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Abstract 

In this paper, we apply a new integral transform ''Tarig transform'' with the differential transform method to 
solve some nonlinear differential equations .The method is based on Tarig transform and differential 
transform methods. The nonlinear terms can be easily handled by the use of differential transform method. 
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1. Introduction 

Many problems of physical interest are described by ordinary or partial differential equations with appropriate initial 

or boundary conditions, these problems are usually formulated as initial value problems or boundary value problems, 

Tarig transform method [8-13] is particularly useful for finding solutions for these problems. 

Tarig transform is a useful technique for solving linear Differential equations but this transform is totally incapable of 

handling nonlinear equations because of the difficulties that are caused by the nonlinear terms. This paper is using 

differential transforms method [5, 6, 7,] to decompose the nonlinear term, so that the solution can be obtained by 

iteration procedure. This means that we can use both Tarig transform and differential transform methods to solve 

many nonlinear problems. The main thrust of this technique is that the solution which is expressed as an infinite series 

converges fast to exact solutions. 

2. Tarig transform 

Consider functions in the set A  defined by: 

       1 2: , , 0, , 1 0,j

t
jk

A f t M k k f t M e if t
  

        
  

 

Where M a constant is must be finite number and 21,kk  can be finite or infinite. 

Tarig transform denoted by the operator  T   , is defined by the integral equation: 

                      
2

0

1
, 0, 0

t

uT f t F u f t e dt u t
u




                                           (1) 

Theorem (1) 

             Let  F u  be Tarig transform of       f t T f t F u    then: 
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   (i)  
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1
0

T u
T f t f

u u
              (ii)  

 
   4 3

1 1
0 0

F u
T f t f f

u u u
       

 

Proof 

(i) By the definition we have:  

   
2

0

1
,

t

uT f t f t e dt
u




      Integrating by parts, we get:  

                         
 

 2

1
0

T u
T f t f

u u
      

Let    ,tftg    Then:       2

1 1
0T g t T g t g

u u
         , using (i) to find that:              

 
 

   4 3

1 1
0 0

F u
T f t f f

u u u
       

          3. Differential Transform 

    Differential transform of the function  xy  is defined as follows:  

                   
 

0

1

!

k

k

x

d y x
Y k

k dx


 
  

 
                                                                                             (2) 

And the inverse differential transform of  Y k  is defined as:  

                              
0

k

k

y x Y k x




  

The main theorems of the one – dimensional differential transform are. 

Theorem (2):    If        ,w x y x z x   then      W k Y k Z x   

Theorem (3):    If     ,w x cy x  Then    W k cY k   

Theorem (4):    If   
 

,
dy x

w x
dx

  then  kW =    1 1k Y k   

Theorem (5):    If    
 

,

n

n

d y x
w x

dx
 then  

 
 

!

!

k n
W k Y k n

k


   

Theorem (6):    If       ,w x y x z x then      
0

k

r

W x Y r Z k r


   

Theorem (7):    If   ,nw x x then    
1 ,

0 ,

k n
W k k n

k n



   


 

Note that c  is a constant and n  is a  nonnegative integer. 
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4. Analysis of Differential Transform 

In this section, we will introduce a reliable and efficient algorithm to calculate the differential transform of nonlinear 

functions. 

  I /   Exponential nonlinearity:   ayeyf  . 

From the definition of transform                            

                                  0 0

0
0

ay x ay aY

x
F e e e



   
 

                                                                    (3) 

Taking a differential of   ayeyf   with respect to x ,we get:  

                            
   

 
 

dx

xdy
yaf

dx

xdy
ae

dx

ydf ay                                                                      (4) 

Application of the differential transform to Eq (4) gives:  

                                   
0

1 1 1 1
k

m

k F k a m Y m F k m


                                           (5) 

Replacing 1k  by k gives  

                              
1

0

1
1 1 , 1

k

m

m
F k a Y m F k m k

k






                                          (6) 

Then from Eqs (3) and (6), we obtain the recursive relation 

                        

 

   

0

1

0

, 0

1
1 1 , 1

aY

k

m

e k

F k m
a Y m F k M k

k





 


  
   




                             (7) 

II /   Logarithmic nonlinearity:    ln , 0.f y a by a by        

Differentiating    ln ,f y a by  with respect to x ,we get:  

                      
    

dx

xdy

bya

b

dx

xydf


 , or 

     










dx

ydf
y

dx

xdy
b

dx

ydf
a                          (8) 

By the definition of transform: 

                      
0

0 ln ln 0 ln 0
x

F a by x a by a bY


                                         (9) 

Take the differential transform of Eq.(8) to get:  

                           
0

1
1 1 1

1

k

m

m
aF k b Y k F m Y k m

k

 
       

                            (10) 

Replacing 1k  by k   yields: 

                  
1

0

1
1 1 , 1

k

m

m
a F k b Y k F m Y k m k

k





 
      

 
                           (11) 

Put 1k  into Eq.(11) to get:  
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 1 1 .
0

b
F Y

a bY



                                                                                     (12) 

For ,2k   Eq. (11) can be rewritten as  

             
 

     
2

0

1
1 1

0

k

m

b m
F k Y k F m Y k m

a bY k





 
       

                        (13) 

Thus the recursive relation is:  

 

 

 
 

 
     

2

0

ln 0 , 0

1 , 1
0

1
1 1 , 2

0

k

m

a bY k

b
F k Y k

a bY

b m
Y k F m Y k m k
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            5. Application 

In this section we solve some nonlinear differential equation by combine Tarig transform and differential transform 

method 

Example (1) 

               Consider the simple nonlinear first order differential equation.  

                                 10,2  yyy                                                                                 (14) 

First applying Tarig transform on both sides to find:  

                 
 

   2 2 2

2

1
0

Y u
y T y Y u u u T y

u u
                                                        (15) 

( )Y u  is the Tarig transform of   ty , 

The standard Tarig transformation method defines the solution  ty  by the series. 

                            

0

( )
n

y y n




                                                                                                           (16) 

Operating with Tarig inverse on both sides of Eq (15) gives: 

                        1 2 21y t T u T y   
 

                                                                                   (17) 

Substituting Eq (16) into Eq (17) we find:  

                             1 2( 1) , 0ny n T u T A n                                                                  (18) 

Where     0 1y  ,     ,
0

rnyryA
n

r

n 


  and  10 A  

For 0n  , we have:           1 2 1 3

01y T u T A T u t     

For ,1n we have:   tA 21   and     1 2 22 2y T u T t t   
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For 2n ,we haves:  
2

2 3tA   and    1 2 2 33 3y T u T t t      

The solution in a  series form is given by.                         

            2 3 1
0 1 2 3 ...... 1 .........

1
y t y y y y y t t t t

t
           


 

Example (2)  

           We consider the following nonlinear differential equation. 

                           20,2  yyy
dt

dy
                                                                                   (19) 

In a similar way we have: 

     
  2

2

2Y u
T y y

u u
       or   2 22Y u u u T y y                                                     (20) 

The inverse of Tarig transform implies that: 

                          1 2 22y t T u T y y                                                                                  (21) 

The recursive relation is given by: 

                           1 21 ( ) , 0ny n T u T y n A n                                                          (22) 

Where    ,20 y  and    rnyryA
n

r

n 
0

 

The first few components of nA  are  

           

       

2 2

0 1 2

3

0 , 2 0 1 , 2 0 2 1

2 0 3 2 1 2 , ......

A y A y y A y y y

A y y y y

   

 
 

From the recursive relation we have:  

                   

       

       

      

0

1 2 1 2

0

1 2 1 2 2

1

1 2 1 2 2 3

2

(0) 2 , 4

1 0 2 2

2 1 6 3

13
3 2 13

3

y A

y T u T y A T u T t

y T u T y A T u T t t

y T u T y A T u T t t

 

 

 

 

       

     

          

                

Then we have the following approximate solution to the initial problem. 

       

  2 3 4

0 1 2 ....

13 25 2
2 2 3 .....

3 4 2 t

y t y y y

y t t t t t
e 

   

     


 

Example (3) 

 Consider the nonlinear initial – value Problem  

                  2 4 ln , 0 , 0 1 , 0 0y x y y y y y y                                       (23)  

Applying Tarig transform to Eq (23) and using the initial conditions, we obtain. 
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                 4 2 4 lnY u u u T y y y                                                                                        (24) 

Take the inverse of Eq (24) to find:  

                   1 41 2 4 lny x T u T y y y                                                                            (25) 

The recursive relation is given by: 

                    1 41 2 4 ny n T u T y n A                                                                         (26) 

Where         mnFmyA
n

m

n 
0

 and   0 1y                                                                       (27) 

And  
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0

ln 0 , 0

1
( ) , 1

0

1
1 1 , 2

0 0

n

m

y n

y
F n n

y

y n m
F m y n m n

y ny












 




     




                              (28) 

Then we have:  

            ,000 0  AF  and     1 4 1 5 21 2 2y T u T T u x         

            ,1 2

1

2 xAxF  and     
4

1 4 22 6
2

x
y T u T x         

            ,02 4

2 xAF  and    
6

1 4 43 5
6

x
y T u T x      

Then the exact solution is:  

    22

0

64
2

!

1
....

!3!2
1 xk

k

ex
k

xx
xxy  





 

Example (4) 

                  Consider the initial –value problem of Bratu-type. 

                       000,10,02  yyxexy y
                                                (29) 

Take Tarig transform of this equation and use the initial condition to obtain:  

                    4 2 yY u u E e                                                                                                           (30) 

Take the inverse to obtain: 

                    1 4 2 yy x T u T e     . Then the recursive relation is given by:  

                       1 41 2 , (0) 0y n T u E F n y                                                              (31) 
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Where   00 y   , and  

 

   



















1,11
1

0,
1

0

0

nmnFmy
n

m

ne

nF n

m

y

                          (32) 

Then from Eqs (31) and (32) we have 

                       ,10 F and        1 4 1 5 21 2 2y T u T T u x        

                        ,1 2xF   and        
4

1 4 22 2
6

x
y T u T x      

                     4

3

2
2 xF  ,  and    1 4 4 64 2

3
3 45

y T u T x x   
   

  
 

Then the series solution is                         

                               2 4 61 2
...... 2ln cos

6 45
y x x x x x          

Conclusions 

In this paper, the exact solutions of nonlinear differential equations are obtained by using Tarig transform and 

differential transform methods. This technique is useful to solve linear and nonlinear differential equations.                    

Appendix 

Tarig transform of some functions 

   S.N0.  f t   F u  

1  1  
u  

2  t  3u  

3  ate  
21

u

au
 

4  nt  
2 1! nn u 

 

5  at    2 11 aa u    

6  sinat  3

2 41

au

a u
 

7  cosat  

2 41

u

a u
 

8  sinhat  3

2 41

au

a u
 

9  coshat   

2 41

u

a u
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