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Abstract 

 Some classes of fractional abstract differential equations with  -integrated semi groups are 

studied in Banach space. The existence of a unique solution of the nonlocal Cauchy problem is studied. 
Some properties are given.  
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1  Introduction 

Consider the following abstract fractional differential equation:  
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= ( ) ( , ( ) ( )) ( ) ( ),                            (1.1)
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with the initial condition  

       0(0) = ,                                                                             (1.2)u u  

where 10 < < kt t T  , 1,..., kc c  are real numbers, A is a linear closed operator defined on a dense set 

S in a Banach Space E,  

 1( ) = ( ( ) ,..., ( ) ), ( ), =1,...,r iB t u B t u B t u B t i r  

is a family of linear closed operators defined on dense sets 1,..., rS S S , respectively in E to E , f is a 

given abstract function defined on 
rJXE  to E, 0 < 1   , 0u  is a given element in S and s is a real 

function , which has continuous derivative  
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It is assumed that A generates  - times integrated semi groups Q(t), 0t   with the following Properties: 

  1 : ( ) : 0C Q t t  is family of strongly continuous operator. 

  2C : There exist positive constants M and c such that ( ) ctQ t Me  , where    is the norm in E. 

  3C : The interval ( , )c   is contained in the resolvent set ( )A  of A and, 

  

1

4
0

: ( ) = ( )tC I A e Q t dt  


   ,  for all > c  , 

(I is the identity operator), 0 < 1   ,([1-9]). 

Let ( )SC J  be the set of all continuous functions u on J with values in S. By a strong Solution of the 

Cauchy problem (1.1), (1.2), we mean a function u such that:  

 ( ),Su C J  
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u satisfies the following equation :  
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Where (.)  is the gamma function. In section 2, we shall consider the linear case. In other words when f 

depends only on t. In this case the solution can be obtained in a closed form. Also the stability of solutions 

can be established. In section 3, we shall solve equation (1.3) under suitable conditions on f and the 

operators 1, , rB B . 

It is assumed that: 

5 2 1

1

: ( ) ( )i c

K
C B t Q t h h

t
   , for all 1 > 0,t h E , 

6 1: ( ) , , ( )rC B t h B t h  are uniformly Holder in t J  for all 
ii

h S . 

It is assumed also that there exists a function g such that: 
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(This means that f(0,w)=0 , =
d f

g
dt




 exists ) , where g  is continuous on JXE, with the following 

properties: 

8 :C  g  satisfies a uniform Holder condition in t J  and a Lipschitz condition with respect to 

1( ) , , ( )rB t u B t u . There are many important applications of the theory of integrated semi groups and the 

nonlocal Cauchy problem for fractional differential equation. The applications can be found in the theory of 

quantum mechanics and the theory of elasticity. [1-8].  

2  The linear case 

 Let us consider the case when f depends only on t. Denote by 
1( )t  and 

2 ( )t  the following operator - 

valued functions:  

 1
0

( ) = ( ) ( ) ,t d dt Q t d  
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Where   is a probability density function defined on (0, )  , see [9]. 

It is clear that 
1

2( )t Kt    on (0, ]T , for some constant < 0K . 

Let us suppose that 
=1

1
| |<

k

ii
c

KMT  , where = | ( ) |sup
J

M r t . Under this condition and the properties 

of the operators Q, 
2  , one gets  
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 Theorem 1. If g is continuous on J and is an element of S for every t in J and if 0u  is an element in the 

domain of definition of the operator 
2A , then the strong solution of (1.3) is given by  
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  is the inverse bonded operator:  
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Proof. Using our previous results [9-16], and the conditions (
1C )-(

4C ) , we can write  
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Using the facts:  
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for all continuous f such that f(0)=0 , 0 <1 , one gets:  
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From (2.2) and (2.3), we deduce that u satisfies the conditions (I), (II) and (III). Now it is easy to see that the 

considered strong solution is unique and more over the Cauchy problem (1.3) is correctly formulated. Is 

other words: If 0 0u Au g є        , for sufficiently small > 0є , then u Kє  , for some 

constant positive constant K.  

3  The Nonlinear case 

Let V satisfy (formally), the following equation:  
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Thus we can write formally  

 1 0 2
0

( ) = ( ) ( ) ( ) .                                    (3.1)
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u t t u t V d       

We shall solve the following equation:  
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Theorem 2. If equation (1.3) has a strong solution, then that solution is unique.  

Proof. Set  
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where 1u  and 2u  are two solutions of equation (1.3) . 

Using conditions ( 5C  ),( 6C  ) and ( 8C  ) ,one gets:  
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Where = (1 )c    and M is a positive constant Set 1 2= [ ( ) ( )]max
bt

J e V t V t    , where b is a 

sufficiently large positive number. It is easy to see that:  
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Thus for some positive constant M and for sufficiently large b, one gets v  , where 
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= (1 ) [1 1 ] <1v M b   . This means that 
1 2( ) = ( )V t V t  on J ,so 

1 2( ) = ( )u t u t  on J .  

Theorem 3. Equation (1.3) has a strong unique solution.  

  

Proof. The uniqueness is already proved. Let us prove the existence. Using the method of successive 

approximations, we set  
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So  

 
1 1 0[ ( ) ( )] [ ( ) ( )]max

bt n bt

n n
J

e V t V t v e V t V t 
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Where 0 ( )V t  is the zero approximation, which can be taken the zero element in E. 

Thus the sequence ( )nV t  uniformly converges in the space ( )EC J  to a continuous function V 

(t), which satisfies equation (3.2). Since ( )EV C J ,it follows that ( )Eu C J , where u is given by 

equation (3.1). To prove that ( )u t S  , for all t J  , it suffices to prove that V satisfies a uniform 

Holder condition. Using similar arguments as in [10,15], we see that V satisfies a uniform Holder condition, 

[Comp 17 -29]. This completes the proof of the theorem.  

Conclusion 

Using the theory of  -integrated semigroups, we have proved existence and uniqueness theorems 

for general abstract fractional nonlinear differential equations in Banach space. We have got 

generalizations of some of our old results. 
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