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1. Introduction and Preliminaries 

The existence of equilibria is an abstract economy with compact strategy sets in ℝ𝑛  was proved by G. Debreu 

[3].  Since then many generalization of Debreu’s theorem appeared in many directions (see 

[4],[5].[12],[13],[14],[15],[16],[17],[18], and the references therein). 

The purpose of this paper is to give some new common equilibrium existence theorems for pair of non-

compact abstract economies with an uncountable number of agents with an general constraint 

correspondences and preference correspondences. Our results improve and generalize some known results in 

literature[4,11,16,18]. 

Now we give some notations and definitions that are needed in the sequel. 

Let 𝐴 be a subset of a topological space. We shall denote by  2𝐴 and 𝐴   the family of all subsets of 𝐴 and the 

closure of  𝐴 in 𝑋, respectively. If 𝐴  is a subset of a topological vector space 𝑋, we shall denote by 𝑐𝑜𝐴 and  

𝑐𝑜   𝐴 the convex hull of 𝐴 and the closed convex hull of 𝐴, respectively. 

Let 𝑋, 𝑌  be two topological spaces and 𝑇: 𝑋 → 2𝑌 be a multivalued mapping.T is said to be upper 

semicontinuous (respectively, almost upper semicontinuous) if for any 𝑥 ∈ 𝑋 and any open set V in Y with 

𝑇 𝑥 ⊂ 𝑉, there exists an open neighborhood 𝑈 𝑜𝑓 𝑥 in  𝑋 such that 𝑇(𝑧) ⊂ 𝑉 (respectively, 𝑇(𝑧) ⊂ 𝑉 ) for 

𝑧 ∈ 𝑈. Obviously, an upper semicontinuous multi- valued mapping is almost upper semicontinuous (see 

[12],[16]). T is said to be lower semicontinuous if for any open set 𝑉 in Y, the set {𝑥 ∈ 𝑋: 𝑇 𝑥 ∩ 𝑉 ≠ ∅} is 

open in 𝑋. It is clear that T is upper semicontinuous (respectively, lower semicontinuous), if and only if for 
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any open set (respectively, closed set) M in Y, the set {𝑥 ∈ 𝑋: 𝑇 𝑥 ⊂ 𝑀} is open (respectively, closed) in X. 

T is said to have open graph in 𝑋 × 𝑌 if the set { 𝑥, 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑇 𝑥 } is open in  𝑋 × 𝑌.   

An abstract and socio-economy are a family of quadruples Γ1 = (Xi; Ai , Bi ; P2i+1)i∈I and 

Γ2 = (Xi; Ai , Bi ; P2i+2)i∈I respectively, where I is a finite or an infinite set of agents, Xi is a nonempty 

topological space (a choice set), Ai , Bi : X = ∏j∈IXj → 2X i  are constraint correspondences and P2i+1, P2i+2: X →

2X i  are preference correspondences. A common equilibrium of Γ1 and Γ2 is a point 𝑥 ∈ 𝑋, such that for each 

𝑖 ∈ 𝐼, 𝑥 𝑖 ∈ 𝐵𝑖(𝑥 ) and P2i+1 𝑥  ∩ 𝐴𝑖 𝑥  = ∅; P2i+2 𝑥  ∩ 𝐴𝑖 𝑥  = ∅.  

Γ1 = (Xi; P2i+1)i∈I and Γ2 = (Xi; P2i+2)i∈I  are said to be a pair of qualitative game if for any 𝑖 ∈ 𝐼, 𝑋𝑖  is a 

strategy set of player i, and P2i+1, P2i+2: X = ∏j∈IXj → 2X i  are preference correspondences of player i.  A 

common maximal element of Γ1 and Γ2 is a point 𝑥 ∈ 𝑋, such that  P2i+1 𝑥  ∩ P2i+2 𝑥  = ∅ for all 𝑖 ∈ 𝐼.  

Lemma 1.1.[11] 

Let 𝐼 be an index set. For each 𝑖 ∈ 𝐼, let 𝑋𝑖  be a nonempty convex subset of a Hausdorff locally convex 

topological vector space 𝐸𝑖 , 𝐷𝑖 a nonempty compact subset of 𝑋𝑖  and 𝑆𝑖 , 𝑇𝑖 : 𝑋 = ∏𝐾∈𝐼XK → 2D i  are two 

multivalued mappings with the following conditions:  

(1) for any 𝑥 ∈ 𝑋, ∅ ≠ 𝑐𝑜   𝑆𝑖(𝑥) ⊂ 𝑇𝑖 𝑥 , 

(2) 𝑆𝑖  is almost upper  semicontinuous. 

Then there exists a point 𝑥 ∈ 𝐷 = ∏𝐾∈𝐼DK , such that 𝑥 𝑖 ∈ 𝑇𝑖(𝑥 ) for all 𝑖 ∈ 𝐼.  

Lemma 1.2.[18] 

Let 𝐼 be an index set. For each 𝑖 ∈ 𝐼, let 𝑋𝑖  be a nonempty convex subset of a Hausdorff locally convex 

topological vector space 𝐸𝑖 , 𝐷𝑖 a nonempty compact metrizable subset of 𝑋𝑖  and 𝑆𝑖 , 𝑇𝑖 : 𝑋 = ∏𝐾∈𝐼XK → 2D i  are 

two multivalued mappings with the following conditions:  

(1) for any 𝑥 ∈ 𝑋, ∅ ≠ 𝑐𝑜   𝑆𝑖(𝑥) ⊂ 𝑇𝑖 𝑥 , 

(2) 𝑆𝑖  is lower  semicontinuous. 

Then there exists a point 𝑥 ∈ 𝐷 = ∏𝐾∈𝐼DK , such that 𝑥 𝑖 ∈ 𝑇𝑖(𝑥 ) for all 𝑖 ∈ 𝐼.   

2. Common Equilibrium Existence Theorems 

In this section, we give some new common equilibrium existence theorems for pair of abstract economies. 

Theorem 2.1. Let  𝛤1 = (𝑋𝑖 ; 𝐴𝑖 , 𝐵𝑖 ; 𝑃2𝑖+1)𝑖∈𝐼 and 𝛤2 = (𝑋𝑖 ; 𝐴𝑖 , 𝐵𝑖 ; 𝑃2𝑖+2)𝑖∈𝐼 be a pair of generalized games 

(abstract economy), where I be any index set such that for each 𝑖 ∈ 𝐼: 

(1) 𝑋𝑖  be a nonempty convex subset of a Hausdorff locally convex topological vector space 𝐸𝑖  and 𝐷𝑖  is a 

nonempty compact subset of 𝑋𝑖 . 

(2) For all 𝑥 ∈ 𝑋 = 𝛱𝑖∈𝐼𝑋𝑖 , 𝑃2𝑖+1(𝑥) ⊂ 𝐷𝑖  and 𝑃2𝑖+2 𝑥 ⊂ 𝐷𝑖 , 𝐴𝑖 𝑥 ⊂ 𝐵𝑖 𝑥 ⊂ 𝐷𝑖 , and 𝐵𝑖(𝑥) is  

nonempty convex.  

(3) The set 𝑊𝑖 = {𝑥 ∈ 𝑋: 𝐴𝑖(𝑥) ∩ 𝑃2𝑖+1(𝑥) ≠ ∅ and 𝐴𝑖(𝑥) ∩ 𝑃2𝑖+2(𝑥) ≠ ∅    is open in 𝑋.  

 

(4) The mappings 𝐻𝑖 , 𝐺𝑖 : 𝑋 → 2𝐷𝑖 , defined by 

 

 𝐻𝑖 𝑥 = 𝐴𝑖(𝑥) ∩ 𝑃2𝑖+1 𝑥  

       and               

       𝐺𝑖 𝑥 = 𝐴𝑖 𝑥 ∩ 𝑃2𝑖+2 𝑥 , ∀𝑥 ∈ 𝑋 

       are upper semicontinuous and 𝐵𝑖 : 𝑋 → 2𝐷𝑖  is  upper semicontinuous. 

(5) For each 𝑥 ∈ 𝑊𝑖 , 𝑥𝑖 ∉ 𝑐𝑜   (𝐴𝑖(𝑥) ∩ 𝑃2𝑖+1 𝑥 ) and also 𝑥𝑖 ∉ 𝑐𝑜    𝐴𝑖 𝑥 ∩ 𝑃2𝑖+2 𝑥  .   
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Then  𝛤1 and Γ2 have a common equilibria point, i.e, there exists a point 𝑥 ∈ 𝐷 = 𝛱𝑖∈𝐼𝐷𝑖 , such that  𝑥 𝑖  ∈
𝐵𝑖(𝑥 )       ; 𝑃2𝑖+1 𝑥  ∩ 𝐴𝑖 𝑥  = ∅ and 𝑃2𝑖+2 𝑥  ∩ 𝐴𝑖 𝑥  = ∅ for all  𝑖 ∈ 𝐼.  

Proof. For each 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝑋, let 

𝑆𝑖 𝑥 =  
𝐴𝑖 𝑥 ∩ 𝑃2𝑖+1 𝑥 ,                           𝑖𝑓 𝑥 ∈ 𝑊𝑖 ,

𝐵𝑖 𝑥 ,                                                𝑖𝑓 𝑥 ∉ 𝑊𝑖 ,
  

                                       and 

𝑇𝑖 𝑥 =  
𝑐𝑜    (𝐴𝑖 𝑥 ∩ 𝑃2𝑖+1 𝑥 ),                            𝑖𝑓 𝑥 ∈ 𝑊𝑖 ,

𝐵𝑖 𝑥        ,                                                           𝑖𝑓 𝑥 ∉ 𝑊𝑖 .
  

 

Then, 𝑆𝑖 , 𝑇𝑖 : 𝑋 → 2𝐷𝑖  are two multivalued mappings with nonempty values and 𝑐𝑜   𝑆𝑖 𝑥 ⊂ 𝑇𝑖(𝑥) for all 𝑥 ∈ 𝑋. 

Now, we prove that 𝑆𝑖   is upper semicontinuous. In fact, for each open set 𝑉 in 𝐷𝑖 , the set 

 𝑥 ∈ 𝑋: 𝑆𝑖 𝑥 ⊂ 𝑉 = {𝑥 ∈ 𝑊𝑖 : 𝐴𝑖 𝑥 ∩ 𝑃2𝑖+1 𝑥 ⊂ 𝑉} ∪ 

                                                                  {𝑥 ∈ 𝑋\𝑊𝑖 : 𝐵𝑖 𝑥 ⊂ 𝑉} 

                                                               ⊂  𝑥 ∈ 𝑊𝑖 : 𝐻𝑖 𝑥 ⊂ 𝑉 ∪  𝑥 ∈ 𝑋:𝐵𝑖 𝑥 ⊂ 𝑉 . 

On the other hand, when 𝑥 ∈ 𝑊𝑖  𝑎𝑛𝑑 𝐻𝑖 𝑥 ⊂ 𝑉, we have 𝑆𝑖 𝑥 = 𝐻𝑖 𝑥 ⊂ 𝑉. When 𝑥 ∈ 𝑋 and 𝐵𝑖 𝑥 ⊂ 𝑉, 
since 𝐻𝑖 𝑥 ⊂ 𝐵𝑖 𝑥 , we know that 𝑆𝑖 𝑥 ⊂ 𝑉 and so   

 𝑥 ∈ 𝑊𝑖 : 𝐻𝑖 𝑥 ⊂ 𝑉 ∪  𝑥 ∈ 𝑋:𝐵𝑖 𝑥 ⊂ 𝑉 ⊂  𝑥 ∈ 𝑋: 𝑆𝑖 𝑥 ⊂ 𝑉 . 

Therefore, 

                       𝑥 ∈ 𝑋: 𝑆𝑖 𝑥 ⊂ 𝑉 =  𝑥 ∈ 𝑊𝑖 : 𝐻𝑖 𝑥 ⊂ 𝑉 ∪  𝑥 ∈ 𝑋: 𝐵𝑖 𝑥 ⊂ 𝑉  

                                                      = 𝑊𝑖 ∩  𝑥 ∈ 𝑋:𝐻𝑖 𝑥 ⊂ 𝑉 ∪  𝑥 ∈ 𝑋: 𝐵𝑖 𝑥 ⊂ 𝑉 . 

Since 𝐻𝑖  and 𝐵𝑖  are upper semicontinuous, the sets  𝑥 ∈ 𝑥:𝐻𝑖 𝑥 ⊂ 𝑉  and  𝑥 ∈ 𝑋: 𝐵𝑖 𝑥 ⊂ 𝑉  are open. It 

follows that  𝑥 ∈ 𝑋: 𝑆𝑖 𝑥 ⊂ 𝑉   is open and so the mapping 𝑆𝑖 : 𝑋 → 2𝐷𝑖  is upper semicontinuous. 

By Lemma 1.1, there exists a point 𝑥 ∈ 𝐷 = ∏𝑖∈𝐼 𝐷𝑖 , such that, 𝑥 𝑖 ∈ 𝑇𝑖(𝑥 ) for all 𝑖 ∈ 𝐼. By Condition (5), we 

have 𝑥 𝑖 ∈ 𝐵𝑖(𝑥 )        and 𝑃2𝑖+1 𝑥  ∩ 𝐴𝑖 𝑥  = ∅  for all  𝑖 ∈ 𝐼. 

Similarly, it can be established that for each 𝑖 ∈ 𝐼, 𝑥 𝑖 ∈ 𝐵𝑖(𝑥 )        and 𝑃2𝑖+2 𝑥  ∩ 𝐴𝑖 𝑥  = ∅, i.e.,  𝛤1 and Γ2 have 

a common equilibria point.  This completes the proof of Theorem. 

                                                                                                                                                                                                                       

Theorem 2.2. Let  𝛤1 = (𝑋𝑖 ; 𝐴𝑖 , 𝐵𝑖 ; 𝑃2𝑖+1)𝑖∈𝐼 and 𝛤2 = (𝑋𝑖 ; 𝐴𝑖 , 𝐵𝑖 ; 𝑃2𝑖+2)𝑖∈𝐼 be a pair of generalized games 

(abstract economy), such that for each 𝑖 ∈ 𝐼, the following conditions are satisfied. 

(1) 𝑋𝑖  is a nonempty convex subset of a Hausdorff locally convex  topological vector space 𝐸𝑖  and 𝐷𝑖  is a 

nonempty compact metrizable subset of 𝑋𝑖 .  

(2) For all 𝑥 ∈ 𝑋 = ∏𝑖∈𝐼 𝑋𝑖 , 𝑃2𝑖+1(𝑥) ⊂ 𝐷𝑖  and 𝑃2𝑖+2(𝑥) ⊂ 𝐷𝑖  , 𝐴𝑖(𝑥) ⊂ 𝐵𝑖(𝑥) ⊂ 𝐷𝑖  and 𝐵𝑖(𝑥) is 

nonempty convex. 

(3) The set 𝑊𝑖 = {𝑥 ∈ 𝑋: 𝐴𝑖(𝑥) ∩ 𝑃2𝑖+1(𝑥) ≠ ∅ and 𝐴𝑖(𝑥) ∩ 𝑃2𝑖+2(𝑥) ≠ ∅    is closed in 𝑋.  

(4) The mappings 𝐴𝑖 : 𝑋 → 2𝐷𝑖  (respectively, 𝑃2𝑖+1, 𝑃2𝑖+2: 𝑋 → 2𝐷𝑖) is lower semicontinuous, 𝑃2𝑖+1 , 𝑃2𝑖+2 

(respectively, 𝐴𝑖) have open graph in 𝑋 × 𝐷𝑖 , and 𝐵𝑖 : 𝑋 → 2𝐷𝑖  is lower semicontinuous. 

(5) For each 𝑥 ∈ 𝑊𝑖 , 𝑥𝑖 ∉ 𝑐𝑜   (𝐴𝑖(𝑥) ∩ 𝑃2𝑖+1 𝑥 ) and also 𝑥𝑖 ∉ 𝑐𝑜    𝐴𝑖 𝑥 ∩ 𝑃2𝑖+2 𝑥  .   

Then  𝛤1 and Γ2 have a common equilibria point, i.e, there exists a point 𝑥 ∈ 𝐷 = 𝛱𝑖∈𝐼𝐷𝑖 , such that  𝑥 𝑖  ∈
𝐵𝑖(𝑥 )       ; 𝑃2𝑖+1 𝑥  ∩ 𝐴𝑖 𝑥  = ∅ and 𝑃2𝑖+2 𝑥  ∩ 𝐴𝑖 𝑥  = ∅ for all  𝑖 ∈ 𝐼.  

Proof. For each 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝑋, let 



Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                           

ISSN: 2395-0218   

 
Volume 5, Issue 5 available at www.scitecresearch.com/journals/index.php/jprm                                                            631 

𝑆𝑖 𝑥 =  
𝐴𝑖 𝑥 ∩ 𝑃2𝑖+1 𝑥 ,                             𝑖𝑓 𝑥 ∈ 𝑊𝑖 ,

𝐵𝑖 𝑥 ,                                                 𝑖𝑓 𝑥 ∉ 𝑊𝑖 ,
  

 

                                 and 

𝑇𝑖 𝑥 =  
𝑐𝑜    (𝐴𝑖 𝑥 ∩ 𝑃2𝑖+1 𝑥 ),                             𝑖𝑓 𝑥 ∈ 𝑊𝑖 ,

 𝐵𝑖 𝑥         ,                                                          𝑖𝑓 𝑥 ∉ 𝑊𝑖 .
  

 

Then, 𝑆𝑖 , 𝑇𝑖 : 𝑋 → 2𝐷𝑖   are two multivalued mappings with nonempty values and 𝑐𝑜   𝑆𝑖 𝑥 ⊂ 𝑇𝑖(𝑥) for all 𝑥 ∈ 𝑋.  

From Condition (4) and [19, Lemma 4.2], we know that the mapping 𝐻𝑖 : 𝑋 →  2𝐷𝑖  defined by 

 𝐻𝑖 𝑥 = 𝐴𝑖 𝑥 ∩ 𝑃2𝑖+1 𝑥 , ∀𝑥 ∈ 𝑋 

is lower semicontinuous. 

Now, we prove that 𝑆𝑖   is lower semicontinuous. In fact, for each closed set 𝑉 in 𝐷𝑖 , as in the proof of 

Theorem 2.1, we have  

 𝑥 ∈ 𝑋: 𝑆𝑖 𝑥 ⊂ 𝑉 = {𝑥 ∈ 𝑊𝑖 : 𝐴𝑖 𝑥 ∩ 𝑃2𝑖+1 𝑥 ⊂ 𝑉} ∪ 

                                                                  {𝑥 ∈ 𝑋\𝑊𝑖 : 𝐵𝑖 𝑥 ⊂ 𝑉} 

                                                            =  𝑥 ∈ 𝑊𝑖 : 𝐻𝑖 𝑥 ⊂ 𝑉 ∪  𝑥 ∈ 𝑋: 𝐵𝑖 𝑥 ⊂ 𝑉  

                                                            = 𝑊𝑖 ∩  𝑥 ∈ 𝑊𝑖 : 𝐻𝑖 𝑥 ⊂ 𝑉 ∪  𝑥 ∈ 𝑋:𝐵𝑖 𝑥 ⊂ 𝑉 . 

      Since 𝐻𝑖  and 𝐵𝑖  are lower semicontinuous, the sets  𝑥 ∈ 𝑋:𝐻𝑖 𝑥 ⊂ 𝑉  and  𝑥 ∈ 𝑋:𝐵𝑖 𝑥 ⊂ 𝑉  are 

closed. It follows that   𝑥 ∈ 𝑋: 𝑆𝑖 𝑥 ⊂ 𝑉  is closed and so the mapping 𝑆𝑖 : 𝑋 → 2𝐷𝑖  is lower semicontinuous. 

 By Lemma 1.2, there exists a point 𝑥 ∈ 𝐷 = ∏𝑖∈𝐼 𝐷𝑖 , such that, 𝑥 𝑖 ∈ 𝑇𝑖(𝑥 ) for all 𝑖 ∈ 𝐼. By Condition (5), we 

have 𝑥 𝑖 ∈ 𝐵𝑖(𝑥 )        and 𝑃2𝑖+1 𝑥  ∩ 𝐴𝑖 𝑥  = ∅  for all  𝑖 ∈ 𝐼. 

Similarly, it can be established that for each 𝑖 ∈ 𝐼, 𝑥 𝑖 ∈ 𝐵𝑖(𝑥 )        and 𝑃2𝑖+2 𝑥  ∩ 𝐴𝑖 𝑥  = ∅, i.e.,  𝛤1 and Γ2 have 

a common equilibria point.  This completes the proof of Theorem. 

Theorem 2.3. Let  𝛤1 = (𝑋𝑖 ; 𝐴𝑖 , 𝐵𝑖 ; 𝑃2𝑖+1)𝑖∈𝐼 and 𝛤2 = (𝑋𝑖 ; 𝐴𝑖 , 𝐵𝑖 ; 𝑃2𝑖+2)𝑖∈𝐼 be a pair of generalized games 

(abstract economy), such that for each 𝑖 ∈ 𝐼,  the following conditions are satisfied. 

(1) 𝑋𝑖  be a nonempty convex subset of a Hausdorff locally convex topological vector space 𝐸𝑖  and 𝐷𝑖  is a 

nonempty compact subset of 𝑋𝑖 . 

(2) For all 𝑥 ∈ 𝑋 = 𝛱𝑖∈𝐼𝑋𝑖 , 𝑃2𝑖+1 𝑥 ⊂ 𝐷𝑖  and 𝑃2𝑖+2 𝑥 ⊂ 𝐷𝑖 , 𝐴𝑖 𝑥 ⊂ 𝐵𝑖 𝑥 ⊂ 𝐷𝑖 , 𝑃2𝑖+1 𝑥  and 

𝑃2𝑖+2 𝑥  are convex and 𝐵𝑖(𝑥) is  nonempty convex.  

(3) The set 𝑊𝑖 = {𝑥 ∈ 𝑋: 𝐴𝑖(𝑥) ∩ 𝑃2𝑖+1(𝑥) ≠ ∅ and 𝐴𝑖(𝑥) ∩ 𝑃2𝑖+2(𝑥) ≠ ∅    is open in 𝑋.  

(4) The mappings 𝐵𝑖 , 𝑃2𝑖+1 , 𝑃2𝑖+2: 𝑋 → 2𝐷𝑖  are almost upper semicontinuous. 

(5) For each 𝑥 ∈ 𝑊𝑖 , 𝑥𝑖 ∉ 𝐵𝑖(𝑥)       ∩ 𝑃2𝑖+1 𝑥             and also 𝑥𝑖 ∉ 𝐵𝑖(𝑥)       ∩ 𝑃2𝑖+2 𝑥 .                

Then  𝛤1 and Γ2 have a common equilibria point, i.e, there exists a point 𝑥 ∈ 𝐷 = 𝛱𝑖∈𝐼𝐷𝑖 , such that  𝑥 𝑖  ∈
𝐵𝑖(𝑥 )       ; 𝑃2𝑖+1 𝑥  ∩ 𝐴𝑖 𝑥  = ∅ and 𝑃2𝑖+2 𝑥  ∩ 𝐴𝑖 𝑥  = ∅ for all  𝑖 ∈ 𝐼.  

Proof.  For each 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝑋, let 

𝑇𝑖 𝑥 =  
𝐵𝑖(𝑥)       ∩ 𝑃2𝑖+1 𝑥             ,                          𝑖𝑓 𝑥 ∈ 𝑊𝑖 ,

𝐵𝑖(𝑥)        ,                                               𝑖𝑓 𝑥 ∉ 𝑊𝑖 .
  

   

Then, 𝑇𝑖 : 𝑋 → 2𝐷𝑖  is a  multivalued mapping with nonempty closed convex values. Since  𝐵𝑖  and 𝑃2𝑖+1 are 

two almost upper semicontinuous multivaled mappings with convex values, by [12, Lemmas 1 and 2], we 
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know that 𝐵𝑖  and 𝑃2𝑖+1
        are upper semicontinuous. Hence, 𝐵𝑖  ∩ 𝑃2𝑖+1

        is upper semicontinuous by [1, 

Proposition 3.1.7 and Theorem 3.1.8].  As in the proof the Theorem 2.1, we know that 𝑇𝑖  is upper 

semicontinuous. 

Define mapping 𝑇:𝑋 → 2𝐷 by 𝑇 𝑥 = ∏𝑖∈𝐼 𝑇𝑖 𝑥 , ∀ 𝑥 ∈ 𝑋, 

then T is an upper semicontinuous multivalued mapping with nonempty closed convex valued by [9, Lemma 

3].  Therefore, by applying Himmelberg’s fixed-point theorem [10], there exists a point  𝑥 ∈ 𝐷 = ∏𝑖∈𝐼 𝐷𝑖 , 
such that, 𝑥 𝑖 ∈ 𝑇𝑖(𝑥 ) for all 𝑖 ∈ 𝐼. By Condition (5), we have 𝑥 𝑖 ∈ 𝐵𝑖(𝑥 )        and 𝑃2𝑖+1 𝑥  ∩ 𝐴𝑖 𝑥  = ∅  for all  

𝑖 ∈ 𝐼. 

Similarly, it can be established that for each 𝑖 ∈ 𝐼, 𝑥 𝑖 ∈ 𝐵𝑖(𝑥 )        and 𝑃2𝑖+2 𝑥  ∩ 𝐴𝑖 𝑥  = ∅, i.e.,  𝛤1 and Γ2 have 

a common equilibria point.  This completes the proof of Theorem. 

Remark: In Theorem 2.1-2.3, when 𝐴𝑖 𝑥 = 𝐵𝑖 𝑥 = 𝑋𝑖  for all 𝑥 ∈ 𝑋 and 𝑖 ∈ 𝐼, we can obtain some new 

common existence theorems of maximal element for qualitative games.                                                                                                                                                                                                                                  
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