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1. Introduction 

Commonly used approaches to calculating large matrix powers require the eigenvalues of matrices, and often eigenvalue 

computation can become a demanding and tedious work [3].  Abu-Saris and Ahmad provided in their paper [1] an 

approach that makes use of polynomials to calculate large powers of matrices. Their approach does not require 

eigenvalue calculation. The approach begins with the characteristic polynomial of square matrices, and continues with 

the use of the division algorithm along with the application of Cayley-Hamilton Theorem [2, p.210].This approach 

produces a recursive algorithm for the computation of the coefficients of polynomials [1]. 

In their paper [1], Abu-Saris and Ahmad provided a detail discussion for the derivation of their recursive 

formula and the remainder polynomials. They further provided a theorem giving a relation between the recursive 

algorithm and the determinant of specific matrices whose entries formed by the coefficients of the characteristic 

polynomials of square matrices. This relation however was not proven in their article [1]. In our paper, we will use an 

elementary approach integrating mathematical induction to prove the theorem. 

Before we give the proof, let us first give the basic entities from the recursive algorithm [1]. Let’s consider, 
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 as the characteristic polynomial of a kxk matrix A.  Then, as stated in Abu-Saris and Ahmad [1], due to 

the division algorithm (A
n
=qn(A)p(A)+rn(A),n ≥ k ), and Cayley-Hamilton theorem, we have 
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where  

)1()1()( 11   nbanbnb iiki for i=0,…k-1.                                                              (1) 
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This algorithm needs only the computation of the powers of A up to k-1 to obtain the nth power of A, 

n ≥ k. One can find further details of the recursive algorithm in Abui-Saris and Ahmad [1].Here, we should 

note that the remainder polynomials, rn(x), can also be obtained from a simple long division procedure of x
n
 

by p(x). 

2. Determinant Approach for A
n
 

Abu-Saris and Ahmad [1] provided the following theorem stating determinant as a tool to calculate 

coefficients, bi(n), of 

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i xnb rather than applying the recursive algorithm given in line (1) . 

Theorem(see page 452 in [1]): if A is a kxk matrix with characteristic polynomial p(x)=
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 then for the 

remainder polynomial 
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in xnbxr ,its coefficients, bi(n), can be obtained from
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   where Ti(n) is an(n-k+1)x(n-k+1) matrix, 
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with at=0 whenever t<0. 

Proof: Let p(x) =

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 be the characteristic polynomial of a kxk matrix A, and 
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remainder polynomial for A
n
.  For the case n=k, we have the remainder polynomial, rk(x)=
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Abu-Saris and Ahmad [1]). Thus, we get 
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i xa giving us bi(k)=-ai  for i=0,…,k-1. 

For the case n=k+1, we have )()()1( 11 kbakbkb iiki   from the recursive algorithm online 

(1). Thus, integrating the case n=k yields: 

1111 )()()1(   iikiiki aaakbakbkb , for i=0,…,k-1.                                                 (2) 

Next, considering the determinant of the matrix, )1( kTi  gives us: 
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Thus,  
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Comparing the expressions in lines (2) and (3), it is clear that they are identical. 

At this point, we assume that the equation, ))(det()1()( 1 nTnb i

kn

i

 , is held for n. Next, we will 

show ))1(det()1()1( 1)1(   nTnb i

kn

i for n+1. Using the recursive algorithm in line (1), we write, 

)()()1( 11 nbanbnb iiki   .                                                                                         (4) 

If we apply the following two determinant forms for n to the recursive equation in (4), 
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Then, we obtain:  
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(6) 

Now, let’s briefly turn our attention to the minors of det(Ti(n+1)). From the cofactors expansion: 
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(7) 

we get the following two minors that can easily be verified by comparing matrices on (5) and (7) to be the 

same as det(Tk-1(n)) and det(Ti-1(n)) ( For instance, k-(n+1-k)=k-1-(n-k) ): 
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Thus, 

))(det())(det())1(det( 11 nTanTnT iiki   ,  for i=0,…,k-1                                         (8) 

Then, applying the identities on lines (5) and (8) to the equation online (6) gives us the desired equality: 
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This completes the proof. 

Example: 

The division of x
3+1

 by x
3
-2x

2
+4x-5 gives the remainder polynomial: 
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Note that if we were to evaluate the coefficients of the remainder polynomial for the division of x
3+10 

by     

x
3
-2x

2
+4x-5 then we would need the determinant of three separate matrices of size 11 by 11. For further 

discussion on this approach see [1-3]. 
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