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Abstract: In this paper, we deal with the modified deficiencies of q-difference equations and give some 

improvements for special types of meromorphic functions that would throw more light on the relative defects of 
difference polynomials, which extends the results of Toda [9], Sarangi and Patil [8], Bhoosnurmath S. S and 
Shankar. M. Patil [2]. 
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1. Introduction, Results and Definitions 

 

For Ca , Milloux [7] introduced the concept of absolute defect of   with respect to the derivative 

f  . This definition was further extended by Hiong [5]. He introduced  
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is called as the "Relative defect of the value   with respect to 
)(kf ", the suffix "r" in the left hand side of 

above is just to denote the "relative" defect in contrast to the usual defect  
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and the "absolute" defect  
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and found several other relations between the relative defect and the usual defect. We define similar difference 

analogue of relative defect and absolute defect with respect to difference polynomial )( fP  as follows.  
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is called "q" difference absolute defect of   with respect to )( fP  and  
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is called "q" difference absolute defect with respect to )( fP .  

Also as a natural q-difference analogue of ),( arN  is ),(),(=),(N
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All notations and terminology of the work follows from Hayman [4](1964). By ),( ftS  we mean quanity 

satisfying )],([=),( frToftS  as r  possibly outside a set r  of finite linear measure. 

Definition 1. [2]: A monomial in f is an expression of the form  
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where kjjjoj nnnn ,...,,, 21  are non-negative integers. 
kjjjojM nnnn

j
 ...= 21  is called the degree of 

the monomial and 
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)]([=)( , where )1,2,...,=( niai  are constants, then )( fP  is called a differential 

polynomials in f  of degree 
q

p  and the weight 
q

p , )( fPq  are defined as follows, Mjqj
q
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and ,= 1 Mjqj
q

P max    also we call the number Mjqj
q

P min  1=  the lower degree of )( fP . 

If 
q

P
q

P
q

P  == , )( fPq  is called a Homogeneous polynomial in f , otherwise 

Non-homogeneous. 

Definition 2.[1]: let {0,1}Cq  and Ca . We define the counting function ),( arnq  to be the number 

of points 0z  in the disk of radius r  centered at the origin such that azf =)( 0 , where the contribution to 

),( arnq  is the number of equal terms in the beginning of Taylor series expansion of )(zf  and )(qzf  in a 

neighbourhood of 0z  . We call such points q-separated a-points of f  in the disc }|:|{ rzz  . The number of 

q-separated pole pairs ),( rnq  is the number of q-separated 0-pairs of f/1 . This means that if f  has a pole 

with multiplicity p  at 0z  and another pole with multiplicity s  at 0qz  then this pair is counted min 

msp },{  times in ),( rnq , where m  is the number of equal terms in the beginning of Laurent series 

expansion of )(zf  and )(qzf  in a neighbourhood of 0z . 

Toda [9](1970) proved the following result. 

Theorem A. If )(zf  is a transcendental meromorphic function in |<| z , then  
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Later, Sarangi and Patil [8] proved the following results. 
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Theorem B. If )(zf  is a transcendental meromorphic function in |<| z , then for any positive integer I,  
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 Theorem C. If )(zf  is a transcendental meromorphic function in |<| z , then for any positive integer I,  
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Again Shankar. M. Pawar and Bhoosnurmath S. S [2](2002)extended the above results for homogeneous 

differential polynomials and proved the following results. 

Theorem D. If )(zf  is a transcendental meromorphic function in |<| z , then  

)],()([
),(

))(,(
limsup

),(

))(,(
liminf)( f

frT

fPrT

frT

fPrT
a PPP

rra




 








   

where )( fP  is a homogeneous differential polynomial, not involving the f  term. 

 

Theorem E. Let )(zf be a transcendental meromorphic function in the finite plane, )( fP  is a homogeneous 

differential polynomial, then  
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We extend the above results to the difference polynomials and prove the following results.  

Theorem 1.1.  Let )(zf be a transcendental meromorphic function of zero order with )( fP  as a 

homogeneous difference polynomial. For  0,,(0) af n
 and for 0(0)][ fP . We have  
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Theorem 1.2. Let )(zf be a transcendental meromorphic function of zero order in the finite plane with )( fP  

as a homogeneous difference polynomial. For  0,,(0) af n
 and for 0(0)][ fP . We have  
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2. Some Lemmas 

 To our main results we need the following Lemmas.  

Lemma 2.1. ([2]). If )(zf  is a transcendental meromorphic function and qaaa ,...,, 21  are distinct elements, 

then  

),())(,0,())(,(),,(
1=

frSfPrNfPrTfarm j

q

j

P    



Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                           

ISSN: 2395-0218    

 
Volume 6, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm                                     667 

or  

),(
)(

1
,),,(

1=

frS
fP

rmfarm j

q

j

P  







  

where )( fP  is a homogeneous differential polynomial of degree P .  

Lemma 2.2. ([3]) If ][ fQ  is a differential polynomial in f  with arbitrary meromorphic coefficients 

njq j 1 , then  
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Lemma 2.3. ([6]) If )(zf  is a transcendental meromorphic function then  
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3.  Proofs of The Theorems. 

 In this section we present the proofs of the main results. 

Proof of Theorem 1.1. 

By Lemma 2.2 and Lema 2.3, we have  
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Dividing by ),( frT  and taking limit superior both sides we get  
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 On the other hand by Lemma 2.1, we have  
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Corollay 1. If )(zf  is a transcendental meromorphic function with 1=)(1,=)(    a
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 and 

2=),(),( ff q
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 Proof of Theorem 1.2.  By Lemma 2.1  
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 Dividing by ),( frT  and taking limsup on both sides, we get  
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 Corollary 3. If )(zf  is a meromorphic function with 1=))(,(1,=),( fPf q   then  
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