,-2, \ldots\} ; z \in U\right)
\end{align*}
$$

With the aid of the function $\varphi_{p}(a, c ; z)$ defined by (1.3), we consider a function $\varphi_{p}^{*}(a, c ; z)$ given by the following convolution

$$
\varphi_{p}(a, c ; z) * \varphi_{p}^{*}(a, c ; z)=\frac{z^{p}}{(1-z)^{\lambda+p}}(\lambda>-p ; z \in U)
$$

which yields the following family of linear operators $I_{p}^{\lambda}(a, \mathrm{c})$:

$$
\begin{equation*}
I_{p}^{\lambda}(a, \mathrm{c}) f(z)=\varphi_{p}^{*}(a, c ; z) * \mathrm{f}(\mathrm{z})\left(a, c \in R \backslash Z_{0}^{-} ; \lambda>-p ; z \in U\right) . \tag{1.4}
\end{equation*}
$$

For a function $f(z) \in A(p)$, given by (1.1), it is easily seen from (1.4) that

$$
\begin{equation*}
I_{p}^{\lambda}(a, \mathrm{c}) f(z)=z^{p}+\sum_{n=1}^{\infty} \frac{(c)_{n}(\lambda+p)_{n}}{(a)_{n}(1)_{n}} a_{p+n} z^{p+n} \quad(z \in U), \tag{1.5}
\end{equation*}
$$

which readily yields the following properties of the operator $I_{p}^{\lambda}(a, \mathrm{c})$:

$$
\begin{equation*}
z\left(I_{p}^{\lambda}(a, c) \mathrm{f}(\mathrm{z})\right)^{\prime}=(\lambda+p) I_{p}^{\lambda+1}(a, c) f(z)-\lambda I_{p}^{\lambda}(a, c) f(z) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
z\left(I_{p}^{\lambda}(a+1, c) f(z)\right)^{\prime}=a I_{p}^{\lambda}(a, \mathrm{c}) f(z)-(a-p) I_{p}^{\lambda}(a+1, c) f(z) \tag{1.7}
\end{equation*}
$$

The operator $I_{p}^{\lambda}(a, \mathrm{c})$ was introduced and studied by Cho et al. [6].
We observe that:

$$
\begin{gathered}
I_{p}^{0}(p, 1) f(z)=I_{p}^{1}(p+1,1) f(z)=f(z), I_{p}^{1}(p, 1) f(z)=\frac{z f^{\prime}(z)}{p}, \\
I_{p}^{2}(p, 1) f(z)=\frac{2 z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{p(p+1)} ; \\
I_{p}^{0}(a+1,1) f(z)=p \int_{0}^{z} \frac{f(t)}{p} d t, \\
I_{p}^{n}(a, a) f(z)=D^{n+p-1} f(z) \quad(n \in \mathbb{N}, n>-p),
\end{gathered}
$$

Where $D^{n+p-1} f(z)$ is the Ruscheweyh derivative of $(n+p-1)$ th order, see[8].Many interesting result of multivalent analytic functions associated with the linear operator $I_{p}^{\lambda}(a, \mathrm{c})$ have been studied in [6].

Also we observe that:

$$
\begin{aligned}
& \text { (i) } I^{0}(1,1) f(z)=I^{1}(2,1) f(z)=f(z), I^{1}(1,1) f(z)=z f^{\prime}(z) \\
& I^{2}(1,1) f(z)=\frac{1}{2}\left(2 z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)\right)
\end{aligned}
$$

(ii) $I^{\mu}(\mu+2,1) f(z)=F_{\mu}(f)(z)(\mu>-1)$, where

$$
F_{\mu}(f)(z)=\frac{\mu+1}{z^{\mu}} \int_{0}^{z} t^{\mu-1} f(t) d t \quad(\operatorname{see}[3])
$$

(iii) $I^{0}(\mathrm{n}+1,1) \mathrm{f}(\mathrm{z})=\mathrm{I}_{n} f(z)\left(n \in N_{0}=N \cup\{0\}\right)$ (Noor integral operator, see[13]);
(iv) $\quad I^{\lambda}(\mu+2,1) f(z)=I_{\lambda, \mu} f(z)(\lambda>-1 ; \mu>-2) \quad$ (Choi-Saigo-Srivastavaoperator, see [7]).

Recently many authors ([1], [11], [12] and [14]) have used the results of Bulboac ${ }^{〔}$ a [4] and shown some sufficient conditions applying first order differential subordinations and superordinations.
The main object of the present paper is to find sufficient condition for certain normalized analytic functions $\mathrm{f}(\mathrm{z}), \mathrm{g}(\mathrm{z})$ in U such that $I_{p}^{\lambda}(a, c) g(z) \neq 0$ for $0<|z|<1$ and satisfy

$$
q_{1}(z) \prec \frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) g(z)} \prec q_{2}(z)
$$

where q_{1}, q_{2} are given univalent functions in U . Also, we obtain the number of known results as their special cases.

2. Definitions and preliminaries.

In order to prove our results, we shall make use of the following known results.
Definition 1 ([9]). Denote by Q , the set of all functions f that are analytic and injective on $\bar{U} \backslash \mathrm{E}(\mathrm{f})$, where

$$
E(f)=\left\{\varsigma \in \partial U: \lim _{z \rightarrow \varsigma} f(z)=\infty\right\}
$$

and are such that

$$
f^{\prime}(\varsigma) \neq 0 \text { for } \varsigma \in \partial U \backslash E(f)
$$

Lemma 1 ([10]). Let q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing $\mathrm{q}(\mathrm{U})$ with $\varphi(\omega) \neq 0$ when $\omega \in \mathrm{q}(\mathrm{U})$. Set

$$
\psi(z)=z q^{\prime}(z) \varphi(q(z)) \text { and } h(z)=(q(z))+\psi(z)
$$

Suppose that
(i) $\psi(z)$ is starlike univalent in U ,
(ii) $\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{\psi(z)}\right\}>0, z \in U$.

If p is analytic in U with $p(0)=q(0), p(U) \subseteq D$ and

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \varphi(p(z))<\theta(q(z))+z q^{\prime}(z) \varphi(q(z)) \tag{2.1}
\end{equation*}
$$

then

$$
p(z) \prec q(z)
$$

and q is the best dominant.
Lemma 2 ([4]). Let q be convex univalent in the unit disk U and let θ and φ be analytic in a domain D containing $q(U)$. Suppose that
(i) $\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\varphi(q(z))}\right\}>0, \quad z \in U$,
(ii) $\psi(z)=\mathrm{z} q^{\prime}(z) \varphi(q(z))$ is univalent in U.

If $p \in H[q(0), 1] \cap Q$ with $p(U) \subseteq D$ and $\theta(P(z))+z p^{\prime}(z) \varphi(p(z))$ is univalent in U and

$$
\begin{equation*}
\theta(q(z))+\mathrm{z} q^{\prime}(z) \varphi(q(z)) \prec \theta(p(z))+z p^{\prime}(z) \varphi(p(z)), \tag{2.2}
\end{equation*}
$$

then

$$
q(z) \prec p(z)
$$

and q is the best subordinant of (2.2).

3. Subordination results.

Using Lemma 1, we first prove the following theorem.
Theorem 1. Let $\alpha \neq 0, \beta>0$ and $\mathrm{q}(\mathrm{z})$ be convex univalent in U with
$q(0)=1$. Further assume that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\beta-p \alpha}{\alpha}+2 q(z)+\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)\right\}>0 \quad(z \in U) \tag{3.1}
\end{equation*}
$$

If $f, g \in A(p)$ satisfy

$$
\begin{equation*}
\gamma(f, g, \alpha, \beta) \prec(\beta-p \alpha) q(z)+\alpha q^{2}(z)+\alpha z^{\prime}(z) \tag{3.2}
\end{equation*}
$$

Where

$$
\begin{align*}
& \gamma(f, g, \alpha, \beta)=(\beta-(p+1) \alpha) \frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) g(z)}+\alpha\left(\frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) g(z)}\right)^{2} \\
& +\alpha(\lambda+p+1) \frac{I_{p}^{\lambda+2}(a, c) f(z)}{I_{p}^{\lambda}(a, c) g(z)} \tag{3.3}\\
& -\alpha(\lambda+p) \frac{I_{p}^{\lambda+1}(a, c) g(z)}{I_{p}^{\lambda}(a, c) g(z)}\left(\frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) g(z)}\right),
\end{align*}
$$

then

$$
\frac{I_{p}^{\lambda+1}(a, c) \mathrm{f}(\mathrm{z})}{I_{p}^{\lambda}(a, c) g(z)} \prec q(z)
$$

And q is the best dominant.
Proof. Define the function $p(z)$ by

$$
\begin{equation*}
p(z)=\frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) g(z)} \quad(z \in U) . \tag{3.4}
\end{equation*}
$$

Then the function $\mathrm{p}(\mathrm{z})$ is analytic in U and $\mathrm{p}(0)=1$. Therefore, differentiating (3.4) logarithmically with respect to z and using the identity (1.6) in the resulting equation, we have

$$
\begin{align*}
& \frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) g(z)}\left[\beta-(p+1) \alpha+\alpha \frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) g(z)}\right. \\
& \quad+\alpha(\lambda+p+1) \frac{I_{p}^{\lambda+2}(a, c) f(z)}{I_{p}^{\lambda+1}(a, \mathrm{c}) \mathrm{f}(\mathrm{z})}-\alpha(\lambda+p) \frac{I_{p}^{\lambda+1}(a, c) g(z)}{I_{p}^{\lambda}(a, c) g(z)} \tag{3.5}\\
& \quad=(\beta-p \alpha) p(z)+\alpha p^{2}(z)+\alpha z p^{\prime}(z) .
\end{align*}
$$

By using (3.5) in (3.2), we have

$$
\begin{equation*}
(\beta-p \alpha) p(z)+\alpha p^{2}(z)+\alpha z p^{\prime}(z) \prec(\beta-p \alpha) q(z)+\alpha q^{2}(z)+\alpha z^{\prime}(z) \tag{3.6}
\end{equation*}
$$

By setting

$$
\theta(\omega)=\alpha \omega^{2}+(\beta-p \alpha) \omega \text { and } \varphi(\omega)=\alpha
$$

we can easily observe that $\theta(\mathrm{w})$ and $\varphi(\omega)$ are analytic in $\mathrm{C} \backslash\{0\}$ and that $\varphi(\omega) \neq 0$. Hence the result now follows by using Lemma 1 .
Remark 1. Putting $\lambda=0, \mathrm{a}=\mathrm{c}=1$ and taking $f(z) \equiv g(z)(\mathrm{z} \in U)$ in Theorem 1, we obtain the result obtained by Murugusundaramoorthy and Magesh [9, Corollary 2.9].

Putting $f(z) \equiv g(z)(\mathrm{z} \in U)$ in Theorem 1, we obtain the following corollary.
Corollary 1. Let $\alpha \neq 0, \beta>0$ and q be convex univalent in U with $\mathrm{q}(0)=1$ and (3.1) holds true. If $f \in A(p)$ satisfies

$$
\begin{gathered}
(\beta-(p+1) \alpha) \frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) f(z)}+\alpha(\lambda+p+1) \frac{I_{p}^{\lambda+2}(a, c) f(z)}{I_{p}^{\lambda}(a, c) f(z)}-\alpha(\lambda+p-1)\left(\frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) f(z)}\right)^{2} \text { then } \\
\prec(\beta-p \alpha)\left(q(z)+\alpha q^{2}(z)+\alpha \mathrm{z}^{\prime}(z),\right. \\
\frac{I_{p}^{\lambda+1}(a, \mathrm{c}) \mathrm{f}(\mathrm{z})}{I_{p}^{\lambda}(a, c) f(z)} \prec q(z)
\end{gathered}
$$

and q is the best dominant.
Putting $a=\mu+p+1(\mu>-(p+1))$ and $c=1$ in Theorem 1, we obtain the following corollary.
Corollary 2. Let $\alpha \neq 0, \beta>0$ and q be convex univalent in U with $\mathrm{q}(0)=1$ and (3.1) holds true. If $f, g \in A(p)$ satisfy

$$
\gamma_{1}(f, g, \alpha, \beta) \prec(\beta-(p+1) \alpha) q(z)+\alpha q^{2}(z)+\alpha z q^{\prime}(z)
$$

where

$$
\begin{align*}
& \gamma_{1}(f, g, \alpha, \beta)=(\beta-(p+1) \alpha) \frac{I_{p}^{\lambda+1, \mu} f(z)}{I_{p}^{\lambda, \mu} g(z)}+\alpha\left(\frac{I_{p}^{\lambda+1, \mu} f(z)}{I_{p}^{\lambda, \mu} g(z)}\right)^{2} \tag{3.7}\\
& \quad+\alpha(\lambda+p+1) \frac{I_{p}^{\lambda+2, \mu} f(z)}{I_{p}^{\lambda, \mu} g(z)}-\alpha(\lambda+p) \frac{I_{p}^{\lambda+1, \mu} f(z)}{I_{p}^{\lambda, \mu} g(z)}\left(\frac{I_{p}^{\lambda+1, \mu} f(z)}{I_{p}^{\lambda, \mu} g(z)}\right),
\end{align*}
$$

then

$$
\frac{I_{p}^{\lambda+1, \mu} f(z)}{I_{p}^{\lambda, \mu} g(z)} \prec q(z),
$$

and q is the best dominant.
Putting $\mathrm{a}=\mu+\mathrm{p}+1(\mu>-\mathrm{p}), \mathrm{c}=1$ and $\lambda=\mu$ in Theorem 1, we obtain the following corollary.
Corollary 3. Let $\alpha \neq 0, \beta>0$ and q be convex univalent in U with $\mathrm{q}(0)=1$ and (3.1) holds true. If $f, g \in A(p)$ satisfy

$$
\gamma_{2}(f, g, \alpha, \beta) \prec(\beta-\alpha+\alpha \mu) q(z)+\alpha q^{2}(z)+\alpha z z^{\prime}(z),
$$

where

$$
\begin{align*}
\gamma_{2}(f, g, \alpha, \beta) & =(\beta-\alpha+\alpha \mu) \frac{f(z)}{F_{\mu, p}(g)(z)}+\alpha\left(\frac{f(z)}{F_{\mu, p}(g)(z)}\right)^{2} \tag{3.8}\\
& +\alpha \frac{z f^{\prime}(z)}{F_{\mu, p}(g)(z)}-\alpha(\mu+p) \frac{\mathrm{g}(z)}{F_{\mu, p}(g)(z)} \frac{f(z)}{F_{\mu, p}(g)(z)}
\end{align*}
$$

then

$$
\frac{f(z)}{F_{\mu, p} g(z)} \prec q(z),
$$

and q is the best dominant.
Corollary 4. Let $\alpha \neq 0, \beta>0$ and q be convex univalent in U with $\mathrm{q}(0)=1$ and (3.1) holds true. If $f \in A(p)$ satisfies

$$
\gamma_{3}(f, \alpha, \beta) \prec(\beta-p \alpha) q(z)+\alpha q^{2}(z)+\alpha z q^{\prime}(z)
$$

where

$$
\gamma_{3}(f, \alpha, \beta)=(\beta-\alpha+\alpha \mu) \frac{f(z)}{F_{\mu, p}(\mathrm{f})(z)}+\alpha \frac{z f^{\prime}(z)}{F_{\mu, p}(\mathrm{f})(z)}
$$

$$
\begin{equation*}
-\alpha(\mu+p-1)\left(\frac{f(z)}{F_{\mu, p}(\mathrm{f})(z)}\right)^{2} \tag{3.9}
\end{equation*}
$$

then

$$
\frac{f(z)}{F_{\mu, p}(f)(z)} \prec q(z), \quad(\mu>-p),
$$

and q is the best dominant.

4. Superordination and sandwich results.

Theorem 2. Let $\alpha \neq 0, \beta>0$. Let q be convex univalent in U with $\mathrm{q}(0)=1$. Assume that

$$
\begin{equation*}
\operatorname{Re}\{q(z)\} \geq \operatorname{Re}\left\{\frac{p \alpha-\beta}{(1+p) \alpha}\right\} . \tag{4.1}
\end{equation*}
$$

Let $f, g \in A(p), \frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) \mathrm{g}(z)} \in H[q(0), 1] \cap Q$,Let $\gamma(f, g, \alpha, \beta)$ be univalent in U and

$$
\begin{equation*}
(\beta-p \alpha) q(z)+\alpha q^{2}(z)+\alpha z q^{\prime}(z) \prec \gamma(f, g, \alpha, \beta) \tag{4.2}
\end{equation*}
$$

where $\gamma(f, g, \alpha, \beta)$ is given by (3.3), then

$$
\begin{equation*}
q(z) \prec \frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) \mathrm{g}(z)} . \tag{4.3}
\end{equation*}
$$

and q is the best subordinant.
Proof. Let $\mathrm{p}(\mathrm{z})$ be defined by (3.4). Therefore, differentiating (3.4) with respect to z and using the identity (1.6) in the resulting equation, we have

$$
\gamma(f, g, \alpha, \beta)=(\beta-p \alpha) \mathrm{p}(z)+\alpha p^{2}(z)+\alpha z p^{\prime}(z),
$$

then

$$
(\beta-p \alpha) \mathrm{q}(z)+\alpha q^{2}(z)+\alpha z q^{\prime}(z) \prec(\beta-p \alpha) \mathrm{p}(\mathrm{z})+\alpha \mathrm{p}^{2}(\mathrm{z})+\alpha z \mathrm{p}^{\prime}(\mathrm{z})
$$

By setting $\theta(\omega)=\alpha \omega^{2}+(\beta-p \alpha) \omega$ and $\varphi(\omega)=\alpha$, it is easily observed that $\theta(\omega)$ is analytic in C. Also, $\varphi(\omega)$ is analytic in $\mathrm{C} \backslash\{0\}$ and that $\varphi(\omega) \neq 0$. Since $\mathrm{q}(\mathrm{z})$ is convex univalent, it follows that

$$
\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\varphi(q(z))}\right\}=\operatorname{Re}\left\{\frac{\beta-p \alpha}{\alpha}+2 q(z)\right\}>0 \quad(z \in U) .
$$

Now Theorem 2 follows by applying Lemma 2. D
Putting $\mathrm{f}(\mathrm{z}) \equiv \mathrm{g}(\mathrm{z})(\mathrm{z} \in \mathrm{U})$ in Theorem 2, we obtain the following corollary.
Corollary 5. Let $\alpha \neq 0, \beta \geq 1$ and q be convex univalent in U with $\mathrm{q}(0)=1$ and (4.1) holds true.
Let $f \in A(p), \frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) f(z)} \in H[q(0), 1] \cap Q$.
Let

$$
\begin{aligned}
\gamma(f, \alpha, \beta) & =(\beta-(p+1) \alpha) \frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) f(z)}+\alpha(\lambda+p+1) \frac{I_{p}^{\lambda+2}(a, c) f(z)}{I_{p}^{\lambda}(a, c) f(z)} \\
& -\alpha(\lambda+p-1)\left(\frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) f(z)}\right)^{2},
\end{aligned}
$$

be univalent in U and

$$
(\beta-p \alpha) q(z)+a q^{2}(z)+\alpha z q^{\prime}(z) \prec \gamma(f, \alpha, \beta),
$$

then

$$
q(z) \prec \frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) f(z)},
$$

and q is the best subordinant.
Putting $\mathrm{a}=\mu+\mathrm{p}+1(\mu>-(\mathrm{p}+1))$ and $\mathrm{c}=1$ in Theorem 2, we obtain the following corollary.
Corollary 6. Let $\alpha \neq 0, \beta>0$ and q be convex univalent in U with $\mathrm{q}(0)=1$ and (4.1) holds true.
Let $f, g \in A(p), \frac{I_{p}^{\lambda+1, \mu} f(z)}{I_{p}^{\lambda, \mu} g(z)} \in H[q(0), 1] \cap Q$. Let $\gamma_{1}(f, g, \alpha, \beta)$ be univalent in U and

$$
(\beta-p \alpha) q(z)+\alpha q^{2}(z)+\alpha z q^{\prime}(z) \prec(f, g, \alpha, \beta),
$$

Where $\gamma_{1}(f, g, \alpha, \beta)$ is given by (3.7), then

$$
q(z) \prec \frac{I_{p}^{\lambda+1, \mu} f(z)}{I_{p}^{\lambda, \mu} g(z)},
$$

and q is the best subordinant.
Putting $a=\mu+p+1(\mu>-(p+1)), c=1$ and $\lambda=\mu$ in Theorem 2, we obtain the following corollary.
Corollary 7. Let $\alpha \neq 0, \beta \geq 1$ and q be convex univalent in U with $q(0)=1$ and (4.1) holds true.
Let $f, g \in A(p), \frac{f(\mathrm{z})}{F_{\mu, p}(g)(z)} \in H[q(0), 1] \cap Q$. Let $\gamma_{2}(f, g, \alpha, \beta)$ be univalent in U and

$$
(\beta-p \alpha) q(z)+\alpha q^{2}(z)+\alpha z q^{\prime}(z) \prec \gamma_{2}(f, g, \alpha, \beta),
$$

Where $\gamma_{2}(f, g, \alpha, \beta)$ is given by (3.8), then

$$
\mathrm{q}(z) \prec \frac{f(z)}{F_{\mu, p}(g)(z)},
$$

and q is the best subordinant.
Putting $\mathrm{f}(\mathrm{z}) \equiv \mathrm{g}(\mathrm{z})(\mathrm{z} \in \mathrm{U})$ in Corollary 7, we obtain the following corollary .

Corollary 8. Let $\alpha \neq 0, \beta \geq 1$ and q be convex univalent in U with $\mathrm{q}(0)=1$
$\operatorname{and}(4.1)$ holds true. Let $f \in A(p), \frac{f(z)}{F_{\mu, p}(f)(\mathrm{z})} \in H[q(0), 1] \cap Q$. Let $\gamma_{3}(f, \alpha, \beta)$
be univalent in U and

$$
(\beta-p \alpha) \mathrm{q}(\mathrm{z})+\alpha \mathrm{q}^{2}(z)+\alpha z^{\prime}(z) \prec \gamma_{3}(f, \alpha, \beta)
$$

where $\gamma_{3}(f, \alpha, \beta)$ is given by (3.9),

$$
\mathrm{q}(\mathrm{z}) \prec \frac{f(z)}{F_{\mu, p}(f)(z)} \quad(\mu>-p)
$$

and q is the best subordinant.
We conclude this section by stating the following sandwich result.
Theorem 3. Let q 1 and q 2 be convex univalent in $\mathrm{U}, \alpha \neq 0$ and $\beta \geq 1$. Suppose q 2 satisfies (3.1) and q 1 satisfies (4.1). Moreover, suppose

$$
\frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) g(z)} \in H[1,1] \cap Q
$$

and $\gamma(f, g, \alpha, \beta)$ is univalent in U. If $f, g \in A(p)$ satisfy
$(\beta-p \alpha) q_{1}(z)+\alpha q_{1}^{2}(z)+\alpha z q_{1}^{\prime}(z) \prec \gamma(f, g, \alpha, \beta) \prec(\beta-p \alpha) q_{2}(z)+\alpha q_{2}^{2}(z)+\alpha z q^{\prime}(z)$,
where $\gamma(\mathrm{f}, \mathrm{g}, \alpha, \beta)$ is given by (3.3),then

$$
q_{1}(z) \prec \frac{I_{p}^{\lambda+1}(a, c) f(z)}{I_{p}^{\lambda}(a, c) g(z)} \prec q_{2}(z)
$$

and q1, q2 are, respectively, the best subordinant and the best dominant.
By making use of Corollaries 2 and 6, we obtain the following corollary.
Corollary 9. Let q1 and q2 be convex univalent in $U \alpha \neq 0$ and $\beta \geq 1$. Suppose $q 2$ satisfies (3.1) and q1 satisfies (4.1). Moreover, suppose

$$
\frac{I_{p}^{\lambda+1, \mu}(a, c) \mathrm{f}(\mathrm{z})}{I_{p}^{\lambda, \mu}(a, \mathrm{c}) \mathrm{g}(\mathrm{z})} \in H[1,1] \cap Q
$$

and $\gamma 1(\mathrm{f}, \mathrm{g}, \alpha, \beta)$ is univalent in U . If $f, g \in A(p)$ satisfy
$(\beta-p \alpha) q_{1}(z)+\alpha q_{1}{ }^{2}(\mathrm{z})+\alpha \mathrm{zq}_{1}^{\prime}(z) \prec \gamma_{1}(f, g, \alpha, \beta) \prec(\beta-p \alpha) q_{2}(z)+\alpha q_{2}{ }^{2}(\mathrm{z})+\alpha \mathrm{zq}_{2}^{\prime}(z)$,
where $\gamma_{1}(f, g, \alpha, \beta)$ is given by (3.7), then

$$
q_{1}(z) \prec \frac{I_{p}^{\lambda+1, \mu} f(z)}{I_{p}^{\lambda, \mu} g(z)} \prec q_{2}(z)(\mu>-(p+1))
$$

and q_{1}, q_{2} are, respectively, the best subordinant and the best dominant.
By making use of Corollaries 3 and 7, we obtain the following corollary.
Corollary 10. Let q_{1} and q_{2} be convex univalent in $U, \alpha \neq 0$, and $\beta \geq 1$. Suppose q_{2} satisfies (3.1) and q_{1} satisfies (4.1). Moreover, suppose

$$
\frac{f(z)}{F_{\mu}(g)(z)} \in H[1,1] \cap Q
$$

$\gamma_{2}(f, g, \alpha, \beta)$ is univalent in U . If $f, g \in A(p)$ satisfy
$(\beta-p \alpha) q_{1}(z)+\alpha q_{1}{ }^{2}(z) \alpha z q_{1}{ }^{\prime}(z) \prec \gamma_{2}(f, g, \alpha, \beta) \prec(\beta-p \alpha) q_{2}(z)+\alpha q_{2}{ }^{2}(z) \alpha z q_{2}{ }^{\prime}(z)$,
where $\gamma_{2}(\mathrm{f}, \mathrm{g}, \alpha, \beta)$ is given by (3.8), then

$$
q_{1}(z) \prec \frac{f(z)}{F_{\mu, p}(g)(z)} \prec q_{2}(z)(\mu>-p)
$$

and q_{1}, q_{2} are, respectively, the best subordinant and the best dominant.
By making use of Corollaries 4 and 8 , we obtain the following corollary.
Corollary 11. Let q_{1} and q_{2} be convex univalent in $U, \alpha \neq 0$ and $\beta \geq 1$. Suppose q_{2} satisfies (3.1) and q_{1} satisfies (4.1). Moreover, suppose

$$
\frac{f(z)}{F_{\mu, p}(f)(\mathrm{z})} \in H[1,1] \cap Q
$$

And $\gamma_{3}(f, \alpha, \beta)$ is univalent in $\mathrm{U}, f \in A(p)$ satisfies
$(\beta-\alpha) q_{1}(z)+\alpha q_{1}^{2}(z)+\alpha z_{1}^{\prime}(z) \prec \gamma_{3}(f, \alpha, \beta) \prec(\beta-\alpha) q_{2}(z)+\alpha q_{2}^{2}(z)+\alpha z_{2}^{\prime}(z)$
Where $\gamma_{3}(f, \alpha, \beta)$ is given by (3.9), then

$$
q_{1}(z) \prec \frac{f(z)}{F_{\mu, p}(f)(z)} \prec q_{2}(z) \quad(\mu>-p)
$$

and q_{1}, q_{2}, are respectively, the best subordinant and the best dominant.
Remark 2. Putting $\mathrm{p}=1$, we obtain the results obtained by] Aouf and El-ashwah [2].

References

[1] R. M. Ali, V. Ravichandran, M. H. Khan, and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. (FJMS) 15 (2004), no.1, 87-94.
[2] Aouf, M. K. and El-ashah,R.M. , Differential Sandwich Theorems for Analytic Functions Defined by Cho-Kwon-Srivastava Operator ,Anal. univ. Mariae Curie ,Polonia, Vol.LXIII (2009),17-27.
[3] Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
[4] Bulboac`a, T., A class of first-order differential superordination, Demonstratio Math. 35, no. 2 (2002), 287-292. [5] Bulboac`a, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[6] Cho, N. E., Kwon, O. S. and Srivastava, H. M., Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292 (2004), 470-483.
[7] Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.
[8] Geol, R.M. and Sohi, N.S., Anew criterion for p-valent functions, Proc. Amer. Math. Soc.78(1980),353357.
[9] Miller, S. S., Mocanu, P. T., Differential Subordination Theory and Application,Marcel Dekker ,New York,2000.
[10] Miller, S. S., Mocanu, P. T., Subordinant of differential superordinations, Complex Var. Theory Appl. 48, no.10(2003) , 815-826.
[11] Murugusundaramoorthy, G., Magesh, N., Differential subordinations and superordinations for analytic functions defined by Dziok-Srivastava linear operator, JIPAM. J. Inequal. Pure Appl. Math. 7, no. 4 (2006), Art. 152, 9 pp.
[12] Murugusundaramoorthy, G., Magesh, N., Differential sandwich theorem for analytic functions defined by Hadamard product, Ann. Univ. Mariae Curie-Skłodowska Sect. A 61 (2007), 117-127.
[13] Noor, K. I., Noor, M. A., On integral operators, J. Math. Anal. Appl. 238 (1999),341-352 .
[14] Shanmugam, T. N., Ravichandran, V. and Sivasubramanian, S., Differential sandwich theorems for same subclasses of analytic functions, Aust. J. Math. Anal. Appl. 3, no. 1 (2006), Art. 8, 11 pp.

