

Volume 5, Issue 4

Published online: October 16, 2015|

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Direct and Inverse Estimates For Combinations of Bernstein Polynomials with Endpoint Singularities

Wen-Ming Lu

School of Science, Hangzhou Dianzi Unviersity, Hangzhou, 310018 P.R. China.

Abstract. We give direct and inverse theorems for the weighted approximation of functions with endpoint singularities by combinations of Bernstein polynomials by the *r*th Ditzian-Totik modulus of smoothness $\omega_{\phi}^{r}(f, t)_{w}$ where ϕ is an admissible step-weight function.

Key words and phrases. Bernstein polynomials; Endpoint singularities; Pointwise approximation; Direct and inverse theorems.

1. Introduction

The set of all continuous functions, defined on the interval *I*, is denoted by C(I). For any $f \in C([0, 1])$, the corresponding Bernstein operators are defined as follows:

$$B_n(f,x) := \sum_{k=0}^n f(\frac{k}{n}) p_{n,k}(x),$$

Where

$$p_{n,k}(x) := \binom{n}{k} x^k (1-x)^{n-k}, \ k = 0, 1, 2, \dots, n, \ x \in [0, 1].$$

Approximation properties of Bernstein operators have been studied very well (see [2], [4], [5]-[9], [14]-[16], for example). In order to approximate the functions with singularities, Della Vecchia et al. [4] and Yu-Zhao [14] introduced some kinds of *modified Bernstein operators*. Throughout the paper, C denotes a positive constant independent of n and x, which may be different in different cases.

Ditzian and Totik [5] extended the method of combinations and defined the following combinations of Bernstein operators:

$$B_{n,r}(f,x) := \sum_{i=0}^{r-1} C_i(n) B_{n_i}(f,x),$$

with the conditions:

(a) $n = n_0 < n_1 < \dots < n_{r-1} \leq Cn$,

(b)
$$\sum_{i=0}^{r-1} |C_i(n)| \leq C$$
,

- (c) $\sum_{i=0}^{r-1} C_i(n) = 1$,
- (d) $\sum_{i=0}^{r-1} C_i(n) n_i^{-k} = 0$, for $k = 1, \dots, r-1$.

Now, we can define our new combinations of Bernstein operators as follows:

(1.1)
$$B_{n,r}^{*}(f,x) := B_{n,r}(F_n,x) = \sum_{i=0}^{r-1} C_i(n) B_{n_i}(F_n,x),$$

where $C_i(n)$ satisfy the conditions (a)-(d). For the details, it can be referred to [13].

Let $\varphi(x) = \sqrt{x(1-x)}$ and let $\phi : [0,1] \longrightarrow R$, $\phi \neq 0$ be an admissible step-weight function of the Ditzian-Totik modulus of smoothness, that is, ϕ satisfies the following conditions:

- (I) For every proper subinterval $[a, b] \subseteq [0, 1]$ there exists a constant $M_1 \equiv M(a, b) > 0$ Such that $M_1^{-1} \leq \phi(x) \leq M_1$ for $x \in [a, b]$.
- (II) There are two numbers $\beta(0) \ge 0$ and $\beta(1) \ge 0$ for which

$$\phi(x) \sim \begin{cases} x^{\beta(0)}, & \text{as } x \to 0+, \\ (1-x)^{\beta(1)}, & \text{as } x \to 1-. \end{cases}$$

 $(X \sim Y \text{ which means } C^{-1}Y \leqslant X \leqslant CY \text{ for some } C).$

Combining condition (I) and (II) on ϕ ; we can deduce that

$$M^{-1}\phi_2(x) \leqslant \phi(x) \leqslant M\phi_2(x), x \in [0, 1],$$

Where $\phi_2(x) = x^{\beta(0)}(1-x)^{\beta(1)}$, and M is a positive constant independent of x.

Let

$$w(x) = x^{\alpha}(1-x)^{\beta}, \ \alpha, \ \beta \ge 0, \ \alpha+\beta > 0, \ 0 \le x \le 1.$$

and

$$C_w := \{ f \in C((0,1)) : \lim_{x \to 1} (wf)(x) = \lim_{x \to 0} (wf)(x) = 0 \}.$$

The norm in C_w is defined by $||wf||_{C_w} := ||wf|| = \sup_{0 \le x \le 1} |(wf)(x)|$. Define

$$\begin{split} W^r_\phi &:= \{ f \in C_w : f^{(r-1)} \in A.C.((0,1)), \ \|w\phi^r f^{(r)}\| < \infty \}, \\ W^r_{\varphi,\lambda} &:= \{ f \in C_w : f^{(r-1)} \in A.C.((0,1)), \ \|w\varphi^{r\lambda} f^{(r)}\| < \infty \}. \end{split}$$

For $f \in C_w$, define the weighted modulus of smoothness by

$$\omega_{\phi}^{r}(f,t)_{w} := \sup_{0 < h \leq t} \{ \| w \Delta_{h\phi}^{r} f \|_{[16h^{2}, 1-16h^{2}]} + \| w \overrightarrow{\Delta}_{h}^{r} f \|_{[0,16h^{2}]} + \| w \overleftarrow{\Delta}_{h}^{r} f \|_{[1-16h^{2}, 1]} \},$$

where

$$\begin{split} \Delta_{h\phi}^r f(x) &= \sum_{k=0}^r (-1)^k \binom{r}{k} f(x + (\frac{r}{2} - k)h\phi(x)),\\ \overrightarrow{\Delta}_h^r f(x) &= \sum_{k=0}^r (-1)^k \binom{r}{k} f(x + (r - k)h),\\ \overleftarrow{\Delta}_h^r f(x) &= \sum_{k=0}^r (-1)^k \binom{r}{k} f(x - kh). \end{split}$$

Recently Felten showed the following two theorems in [6]:

Theorem A. Let $\varphi(x) = \sqrt{x(1-x)}$ and let $\phi : [0,1] \longrightarrow R$, $\phi \neq 0$ be an admissible stepweight function of the Ditzian-Totik modulus of smoothness([5]) such that ϕ^2 and φ^2/ϕ^2 are concave. Then, for $f \in C[0,1]$ and $0 < \alpha < 2$, $|B_n(f,x) - f(x)| \leq \omega_{\phi}^2(f, n^{-1/2}\frac{\varphi(x)}{\phi(x)})$. **Theorem B.** Let $\varphi(x) = \sqrt{x(1-x)}$ and let $\phi : [0,1] \longrightarrow R$, $\phi \neq 0$ be an admissible stepweight function of the Ditzian-Totik modulus of smoothness([5]) such that ϕ^2 and φ^2/ϕ^2 are concave. Then, for $f \in C[0,1]$ and $0 < \alpha < 2$, $|B_n(f,x) - f(x)| = O((n^{-1/2}\frac{\varphi(x)}{\phi(x)})^{\alpha})$ implies $\omega_{\phi}^2(f,t) = O(t^{\alpha})$.

Our main results are the following:

Theorem 2. 1. For any α , $\beta > 0$, $\min\{\beta(0), \beta(1)\} \ge \frac{1}{2}$, $f \in C_w$, we have (2.1) $|w(x)\phi^r(x)B_{n,r-1}^{*(r)}(f,x)| \le Cn^{\frac{r}{2}} ||wf||.$

Theorem 2.2. For any α , $\beta > 0$, $f \in W^r_{\phi}$, we have

(2.2)
$$|w(x)\phi^r(x)B_{n,r-1}^{*(r)}(f,x)| \leq C ||w\phi^r f^{(r)}||.$$

Theorem 2.3. For $f \in C_w$, α , $\beta > 0$, $\min\{\beta(0), \beta(1)\} \ge \frac{1}{2}$, we have (2.3) $w(x)|f(x) - B^*_{n,r-1}(f,x)| = O((n^{-\frac{1}{2}}\phi^{-1}(x)\delta_n(x))^{\alpha_0}) \iff \omega^r_{\phi}(f,t)_w = O(t^{\alpha_0}),$

where $\alpha_0 \in (0, r)$.

3. LEMMAS

Lemma 3.1. ([15]) For any non-negative real u and v, we have

(3.1)
$$\sum_{k=1}^{n-1} (\frac{k}{n})^{-u} (1-\frac{k}{n})^{-v} p_{n,k}(x) \leq C x^{-u} (1-x)^{-v}.$$

Lemma 3.2. ([4]) If $\gamma \in R$, then

(3.2)
$$\sum_{k=0}^{n} |k - nx|^{\gamma} p_{n,k}(x) \leq C n^{\frac{\gamma}{2}} \varphi^{\gamma}(x).$$

Lemma 3.3. For any $f \in W^r_{\phi}$, α , $\beta > 0$, we have

$$||w\phi^r F_n^{(r)}|| \leq C ||w\phi^r f^{(r)}||.$$

Proof. By symmetry, we only prove the above result when $x \in (0, 1/2]$, the others can be done similarly. Obviously, when $x \in (0, 1/n]$, by [5], we have

$$\begin{aligned} |L_r^{(r)}(f,x)| &\leqslant C |\overrightarrow{\Delta}_{\frac{1}{r}}^r f(0)| \leqslant C n^{-\frac{r}{2}+1} \int_0^{\frac{r}{n}} u^{\frac{r}{2}} |f^{(r)}(u)| du \\ &\leqslant C n^{-\frac{r}{2}+1} \|w\phi^r f^{(r)}\| \int_0^{\frac{r}{n}} u^{\frac{r}{2}} w^{-1}(u) \phi^{-r}(u) du. \end{aligned}$$

So

$$|w(x)\phi^r(x)F_n^{(r)}(x)|\leqslant C\|w\phi^rf^{(r)}\|$$

If $x \in [\frac{1}{n}, \frac{2}{n}]$, we have

$$\begin{aligned} |w(x)\phi^{r}(x)F_{n}^{(r)}(x)| &\leq |w(x)\phi^{r}(x)f^{(r)}(x)| + |w(x)\phi^{r}(x)(f(x) - F_{n}(x))^{(r)}| \\ &:= I_{1} + I_{2}. \end{aligned}$$

For I_2 , we have

$$f(x) - F_n(x) = (\psi(nx-1) + 1)(f(x) - L_r(f, x)).$$

$$w(x)\phi^r(x)|(f(x) - F_n(x))^{(r)}| = w(x)\phi^r(x)\sum_{i=0}^r n^i|(f(x) - L_r(f, x))^{(r-i)}|.$$

By [5], then

$$|(f(x) - L_r(f, x))^{(r-i)}|_{[\frac{1}{n}, \frac{2}{n}]} \leq C(n^{r-i} ||f - L_r||_{[\frac{1}{n}, \frac{2}{n}]} + n^{-i} ||f^{(r)}||_{[\frac{1}{n}, \frac{2}{n}]}), \ 0 < j < r.$$

Now, we estimate

(3.4)
$$I := w(x)\phi^{r}(x)|f(x) - L_{r}(x)|.$$

By Tailor expansion, we have

(3.5)
$$f(\frac{i}{n}) = \sum_{u=0}^{r-1} \frac{(\frac{i}{n} - x)^u}{u!} f^{(u)}(x) + \frac{1}{(r-1)!} \int_x^{\frac{i}{n}} (\frac{i}{n} - s)^{r-1} f^{(r)}(s) ds,$$

It follows from (3.5) and the identities

Journal of Progressive Research in Mathematics(JPRM) ISSN: 2395-0218

$$\sum_{i=1}^{r} (\frac{i}{n})^{v} l_{i}(x) = Cx^{v}, \ v = 0, 1, \cdots, r.$$

We have

$$\begin{split} L_r(f,x) &= \sum_{i=1}^r \sum_{u=0}^{r-1} \frac{(\frac{i}{n} - x)^u}{u!} f^{(u)}(x) l_i(x) + \frac{1}{(r-1)!} \sum_{i=1}^r l_i(x) \int_x^{\frac{i}{n}} (\frac{i}{n} - s)^{r-1} f^{(r)}(s) ds \\ &= f(x) + \sum_{u=1}^{r-1} f^{(u)}(x) (\sum_{v=0}^u C_u^v(-x)^{u-v} \sum_{i=1}^r (\frac{i}{n})^v l_i(x)) \\ &+ \frac{1}{(r-1)!} \sum_{i=1}^r l_i(x) \int_x^{\frac{i}{n}} (\frac{i}{n} - s)^{r-1} f^{(r)}(s) ds, \end{split}$$

Which implies that

$$w(x)\phi^{r}(x)|f(x) - L_{r}(f,x)| = \frac{1}{(r-1)!}w(x)\phi^{r}(x)\sum_{i=1}^{r}l_{i}(x)\int_{x}^{\frac{1}{n}}(\frac{i}{n}-s)^{r-1}f^{(r)}(s)ds,$$

Since $|l_i(x)| \leq C$ for $x \in [0, \frac{2}{n}], i = 1, 2, \cdots, r$.

It follows from $\frac{|\frac{i}{n}-s|^{r-1}}{w(s)} \leqslant \frac{|\frac{i}{n}-x|^{r-1}}{w(x)}$, s between $\frac{i}{n}$ and x, then

$$\begin{split} w(x)\phi^{r}(x)|f(x) - L_{r}(f,x)| &\leqslant Cw(x)\phi^{r}(x)\sum_{i=1}^{r}\int_{x}^{\frac{i}{n}}(\frac{i}{n}-s)^{r-1}|f^{(r)}(s)|ds\\ &\leqslant C\phi^{r}(x)\|w\phi^{r}f^{(r)}\|\sum_{i=1}^{r}\int_{x}^{\frac{i}{n}}(\frac{i}{n}-s)^{r-1}\phi^{-r}(s)ds\\ &\leqslant \frac{C}{n^{r}}\|w\phi^{r}f^{(r)}\|. \end{split}$$

Thus $I \leq C \|w\phi^r f^{(r)}\|$. So we get $I_2 \leq C \|w\phi^r f^{(r)}\|$. Above all, we have

$$|w(x)\phi^{r}(x)F_{n}^{(r)}(x)| \leq C ||w\phi^{r}f^{(r)}||.$$

Lemma 3.4. If $f \in W_{\phi}^r$, α , $\beta > 0$, then

$$(3.6) |w(x)(f(x) - L_r(f, x))|_{[0, \frac{2}{n}]} \leq C(\frac{o_n(x)}{\sqrt{n}\phi(x)})^r ||w\phi^r f^{(r)}||$$

(3.7)
$$|w(x)(f(x) - R_r(f, x))|_{[1-\frac{2}{n}, 1]} \leq C(\frac{\delta_n(x)}{\sqrt{n\phi(x)}})^r ||w\phi^r f^{(r)}||$$

Proof. By Taylor expansion, we have

$$(3.8) \quad f(\frac{i}{n}) = \sum_{u=0}^{r-1} \frac{(\frac{i}{n} - x)^u}{u!} f^{(u)}(x) + \frac{1}{(r-1)!} \int_x^{\frac{i}{n}} (\frac{i}{n} - s)^{r-1} f^{(r)}(s) ds,$$

It follows from (3.8) and the identities

Journal of Progressive Research in Mathematics(JPRM) ISSN: 2395-0218

$$\sum_{i=1}^{r-1} (\frac{i}{n})^{v} l_{i}(x) = Cx^{v}, \ v = 0, 1, \dots, r.$$

we have

$$\begin{split} L_r(f,x) &= \sum_{i=1}^r \sum_{u=0}^{r-1} \frac{(\frac{i}{n} - x)^u}{u!} f^{(u)}(x) l_i(x) + \frac{1}{(r-1)!} \sum_{i=1}^r l_i(x) \int_x^{\frac{i}{n}} (\frac{i}{n} - s)^{r-1} f^{(r)}(s) ds \\ &= f(x) + \sum_{u=1}^{r-1} f^{(u)}(x) (\sum_{v=0}^u C_u^v(-x)^{u-v} \sum_{i=1}^r (\frac{i}{n})^v l_i(x)) \\ &+ \frac{1}{(r-1)!} \sum_{i=1}^r l_i(x) \int_x^{\frac{i}{n}} (\frac{i}{n} - s)^{r-1} f^{(r)}(s) ds, \end{split}$$

Which implies that

$$w(x)|f(x) - L_r(f,x)| = \frac{1}{(r-1)!}w(x)\sum_{i=1}^r l_i(x)\int_x^{\frac{i}{n}}(\frac{i}{n}-s)^{r-1}f^{(r)}(s)ds,$$

Since $|l_i(x)| \leq C$ for $x \in [0, \frac{2}{n}], i = 1, 2, \cdots, r$.

It follows from
$$\frac{|\frac{i}{n}-s|^{r-1}}{w(s)} \leq \frac{|\frac{i}{n}-x|^{r-1}}{w(x)}$$
, s between $\frac{i}{n}$ and x , then

$$\begin{aligned} w(x)|f(x) - L_r(f,x)| &\leq Cw(x)\sum_{i=1}^r \int_x^{\frac{i}{n}} (\frac{i}{n}-s)^{r-1}|f^{(r)}(s)|ds \\ &\leq C\frac{\varphi^r(x)}{\phi^r(x)} \|w\phi^r f^{(r)}\| \sum_{i=1}^r \int_x^{\frac{i}{n}} (\frac{i}{n}-s)^{r-1}\varphi^{-r}(s)ds \\ &\leq C(\frac{\delta_n(x)}{\phi^r(x)} \|w\phi^r f^{(r)}\| \sum_{i=1}^r \int_x^{\frac{i}{n}} (\frac{i}{n}-s)^{r-1}\varphi^{-r}(s)ds \\ &\leq C(\frac{\delta_n(x)}{\sqrt{n}\phi(x)})^r \|w\phi^r f^{(r)}\|.\end{aligned}$$

The proof of (3.7) can be done similarly.

Lemma 3.5. ([13]) For every α , $\beta > 0$, we have

$$\|wB_{n,r-1}^{*}(f)\| \leq C \|wf\|.$$

Lemma 3.6. ([17]) Let $\min\{\beta(0), \beta(1)\} \ge \frac{1}{2}$, then $r \in N$, $0 < t < \frac{1}{8r}$ and $\frac{rt}{2} < x < 1 - \frac{rt}{2}$, we have

(3.10)
$$\int_{-\frac{t}{2}}^{\frac{t}{2}} \cdots \int_{-\frac{t}{2}}^{\frac{t}{2}} \phi^{-r}(x + \sum_{k=1}^{r} u_k) du_1 \cdots du_r \leqslant Ct^r \phi^{-r}(x).$$

Lemma 3.7. ([10]) Let α , $\beta > 0$, for any $f \in C_w$, we have

$$\|wB_{n,r-1}^{*(r)}(f)\| \leq Cn^{r} \|wf\|.$$

4. Proof of Theorems

4.1. Proof of Theorem 2.1. When $f \in C_w, \min \{\beta(0), \beta(1)\} \ge \frac{1}{2}$, we discuss it as follows:

Case 1. If $0 \leq \varphi(x) \leq \frac{1}{\sqrt{n}}$, by (3.11), we have

(4.1)

$$|w(x)\phi^{r}(x)B_{n,r-1}^{*(r)}(f,x)| = C\varphi^{r}(x)\frac{\phi^{r}(x)}{\varphi^{r}(x)}|w(x)B_{n,r-1}^{*(r)}(f,x)|$$

$$\leq Cn^{\frac{r}{2}}||wf||.$$

Case 2. If $\varphi(x) > \frac{1}{\sqrt{n}}$, we have

$$|B_{n,r-1}^{*(r)}(f,x)| = |B_{n,r-1}^{(r)}(F_n,x)| \leq (\varphi^2(x))^{-r} \sum_{i=0}^{r-2} \sum_{j=0}^r Q_j(x,n_i) C_i(n) n_i^j \sum_{k=0}^{n_i} |(x-\frac{k}{n_i})^j F_n(\frac{k}{n_i})| p_{n_i,k}(x),$$

By [5], we have

$$Q_j(x, n_i) = (n_i x(1-x))^{\left[\frac{r-j}{2}\right]}$$
, and $(\varphi^2(x))^{-r} Q_j(x, n_i) n_i^j \leq C(n_i/\varphi^2(x))^{\frac{r+j}{2}}$.

So

$$\begin{split} \|w(x)\phi^{r}(x)B_{n,r-1}^{*(r)}(f,x)\| \\ \leqslant Cw(x)\phi^{r}(x)\sum_{i=0}^{r-2}\sum_{j=0}^{r}(\frac{n_{i}}{\varphi^{2}(x)})^{\frac{r+j}{2}}\sum_{k=0}^{n_{i}}|(x-\frac{k}{n_{i}})^{j}F_{n}(\frac{k}{n_{i}})|p_{n_{i},k}(x) \\ \leqslant Cw(x)\phi^{r}(x)\|wf\|\sum_{i=0}^{r-2}\sum_{j=0}^{r}(\frac{n_{i}}{\varphi^{2}(x)})^{\frac{r+j}{2}}\{\sum_{k=0}^{n_{i}}(x-\frac{k}{n_{i}})^{2j}\}^{\frac{1}{2}} \cdot \\ \{\sum_{k=0}^{n_{i}}w^{-2}(\frac{k}{n_{i}})p_{n_{i},k}(x)\}^{\frac{1}{2}} \\ \leqslant Cn^{\frac{r}{2}}\|wf\|. \end{split}$$

$$(4.2)$$

It follows from combining with (4.1) and (4.2) that the theorem is proved.

4.2. Proof of Theorem 2.2. When $f \in W^r_{\phi}$, by [5], we have

(4.3)
$$B_{n,r-1}^{(r)}(F_n,x) = \sum_{i=0}^{r-2} C_i(n) n_i^r \sum_{k=0}^{n_i-r} \overrightarrow{\Delta}_{\frac{1}{n_i}}^r F_n(\frac{k}{n_i}) p_{n_i-r,k}(x).$$

If $0 < k < n_i - r$, we have

(4.4)
$$|\overrightarrow{\Delta}_{\frac{1}{n_i}}^r F_n(\frac{k}{n_i})| \leq C n_i^{-r+1} \int_0^{\frac{r}{n_i}} |F_n^{(r)}(\frac{k}{n_i}+u)| du,$$

If k = 0, we have

(4.5)
$$|\overrightarrow{\Delta}_{\frac{1}{n_i}}^r F_n(0)| \leq C \int_0^{\frac{r}{n_i}} u^{r-1} |F_n^{(r)}(u)| du,$$

Similarly

(4.6)
$$|\overrightarrow{\Delta}_{\frac{1}{n_i}}^r F_n(\frac{n_i - r}{n_i})| \leq C n_i^{-r+1} \int_{1 - \frac{r}{n_i}}^1 (1 - u)^{\frac{r}{2}} |F_n^{(r)}(u)| du.$$

By (4.3)-(4.6), we have

$$(4.7) \qquad \qquad |w(x)\phi^{r}(x)B_{n,r-1}^{*(r)}(f,x)| \\ \leqslant Cw(x)\phi^{r}(x)\|w\phi^{r}F_{n}^{(r)}\|\sum_{i=0}^{r-2}\sum_{k=0}^{n_{i}-r}(w\phi^{r})^{-1}(\frac{k^{*}}{n_{i}})p_{n_{i}-r,k}(x),$$

If $k^* = 1$ for k = 0, $k^* = n_i - r - 1$ for $k = n_i - r$ and $k^* = k$ or $1 < k < n_i - r$. By (3.1), we have

$$\sum_{k=0}^{n_i-r} (w\phi^r)^{-1} (\frac{k^*}{n_i}) p_{n_i-r,k}(x) \leqslant C(w\phi^r)^{-1}(x).$$

which combining with (4.7) give

$$|w(x)\phi^{r}(x)B_{n,r-1}^{*(r)}(f,x)| \leq C ||w\phi^{r}f^{(r)}||.\Box$$

Combining with the theorem 2.1 and theorem 2.2, we can obtain

Corollary. For any α , $\beta > 0$, $0 \le \lambda \le 1$, we have

(4.8)

$$|w(x)\varphi^{r\lambda}(x)B_{n,r-1}^{*(r)}(f,x)| \leqslant \begin{cases} Cn^{r/2}\{max\{n^{r(1-\lambda)/2},\varphi^{r(\lambda-1)}(x)\}\} \|wf\|, & f \in C_w, \\ C\|w\varphi^{r\lambda}f^{(r)}\|, & f \in W_{w,\lambda}^r. \end{cases}$$

4.3 Proof of Theorem 2.3.

4.3.1. The direct theorem. We know

(4.9)
$$F_n(t) = F_n(x) + F'_n(t)(t-x) + \dots + \frac{1}{(r-1)!} \int_x^t (t-u)^{r-1} f^{(r)}(u) du,$$

(4.10)
$$B_{n,r-1}((\cdot - x)^k, x) = 0, \ k = 1, 2, \cdots, r-1.$$

According to the definition of W_{ϕ}^r , for any $g \in W_{\phi}^r$, we have $B_{n,r-1}^*(g,x) = B_{n,r-1}(G_n(g),x)$, and $w(x)|G_n(x)-B_{n,r-1}(G_n,x)| = w(x)|B_{n,r-1}(R_r(G_n,t,x),x)|$,

thereof $R_r(G_n,t,x) = \int_x^t (t-u)^{r-1} G_n^{(r)}(u) du$, we have

$$\begin{split} w(x)|G_{n}(x) - B_{n,r-1}(G_{n},x)| &\leq C \|w\phi^{r}G_{n}^{(r)}\|w(x)B_{n,r-1}(\int_{x}^{t}\frac{|t-u|^{r-1}}{w(u)\phi^{r}(u)}du,x) \\ &\leq C \|w\phi^{r}G_{n}^{(r)}\|w(x)(B_{n,r-1}(\int_{x}^{t}\frac{|t-u|^{r-1}}{\phi^{2r}(u)}du,x))^{\frac{1}{2}} \cdot \\ & (B_{n,r-1}(\int_{x}^{t}\frac{|t-u|^{r-1}}{w^{2}(u)}du,x))^{\frac{1}{2}}. \end{split}$$

$$(4.11)$$

also

$$(4.12) \qquad \int_{x}^{t} \frac{|t-u|^{r-1}}{\phi^{2r}(u)} du \leqslant C \frac{|t-x|^{r}}{\phi^{2r}(x)}, \ \int_{x}^{t} \frac{|t-u|^{r-1}}{w^{2}(u)} du \leqslant \frac{|t-x|^{r}}{w^{2}(x)}.$$

By (3.2), (3.3) and (4.12), we have

$$(4.13) \qquad w(x)|G_n(x) - B_{n,r-1}(G_n, x)| \leq C \|w\phi^r G_n^{(r)}\| \phi^{-r}(x) B_{n,r-1}(|t-x|^r, x) \\ \leq C n^{-\frac{r}{2}} \frac{\varphi^r(x)}{\phi^r(x)} \|w\phi^r G_n^{(r)}\| \\ \leq C n^{-\frac{r}{2}} \frac{\delta_n^r(x)}{\phi^r(x)} \|w\phi^r G_n^{(r)}\| \\ = C (\frac{\delta_n(x)}{\sqrt{n}\phi(x)})^r \|w\phi^r G_n^{(r)}\|.$$

By (3.6), (3.7) and (4.13), when $g \in W^r_{\phi}$, then

$$\begin{split} w(x)|g(x) - B_{n,r-1}^{*}(g,x)| &\leq w(x)|g(x) - G_{n}(g,x)| + w(x)|G_{n}(g,x) - B_{n,r-1}^{*}(g,x)| \\ &\leq |w(x)(g(x) - L_{r}(g,x))|_{[0,\frac{2}{n}]} + |w(x)(g(x) - R_{r}(g,x))|_{[1-\frac{2}{n},1]} \\ &+ C(\frac{\delta_{n}(x)}{\sqrt{n}\phi(x)})^{r} \|w\phi^{r}G_{n}^{(r)}\| \\ &\leq C(\frac{\delta_{n}(x)}{\sqrt{n}\phi(x)})^{r} \|w\phi^{r}g^{(r)}\|. \end{split}$$

$$(4.14)$$

For $f \in C_w$, we choose proper $g \in W^r_{\phi}$, by (3.9) and (4.14), then

$$\begin{split} w(x)|f(x) - B^*_{n,r-1}(f,x)| &\leq w(x)|f(x) - g(x)| + w(x)|B^*_{n,r-1}(f-g,x)| \\ &+ w(x)|g(x) - B^*_{n,r-1}(g,x)| \\ &\leq C(\|w(f-g)\| + (\frac{\delta_n(x)}{\sqrt{n}\phi(x)})^r \|w\phi^r g^{(r)}\|) \\ &\leq C\omega^r_{\phi}(f,\frac{\delta_n(x)}{\sqrt{n}\phi(x)})_w.\Box \end{split}$$

4.3.2. The inverse theorem. We define the weighted main-part modulus fo $D = R_+$ by(see [5])

$$\begin{split} \Omega^r_\phi(C,f,t)_w &= \sup_{0 < h \leqslant t} \|w \Delta^r_{h\phi} f\|_{[Ch^\bullet,\infty]},\\ \Omega^r_\phi(1,f,t)_w &= \Omega^r_\phi(f,t)_w. \end{split}$$

The main-part K-functional is given by

$$K_{r,\phi}(f,t^r)_w = \sup_{0 < h \leq t} \inf_g \{ \|w(f-g)\|_{[Ch^*,\infty]} + t^r \|w\phi^r g^{(r)}\|_{[Ch^*,\infty]}, \ g^{(r-1)} \in A.C.((Ch^*,\infty)) \}.$$

By [5], we have

(4.15)
$$C^{-1}\Omega^r_{\phi}(f,t)_w \leqslant \omega^r_{\phi}(f,t)_w \leqslant C \int_0^t \frac{\Omega^r_{\phi}(f,\tau)_w}{\tau} d\tau,$$

(4.16)
$$C^{-1}K_{r,\phi}(f,t^r)_w \leq \Omega^r_{\phi}(f,t)_w \leq CK_{r,\phi}(f,t^r)_w.$$

Proof. Let $\delta > 0$, we choose proper g so that

$$(4.17) \|w(f-g)\| \leq C\Omega_{\phi}^{r}(f,\delta)_{w}, \ \|w\phi^{r}g^{(r)}\| \leq C\delta^{-r}\Omega_{\phi}^{r}(f,\delta)_{w}.$$

For $r \in N, \ 0 < t < \frac{1}{8r}$ and $\frac{rt}{2} < x < 1 - \frac{rt}{2}$, we have

$$\begin{split} |w(x)\Delta_{h\phi}^{r}f(x)| &\leq |w(x)\Delta_{h\phi}^{r}(f(x) - B_{n,r-1}^{*}(f,x))| + |w(x)\Delta_{h\phi}^{r}B_{n,r-1}^{*}(f-g,x)| \\ &+ |w(x)\Delta_{h\phi}^{r}B_{n,r-1}^{*}(g,x)| \\ &\leq \sum_{j=0}^{r} C_{r}^{j}(n^{-\frac{1}{2}}\frac{\delta_{n}(x + (\frac{r}{2} - j)h\phi(x))}{\phi(x + (\frac{r}{2} - j)h\phi(x))})^{\alpha_{0}} \\ &+ \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} \cdots \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} w(x)B_{n,r-1}^{*(r)}(f-g,x + \sum_{k=1}^{r} u_{k})du_{1}\cdots du_{r} \\ &+ \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} \cdots \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} w(x)B_{n,r-1}^{*(r)}(g,x + \sum_{k=1}^{r} u_{k})du_{1}\cdots du_{r} \\ &+ \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} \cdots \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} w(x)B_{n,r-1}^{*(r)}(g,x + \sum_{k=1}^{r} u_{k})du_{1}\cdots du_{r} \\ &+ \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} \cdots \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} w(x)B_{n,r-1}^{*(r)}(g,x + \sum_{k=1}^{r} u_{k})du_{1}\cdots du_{r} \\ &+ \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} \cdots \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} w(x)B_{n,r-1}^{*(r)}(g,x + \sum_{k=1}^{r} u_{k})du_{1}\cdots du_{r} \\ &+ \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} \cdots \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} w(x)B_{n,r-1}^{*(r)}(g,x + \sum_{k=1}^{r} u_{k})du_{1}\cdots du_{r} \\ &+ \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} w(x)dx \\ &+ \int_{$$

(4.18)

Obviously

(4.19)
$$J_1 \leq C(n^{-\frac{1}{2}}\phi^{-1}(x)\delta_n(x))^{\alpha_0}.$$

By (3.11) and (4.17), we have

$$J_2 \leq Cn^r \|w(f-g)\| \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} \cdots \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} du_1 \cdots du_r$$

$$\leq Cn^r h^r \phi^r(x) \|w(f-g)\|$$

$$\leq Cn^r h^r \phi^r(x) \Omega^r_{\phi}(f, \delta)_w.$$
(4.20)

By the first inequality of (4.8), we let $\lambda = 1$, and (3.10) as well as (4.17), then

$$(4.21)$$

$$J_{2} \leq Cn^{\frac{r}{2}} \|w(f-g)\| \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} \cdots \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} \varphi^{-r}(x + \sum_{k=1}^{r} u_{k}) du_{1} \cdots du_{r}$$

$$\leq Cn^{\frac{r}{2}} h^{r} \phi^{r}(x) \varphi^{-r}(x) \|w(f-g)\|$$

$$\leq Cn^{\frac{r}{2}} h^{r} \phi^{r}(x) \varphi^{-r}(x) \Omega_{\phi}^{r}(f, \delta)_{w}.$$

By the second inequality of (3.10) and (4.17), we have

$$J_{3} \leq C \|w\phi^{r}g^{(r)}\|w(x) \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} \cdots \int_{-\frac{h\phi(x)}{2}}^{\frac{h\phi(x)}{2}} w^{-1}(x + \sum_{k=1}^{r} u_{k})\phi^{-r}(x + \sum_{k=1}^{r} u_{k})du_{1} \cdots du_{r}$$

$$\leq Ch^{r}\|w\phi^{r}g^{(r)}\|$$

$$\leq Ch^{r}\delta^{-r}\Omega^{r}_{\phi}(f,\delta)_{w}.$$
(4.22)

Now, by (4.18)-(4.22), there exists M > 0 so that

$$\begin{split} |w(x)\Delta_{h\phi}^{r}f(x)| &\leq C((n^{-\frac{1}{2}}\frac{\delta_{n}(x)}{\phi(x)})^{\alpha_{0}} \\ &+\min\{n^{\frac{r}{2}}\frac{\phi^{r}(x)}{\varphi^{r}(x)}, n^{r}\phi^{r}(x)\}h^{r}\Omega_{\phi}^{r}(f,\delta)_{w} + h^{r}\delta^{-r}\Omega_{\phi}^{r}(f,\delta)_{w}) \\ &\leq C((n^{-\frac{1}{2}}\frac{\delta_{n}(x)}{\phi(x)})^{\alpha_{0}} \\ &+h^{r}M^{r}(n^{-\frac{1}{2}}\frac{\varphi(x)}{\phi(x)} + n^{-\frac{1}{2}}\frac{n^{-1/2}}{\phi(x)})^{-r}\Omega_{\phi}^{r}(f,\delta)_{w} + h^{r}\delta^{-r}\Omega_{\phi}^{r}(f,\delta)_{w}) \\ &\leq C((n^{-\frac{1}{2}}\frac{\delta_{n}(x)}{\phi(x)})^{\alpha_{0}} \\ &+h^{r}M^{r}(n^{-\frac{1}{2}}\frac{\delta_{n}(x)}{\phi(x)})^{-r}\Omega_{\phi}^{r}(f,\delta)_{w} + h^{r}\delta^{-r}\Omega_{\phi}^{r}(f,\delta)_{w}). \end{split}$$

When $n \ge 2$, we have

$$n^{-\frac{1}{2}}\delta_n(x) < (n-1)^{-\frac{1}{2}}\delta_{n-1}(x) \leqslant \sqrt{2}n^{-\frac{1}{2}}\delta_n(x),$$

Choosing proper $x, \ \delta, \ n \in N$, so that

$$n^{-\frac{1}{2}}\frac{\delta_n(x)}{\phi(x)}\leqslant \delta<(n-1)^{-\frac{1}{2}}\frac{\delta_{n-1}(x)}{\phi(x)},$$

Therefore

$$|w(x)\Delta_{h\phi}^rf(x)|\leqslant C\{\delta^{\alpha_0}+h^r\delta^{-r}\Omega_\phi^r(f,\delta)_w\}.$$

By Borens-Lorentz lemma, we get

$$(4.23) \qquad \Omega^{r}_{\phi}(f, t)_{w} \leq Ct^{\alpha_{0}}.$$

So, by (4.15) and (4.23), we get

$$\omega_{\phi}^{r}(f,t)_{w} \leqslant C \int_{0}^{t} \frac{\Omega_{\phi}^{r}(f,\tau)_{w}}{\tau} d\tau = C \int_{0}^{t} \tau^{\alpha_{0}-1} d\tau = Ct^{\alpha_{0}}.$$

References

- [1] P. L. Butzer, Linear combinations of Bernstein polynomials, Canad. J. Math. 5 (1953), pp. 559-567.
- [2] H. Berens and G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J. 21 (1972), pp. 693-708.
- [3] Z. Ditzian, A global inverse theorem for combinations of Bernstein polynomials, J. Approx. Theory 26 (1979), pp. 277-292.
- [4] D. Della Vechhia, G. Mastroianni and J. Szabados, Weighted approximation of functions with endpoint and inner singularities by Bernstein operators, Acta Math. Hungar. 103 (2004), pp. 19-41.
- [5] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag, Berlin, New York (1987).
- [6] M. Felten, Direct and inverse estimates for Bernstein polynomials, Constr. Approx., 14, 459-468.
- [7] S. S. Guo, C. X. Li and X. W. Liu, Pointwise approximation for linear combinations of Bernstein operators, J. Approx. Theory 107 (2000), pp. 109-120.
- [8] S. S. Guo, H. Tong and G. Zhang, Pointwise weighted approximation by Bernstein operators, Acta Math. Hungar. 101 (2003), pp. 293-311.
- [9] G. G. Lorentz, Bernstein Polynomial, University of Toronto Press, Toronto (1953).
- [10] W. M. Lu, L. Zhang and M.Y. Chai, Weighted approximation of functions with endpoint singularities by combinations of Bernstein operators arXiv: 1007.5436v2 [math.FA] 2 Aug 2010
- [11] L. S. Xie, Pointwise simultaneous approximation by combinations of Bernstein operators, J. Approx. Theory 137 (2005), pp. 1-21.
- [12] L. S. Xie, The saturation class for linear combinations of Bernstein operators, Arch. Math. 91 (2008), pp. 86-96.
- [13] D. S. Yu, Weighted approximation of functions with singularities by combinations of Bernstein operators, J. Applied Mathematics and Computation. 206(2008), pp.906-918.
- [14] D. S. Yu and D. J. Zhao, Approximation of functions with singularities by truncated Bernstein operators, Southeast Bull. Math. 30 (2006), pp. 1178-1189.
- [15] D. X. Zhou, Rate of convergence for Bernstein operators with Jacobi weights, Acta Math. Sinica 35 (1992), pp. 331-338.
- [16] D. X. Zhou, On smoothness characterized by Bernstein type operators, J. Approx. Theory 81 (1994), pp. 303-315.
- [17] J. J. Zhang, Z. B. Xu, Direct and inverse approximation theorems with Jacobi weight for combinations and higer derivatives of Baskakov operators(in Chinese), Journal of systems science and mathematical sciences. 2008 28 (1), pp. 30-39.