

Volume 5, Issue 3

Published online: October 3, 2015|

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

On the Diophantine Equation $3^x + 5^y \cdot 19^z = u^2$

Xu Ai-juan¹, Deng Mou-jie^{2*}

¹ College of Information Science and Technology, Hainan University

Haikou 570228, China

Email: xaj1650404852@163.com

² College of Information Science and Technology, Hainan University

Haikou 570228, China

Email: moujie_deng@163.com

Abstract

In this paper, we study the Diophantine equation $3^x + 5^y \cdot 19^z = u^2$. Using elementary methods we show that this Diophantine equation has exactly three solutions (*x*,*y*,*z*,*u*), namely: (1,0,0,2), (4,0,1,10) and (2,2,1,22).

Keywords: Exponential Diophantine equation; elementary methods; non-negative integer solutions.

MSC 2010 Classification: 11D61.

1. Introduction

Let *a*, *b* be positive integers. The Diophantine equation of type $a^x + b^y = z^2$ have been studied by some authors[1,3,4,6-9]. In 2012, Sroysang.B^[6] showed that the only non-negative integer solution (x,y,z) to the Diophantine equation $3^x + 5^y = z^2$ is (1,0,2). In 2013, Rabago.J.F.T^[3] proved that the only non-negative integer solutions (x,y,z) to the Diophantine equations $3^x + 19^y = z^2$ and $3^x + 91^y = z^2$ are (1,0,2), (4,1,10) and (1,0,2), (2,1,10) respectively. Let *a*, *b*, *c* be positive integers. In this paper, we study a special case of the Diophantine equation of type $a^x + b^y c^z = u^2$. Using elementary methods we show that Diophantine equation $3^x + 5^y 19^z = u^2$ has exactly three non-negative integer solutions (x,y,z,u), namely: (1,0,0,2), (4,0,1,10) and (2,2,1,22). Note that in the proofs of Theorems in [1] and [6-9], the result of Mihailescu.P^[2] were used, while our proof is elementary.

2. Main result

Theorem 1. The non-negative integer solutions (x, y, z, u) to the Diophantine equation

$$3^x + 5^y 19^z = u^2 \tag{2.1}$$

are (1,0,0,2), (4,0,1,10) *and* (2,2,1,22).

Proof. We consider four cases.

Case 1 y = z = 0. In this case we obtain a solution (x, y, z, u) = (1, 0, 0, 2).

Volume 5, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm

^{*} Corresponding author

Case 2 y = 0 and z > 0. Taking modulo 19 we have $3^x \equiv u^2 \pmod{19}$, which gives

$$\left(-1\right)^{x} = \left(\frac{3}{19}\right)^{x} = \left(\frac{u}{19}\right)^{2} = 1$$

and we thus get $x = 2x_1$. From $u^2 - 3^{2x_1} = 19^y$ we have

$$2 \cdot 3^{x_1} = 19^z - 1. \tag{2.2}$$

We consider two subcases .

Subcase 2.1 z = 1. In this subcase we obtain a solution (x, y, z, u) = (4, 0, 1, 10).

Subcase 2.2 z > 1. From $19^{z} - 1 = (19 - 1)(19^{z-1} + 19^{z-2} + \dots + 19 + 1)$ we get

$$(19^{z-1}+19^{z-2}+\dots+19+1) \equiv 1+1+\dots+1+1 \equiv z \equiv 0 \pmod{3}$$

Let $z = 3z_1$.Since

$$19^{z} - 1 = (19^{3})^{z_{1}} - 1 = (19^{3} - 1) \sum_{i=0}^{z_{1}-1} (19^{3})^{i} = 2 \cdot 3^{2} \cdot 127 \sum_{i=0}^{z_{1}-1} (19^{3})^{i}$$

(2.2) has no solution.

Case 3 y > 0 and z = 0. In this case (2.1) becomes

$$3^x + 5^y = u^2. (2.3)$$

Similar to the proof of Case 2, we get $x = 2x_1$. From $3^x + 5^y \equiv 2 \pmod{4}$, $u^2 \equiv 0 \pmod{4}$ it follows that (2.3) has no solution.

Case 4 yz > 0. In this case we have

$$(u-3^{x_1})(u+3^{x_1})=5^{y}\cdot 19^{z}$$

We consider three subcases.

Subcase 4.1 $u - 3^{x_1} = 1, u + 3^{x_1} = 5^{y_1} 19^{z_2}$. In this subcase we have

$$2 \cdot 3^{x_1} = 5^y \cdot 19^z - 1. \tag{2.4}$$

Taking modulo 3, 4, 8 in turn (2.4) gives $y \equiv 0 \pmod{2}$, $z \equiv 1 \pmod{2}$ and $x_1 \equiv 0 \pmod{2}$ respectively. Finally,

from $2 \cdot 3^{x_1} \equiv 2, 3 \pmod{5}, 5^y \cdot 19^z - 1 \equiv -1 \pmod{5}$ it follows that (2.4) has no solution.

Subcase 4.2. $u - 3^{x_1} = 5^y$, $u + 3^{x_1} = 19^z$. In this subcase we have

$$2 \cdot 3^{x_1} = 19^z - 5^y. \tag{2.5}$$

Similar to the proof of subcase 4.1, taking (2.5) modulo 3, 4, 8, 5 in turn, we deduce that (2.5) has no solution.

Subcase 4.3. $u - 3^{x_1} = 19^z$, $u + 3^{x_1} = 5^y$. In this subcase we have

$$2 \cdot 3^{x_1} = 5^y - 19^z \,. \tag{2.6}$$

Taking modulo 3, 4, 8 in turn , (2.6) gives

 $y \equiv 0 \pmod{2}$, $z \equiv 1 \pmod{2}$, $x_1 \equiv 1 \pmod{2}$.

We show that $x_1 = 1$. Suppose $x_1 > 1$. If $y \equiv 0 \pmod{6}$, let

$$x_1 \equiv 1, 3, 5 \pmod{6}, z \equiv 1, 3, 5 \pmod{6}$$

taking modulo 7 (2.6) gives $x_1 \equiv 3 \pmod{6}, z \equiv 5 \pmod{6}$. Let $y \equiv 0, 6 \pmod{12}, z \equiv 5, 11 \pmod{12}$. From $2 \cdot 3^{x_1} \equiv 2 \pmod{13}$ and $5^y - 19^z \equiv 1, 3, 10, 12 \pmod{13}$ we deduce that (2.6) has no solution. If $y \equiv 2, 4 \pmod{6}$, then from

$$5^{y} \equiv 7,4 \pmod{9}, 19^{z} \equiv 1 \pmod{9}$$

we get $5^y - 19^z \equiv 6,3 \pmod{9}$. But $2 \cdot 3^{x_1} \equiv 0 \pmod{9}$, this is a contradiction. Thus $x_1 = 1$, and (2.6) becomes

$$5^{y} - 19^{z} = 6. (2.7)$$

Since $5^{6k} \equiv 1 \pmod{9}, 19^z \equiv 1 \pmod{9}$, taking modulo 9 (2.7) gives $y \equiv 2 \pmod{6}$. Then taking modulo 7 (2.7) gives $z \equiv 1 \pmod{6}$. Let

$$y \equiv 2,8 \pmod{12}, z \equiv 1,7 \pmod{12}.$$

Since

$$5^{y} \equiv 12,1 \pmod{13}, 19^{z} \equiv 6,7 \pmod{13}, 5^{y} - 19^{z} \equiv 6 \pmod{13},$$

taking (2.7) modulo 13 we obtain $y \equiv 2 \pmod{12}$, $z \equiv 1 \pmod{12}$.

Let

 $y \equiv 2,14,26,38,50 \pmod{60}, z \equiv 1,13,25,37,49 \pmod{60}.$

Because

$$5^{y} \equiv 3,9,5,4,1 \pmod{11}, 19^{z} \equiv 8,6,10,2,7 \pmod{11},$$

taking modulo 11 (2.7) gives

$$y \equiv 2 \pmod{60}, z \equiv 1 \pmod{60};$$

or

$$y \equiv 26 \pmod{60}, z \equiv 25 \pmod{60};$$

or

$$y \equiv 50 \pmod{60}, z \equiv 13 \pmod{60}.$$

Taking (2.7) modulo 31 we obtain that $y \equiv 2 \pmod{60}$, $z \equiv 1 \pmod{60}$. Let

$$y \equiv 2, 62, 122, 182, 242 \pmod{300}, z \equiv 1, 61, 121, 181, 241 \pmod{300}.$$

Because

$$5^{y} \equiv 25,92,80,52,54 \pmod{101}, 19^{z} \equiv 19,37,88,81,78 \binom{10}{2}, 19^{z} \equiv 19,37,88 \binom{10}{2}, 19^{z} \equiv 19,37 \binom{10}{2}, 19^{z} \equiv 1$$

taking (2.7) modulo 101 we obtain that $y \equiv 2 \pmod{300}$, $z \equiv 1 \pmod{300}$. Suppose y = 2+300k, z = 1+300l. From 6=25-19 and (2.7) we have

$$25(5^{300\cdot k}-1)=19(19^{300\cdot l}-1).$$

Then from $19^{300\cdot l} - 1 \equiv 0 \pmod{125}$ we get k = 0, and thereby l = 0. Thus the only solution to (2.7) is (y, z) = (2,1), which implies that the only positive integer solution to (2.1) is (2,2,1,22). This completes the proof of Theorem 1.

Corollary 1. The only nonnegative integer solution (x,y,z) to the Diophantine equation $3^x + 5^y = z^2$ is (1,0,2).

Corollary 2. The only non-negative integer solutions (x,y,z) to the Diophantine equations $3^x + 19^y = z^2$ are (1,0,2), (4,1,10).

Remark. In 1993, Scott.R ^[5] showed that if p is prime, b > 1 and c are positive integers, then except for five cases, the Diophantine equations $p^x - b^y = c$ has at most one solution. Using this result we can show that the only solution to (2.7) is (y,z) = (2,1). But the method used in [5] is not elementary.

Conclusions

In this paper, using elementary method we show that the Diophantine equation has exactly three solutions (x, y, z, u), namely: (1,0,0,2), (4,0,1,10) and (2,2,1,22). As corollaries, we get the result of Sroysang.B^[6] and part of the results of Rabago.J.F.T^[3].

References

- [1] Chotchaisthit.S. On the Diophantine equation $4^x + p^y = z^2$ where p is a prime number, American. Jr. of Mathematics and Sciences, Vol. 1, no. 1, pp. 191-193(2012)
- [2] Mihailescu.P, Primary *cycolotomic units and a proof of Catalan's conjecture*, J. Reine Angew. Math., Vol.27, pp. 167-195. (2004)
- [3] Rabago.J.F.T. On two Diophantine equations $3^x + 19^y = z^2$ and $3^x + 91^y = z^2$, International Journal of Mathematics and Scientific Computing, Vol. 3, no. 1, pp. 28-29(2013)
- [4] Rabago.J.F.T. *More on Diophantine equation* $p^x + q^y = z^2$, Int. J. of Math. and Scientific Computing, Vol. 3, no. 1, pp. 15-16(2013)
- [5] Scott.R. On the equations $p^{x} b^{y} = c$ and $a^{x} + b^{y} = c^{z}$, J. Number Theory, Vol. 44, pp. 153-165(1993).
- [6] Sroysang.B. On the Diophantine equation $3^x + 5^y = z^2$, International Journal of Pure and Applied Mathematics, Vol. 81, no. 4, pp. 605-608 (2012)
- [7] Sroysang.B. *More on the Diophantine equation* $8^x + 19^y = z^2$, International Journal of Pure and Applied Mathematics, Vol. 81, no. 4, pp. 601-604(2012)
- [8] Suvarnamani.A. Solutions of the Diophantine equation $2^{x} + p^{y} = z^{2}$, Int. J. of Mathematical Sciences and Applications, Vol. 1, no. 3, pp. 1415-1419(2011)
- [9] Suvarnamani.A. Singta.A. and Chotchaisthit.S. On two Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$, Science and Technology RMUTT J, Vol. 1, no. 1, pp. 25-28 (2011)