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Abstract 

In this paper, we solved the coupled sine-Gordon equation of fractional order. The 

fractional derivatives are described in the Caputo sense. The methods are homotopy 

analysis method (HAM) and modified decomposition method (ADM). We use the 

numerical simulation to compare these solutions.  
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1. Introduction 

       It is difficult to solve nonlinear problems actually, but we can solve it analytical-

ly. Homotopy analysis method (HAM) is applied for analytic solution. The Homotopy 

analysis method (HAM) was first proposed by Liao in his Ph.D. thesis in 1992 [1, 2]. 

This method used to solve many types of homogeneous or non homogeneous equa-

tions, nonlinear partial differential equations (PDE) in engineering and science [3-7]. 

Also, many types of PDE with HAM by others [8-22]. And the HAM solutions for 

systems of nonlinear fractional differential equations were presented by Bataineh et al 

[23]. HAM applied to linear, homogeneous one and two-dimensional fractional heat-

like subject to the Neumann boundary conditions [24]. The HAM contains a certain 

auxiliary parameter  which give us with a simple way to control the convergence 

region and the rate of convergence series of solution. In this paper, we will use Homo-

topy analysis method and modified decomposition method (in short MDM) to obtain 

the fractional solution of the coupled sine-Gordon equation.  

Also the decomposition method provides an effective procedure for analytical solu-

tion of a wide and general class of the dynamical systems representing real physical 

problems [25-30]. This method efficiently works for initial-value or boundary-value 

problems and for partial differential equations and for linear or nonlinear. A reliable 

modification of Adomian decomposition method has been done by Wazwaz.      

2. Preliminaries       

      In this paper, we shall consider the fractional order coupled sine-Gordon equa-

tions in the form 
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Which was introduced by Khusnutdinova and Pelinovsky [31]. The coupled sine-

Gordon equations generalize the Frenkel-Kontorova model [32, 33]. The system (2.1) 

by c=1 was used to describe the open states in DNA [34]. In order to solve these sys-

tem we will use the homotopy analysis method (HAM), It is one of the most effective 

method to obtain the exact solution. HAM contains an auxiliary parameter , which 

help us to adjust and control the convergence region of series solution. Also the de-

composition method for solving coupled sine-Gordon equation has been implemented. 

By using a number of initial values, The solution is calculated in the form of conver-

gent power series with easily computable components. The method performs in terms 

of simplicity, efficiency, stability and accuracy.  

3. Fractional calculus 

      In the fractional calculus the basic mathematical ideas (integral and differential 

operations of noninteger order) were developed long ago by mathematicians Leibniz 

(1695), Liouville (1834), Riemann (1892), and the attention of the engineering world 

by Oliver Heaviside in the 1890s. The first book on this theme was posted by Oldham    

and Spanier. Here we state some of definitions of fractional calculus.  

Definition 3.1. The operator 
aI  defined on the usual space ],[1 baL  by 
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 is called the Riemann-Liouville fractional integral operator of order , we mention 

the following properties for :1,0,],,[1   andbaLf  
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Definition 3.3. The Caputo sense is defined as  
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Definition 3.4. The Caputo derivative is defined as  
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Definition 3.5. For a homotopy –Maclaurin series 
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It holds the recursion formulas 
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Where 1m is an integer, and 0 is independent of the homotopy-parameter q. 
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4. (I) Fundamentals of the Homotopy analysis method 

     The basic idea of HAM, we will consider the following differential equation 

0)],([ txuN         (4.1) 

where N is nonlinear operators, x and t refer to the independent variables and u is 

known function. Liao constructs the so-called zero-order deformation equation  

)];,([),()],();,([)1( 0 ptxNtxHptxuptxLp                     (4.2) 

Where ]1,0[p  is embedding parameter, 0 is a non-zero auxiliary parameter, L is 

an auxiliary parameter, 0),( txH denotes a nonzero auxiliary function, ),(0 txu is an 

initial guess of ),( txu and ),,( ptx is an unknown function. When p=0 and p=1, it 

holds ),()1,,(),,()0,,( 0 txutxtxutx   . Thus as p increase from 0 to 1, the solu-

tion u(x, t) varies from the initial guess ),(0 txu  Expand ),,( ptx in Taylor series 

with respect to p, one has 
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If the auxiliary linear operator, auxiliary parameter , the initial guess and the aux-

iliary function are chosen, then the series () convergence at p=1 so we have  
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It must be one of the solutions of the nonlinear equation, as proved by Liao. Define 

the vector 
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Differentiate the zeroth-order deformation equation (4.2) m-times with respect to p 

then dividing them by m! and setting p=0 so we get 
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After we applying the Riemann-liouville integral operator I on both side of Eq (4.4) 

we have 

                                          )]([),( 11
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 (II) The analysis of modified decomposition method 

       We consider the coupled sine-Gordon equations (1) in the operator form 
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 represent the linear differential operators and 

)(sin),( wuwuN   represent the nonlinear operator. 

Applying the integration inverse operator  
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The Adomain decomposition method [29, 30] assumes an infinite series solution for 

the function u(x, t) and w(x, t) as  
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And 
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  (4.8) 

We can give the first few Adomian polynomials for )sin(),( wuwuN   as 
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and so on, the ret polynomial can be calculate in similar manner. Substituting the ini-

tial conditions into (3) and select the zeroth components 0u and 0w , so we obtain the 

subsequent components as 
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Wazwaz [31] proposed the construction of the zeroth component of the decomposi-

tion series in a different way. In [35], he assumed that if the zeroth component gu 0  

where the function g is divided into two parts such as 1g  and 2g  so we will have the 

modified recursive scheme as  

 

 

                                                             (4.10) 

 

Similarly, if the zeroth components gw 0 and the function g   can be divide in to 
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This type of modification helps us to solve complicate nonlinear differential equa-

tions. It avoids the unnecessary computation especially in calculation of the Adomian 

polynomials. The decomposition series (4.7) solutions are generally converge very 

rapidly in real physical problems [36]. This rapidity of this convergence means that 

few terms are required.   

5. Implementation of the methods 

Example 1. Consider the following fractional coupled sine-Gordon equation 
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Subject to initial condition  
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We adopt modified decomposition method for solving Eq. (5.1). In the light of this 

method we can write  
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And so on, in this manner the other components of the decomposition series can be 

easily obtained of which u(x, t) and w(x, t) were evaluated in a series form  
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Follow immediately with the aid of Mathematics. 
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Also with Homotopy analysis method and by using Eqs. (4.2- 4.4) we could be able to 

calculate some of the terms of the homotopy series as:- 
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 6. Numerical evaluation and discussion 

The fractional solution of the coupled sine-Gordon Eq.(5.1) have been shown in Fig. 1 

with help of 4  and 4 for the decomposition series solution of u(x,t) and w(x,t). We 

have assumed 2,5.0,1,1,5.0  kAc . We have drawn by using Mathe-

matica. 
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Fig. 1. The behavior of: (a) u(x, t) and (b) w(x, t) obtained by by ADM for coupled sine-Gordon at  

5.0,2,1,5.0,1  kcA  

Also we will represent the behavior by using the homotopy analysis method  
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Fig..2. The behavior of: (c) u(x, t) and (d) w(x, t) obtained by HAM 
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Fig.3.The comparison of the u(x, t) obtained by HAM and ADM at 2.0)(,0)(  tbta  
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Fig.4.The comparison of the u(x, t) obtained by HAM and ADM at 6.0)(,4.0)(  tdtc  
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Conclusion  

In this paper, we were used ADM and HAM for finding the fractional solution for the coupled 

sine-Gordon with the initial conditions. The approximate solution to the equations has been 

calculated without any need to linearization of the equations and any need to transformation 

techniques. This method eliminates the difficulties and huge computation work. The series 

solution can be easily computed using any mathematical symbolic package. The decomposi-

tion method is straightforward. It provides more realistic series solutions that is converge very 

rapidly in real physical problems. HAM is a very powerful and efficient technique for finding 

solutions for wide classes of nonlinear problems in the form of analytical expressions and 

displays a rapid convergence for solution. Many of the result achieved in this paper confirm 

the idea that is a powerful mathematical tool for solving different kinds of nonlinear problem 

emerging in various fields of science and engineering. HAM provides highly accurate numer-

ical solutions for nonlinear problems, in a comparison with other methods. This method 

avoids linearization and physically unrealistic assumptions        
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