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Abstract 

The notions of variable precision rough set and concept lattice are can be shared by a basic notion, which is 
the definability of a set of objects based on a set of properties. The two theories of rough set and concept 
lattice can be compared, combined and applied to each other based on definability. Based on introducing the 
definitions of variable precision rough set and concept lattice, this paper shows that any extension of a 
concept in concept lattice is an equivalence class of variable precision rough set. After that, we present a      
definition of lower and upper approximations in concept lattice and generate the lower and upper 
approximations concept of concept lattice. Afterwards, we discuss the properties of the new lower and upper 
approximations. Finally, an example is given to show the validity of the properties that the lower and upper 
approximation have.                                                                                                                                               
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1. INTRODUCTION  

Rough set theory, proposed by Pawlaw [1], is an extension of set theory for the study of intelligent systems characterized 

by inexact, uncertain or vague information, and aims at handling uncertain information. As a generalization, Ziarko [2] 

provides a new rough set model---variable precision rough set model. The variable precision rough set is proposed to 

make the rough set decision rules with certain accuracy, namely the judgment under a certain tolerance. Zhang et al. [3] 

have introduced the variable precision concept lattice. Belohlavek [4] gives the unity of the structure of different variable 

precision concept lattice. Qiu [5] introduces four kinds of concepts of variable precision.                                                      

A concept lattice, another efficient tool for data analysis, is a hierarchical structure defined by a binary relation between 

objects and attributes in a data set. The researches on concept lattice mainly focus on the mathematical structure and 

construction algorithm of concept lattice [6,7,8], relationships with rough set [9-14] , and so on [15-17].                             

Both theories of rough set and concept lattice are methods to model and manipulate uncertainty, imprecise, incomplete 

and the vague information. Additionally, the common notion of definability links the two theories together. As a result, 

we can immediately adopt ideas from one to another. In addition, the notion of concept lattice can be introduced into 

rough set by considering different types of concepts [18-20]. Meantime, rough set approximation operators can be 

introduced into concept lattice by considering a different type of definability [21-22].                                                           

The combination of variable precision rough set and concept lattice has made great progress in recent years (see [23-29]). 

Yao [21] provides the notions of rough set approximations defined on concept lattices. As a generalization of Yao [21], 

Mohanty [18] gives another notion about rough set approximation. However, both [18] and [21] do not give variable 

precision on undefinable objects though they present two different ways on classifications. The important of variable 

precision rough set model can be seen Ziarko [2]. To research the effect on variable precision on rough set 

approximations in undefinable objects, we put forward a method using the upper and lower approximations to solve the 

calculation of the given set of object (undefined object), and find out the equivalent class which is similar to the given set 

of object.                                                                                                                                                                                    

                                                                                                                                                                                                

In this paper, with the variable precision rough set model, we discuss some properties of the variable precision rough set  

approximations in concept lattices. The content is organized as follows: Section 2 reviews basic definitions of variable 

precision rough sets and concept lattices. In Section 3, based on -upper and lower approximations in variable precision 
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rough set, and combining with the characteristics of concept lattice, we present a kind of approximation operators in a 

concept lattice. After that, we discuss some properties of the new kind of approximation operators. An example relative 

to the upper and lower approximations is given. The paper is concluded in Section 4.                                                            

2. PRELIMINARIES  

To make the paper self-contained, this section will review some basic facts in regard of variable precision rough set and 

concept lattice respectively. For more details, please refer to [2] for variable precision rough set theory, and see [30] and 

[31] for concept lattice theory. A running example is provided in this section.                                                                      

2.1 Variable Precision Rough Set  

Let U be a finite set, that is, an universe set. Let X,YU, and X,Y{}. We say that X is included in Y, or YX, if for all 

eX implies eY. Clearly, there is no room for even the slightest misclassification according to this definition. The 

measure c(X,Y) of the relative degree of misclassification of the set X with respect to set Y is defined.                                  

Definition 1[2]  We defined c(X,Y) as follows:  

c(X,Y)=1- card(XY)/ card(X)  if card(X)>0, 

c(X,Y)=0                  if card(X)=0, 

where card(Z) denotes the set cardinality of Z . 

The specified majority requirement the admissible level of classification error  must be within the range 0<0.5.           

 Be replacing the inclusion relation with a majority inclusion relation in the original definition of lower approximation of 

a set, the generalized notion of -lower and upper approximation as follows.                                                                        

Definition 2[2]  For a set UX , its generalized notion of -lower approximation or -positive region is defined by:         

XR 
= {ER*| c(X,Y)}. 

The -upper approximation of the set UX is defined as: 

XR = {ER*| c(X,Y)1-}. 

Where R*={E1, E2,…, En } is an equivalence class on U.  

 Remark 1 In fact, the -lower approximation of the set X can be interpreted as the collection of all those elements of U 

which can be classified into X with the classification error not greater than. Similarly, the-upper approximation of the 

set X is the collection of all those elements of U which can be classified into X with the classification error less than 1-.  

Lemma 1[2]  For every 0 <0.5 the following relationships are true                         

(1a) XRX




 

(1b) XRXR   

(2) UURURRR    ; 

(3)   YRXRYXR   

(4) )( YXRYRXR   

(5) YRXRYXR   )( 

(6)  YXRYRXR   

(7) XRXR   )( 

(8) XRXR   )( . 

2.2 Concept Lattice  

Concept lattice deals with visual presentation and analysis of data (see [21,31,32] ) and focuses on the definability of a 

set of objects based on a set of attributes, and vice versa.                                                                                                         
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Definition 3[30,31]  A context is a triple (G,M,I) where G and M are sets and I G×M. The elements of G and M are 

called objects and attributes respectively. As usual, instead of writing (g,m)I, we write gIm
 
and say ‘the object g has the 

 attribute m ’.                                                                                                                                                                              

For AG and BM, define  

A={mM | (gA) gIm}; 

B={gG | (mB) gIm}. 

From Definition 3, the authors point that A is the set of attributes common to all the objects in A and B is the set of 

objects possessing the attributes in B.                                                                                                                                       

Lemma 2[30]  Assume that (G,M,I) is a context. Let A, Aj G and B, Bj M, For jJ, there are the following statements:  

(1) AA  , BB  ;  (2) 
2121

AAAA  ,
2121

BBBB  ; 

(3) AA  , BB  ;  (4) BABA  ; 

(5)  
jJjjJj

AA 



 ,  

jJjjJj
BB 




 . 

Definition 4[30,31]  For A G and B M, the pair (A,B) is called a concept of (G,M,I) if A=B and B= A, and A is the 

extension of the concept, B is the intension of the concept.                                                                                                      

Remark 2 The authors [30] and [31] indicate that a subset A of G is the extension of some concept if and only if A=A in 

which case the unique concept of which A is an extension of (A,A).                                                                                      

Definition 5[30]  (1) The set of all concepts from a context (G,M,I)
 
called a concept lattice and is denoted by:   

B=B(G,M,I)   MBGABA  ,|,{ and ，BA  }AB  . 

Then we can define:                                                                                                                                                                   

BG= {A|AG, (A,B)B(G,M,I)}, BM= {B|BM, (A,B)B(G,M,I)}. 

(2) For concepts (A1,B1) and (A2,B2) in B(G,M,I), we write (A1,B1) (A2,B2), if A1A2. Also A1A2 implies that A1 A2, 

and the reverse implication is also valid, because A1 = A1 and A2=A2. We therefore have                                              

(A1,B1) (A2,B2)  A1A2  B1B2. 

Remark 3 The author [30] state that the relation  is an order on B(G,M,I). We still call B(G,M,I), a concept lattice.     

Lemma 3[30]  Let (G,M,I) be a context. Then B(G,M,I), is a complete lattice in which join and meet are given by:   

 














 




















Jj

j

Jj

jjj
Jj

BABA ,, , 

  

 














 


































Jj

j

Jj

jjj
Jj

BABA ,, . 

Where J is an index set and for every Jj ,  
jj

BA ,  is a concept. 

Example 1 The ideas of concept lattice can be illustrated by [21, Example 1]. Let (G,M,I) as Table 1, where the meaning 

of each attribute is given as follows: a: needs water to live; b: lives in water; c: lives on land; d: needs chlorophyll to 

produce food; e: two seed leaves; f: one seed leaf; g: can mood around; h: has limbs; i: suckles its off spring. [21, 

Example 1] points that the concept lattice of (G,M,I) is Figure 1.                                                                                            

 

 

 

 

 



Journal of Progressive Research in Mathematics(JPRM) 
ISSN: 2395-0218 

 
  Volume 2, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm/index                                                   50|  

                                                                            

Table 1: A context 

 a b c d e f g h i 

1.Leech × ×     ×   

2.Bream × ×     × ×  

3.Frog × × ×    × ×  

4.Dog ×  ×    × × × 

5.Spike-weed × ×  ×  ×    

6.Reed × × × ×  ×    

7.Bean ×  × × ×     

8.Maize ×  × ×  ×    

 

Fig.1: concept lattice for the context of Table 1 

2.3 Equivalence Class and the Corresponding Relation of Concept Lattice 

Lemma 4 [32] Let (G,M,I) be a context, MP and P . The following statements holds:
    

 

(1)  Let  BA, B(G,M,I). Then  BxA  is correct for any Ax . 

(2)      PP xx , B(G,M,I) is correct for any Gx . 

Lemma 4 shows that any extension of a concept in concept lattice must be an equivalence class of rough set. Conversely, 

any of the equivalence class in a rough set is the extension of a concept in concept lattice. Based on these corresponding 

relationships, the upper and lower approximations will make those undefinable sets of the objects approximate be 

definable sets of objects which are the extension of a concept lattice.                                                                                      

APPROXIMATIONS IN CONCEPT LATTICE  

A concept lattice consists of a definable set of objects and a definable set of attributes, which uniquely determine each 

other. The concept lattice is the family of all such definable concepts. An arbitrary set of objects may not be the 

extension of a concept. Therefore, the set can be viewed as an undefinable set of objects. Following variable precision 

rough set theory, such a set of objects can be approximated by definable sets of objects. In this section, a method of 

approximations is discussed by using the subsystem based on formulation of variable precision rough set theory.               

2.4 Definitions of Lower and Upper Approximations 
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 In order to classify the undefinble object of concept lattice, find out the extension of concept lattice which is similar to 

the undefinble object, and combine the lower and upper approximations of the variable precision rough set, this section 

will put forward the variable precision rough set approximation in concept lattice, and some properties on rough set are 

discussed.                                                                                                                                                                                   

Definition 6  Let B(G,M,I) be a concept lattice, GX   and 5.00   . Then the lower approximation of X  is defined 

by: 

    YEMYXEcGEXLR ,,,,|{  B} ,   

And the upper approximation of X  is defined by: 

    YEMYXEcGEXLR ,,,1,|{  B} . 

We called  )(, XLRXLR   the lower approximation concept of B(G,M,I), and ))(,( XLRXLR   called the upper 

approximation concept of B(G,M,I)..                                                                                                                                        

The set XG is rough with respect to the operator LR  if and only if XLRXLR   , otherwise X is exact with respect to the 

operator LR. 

Remark 4 (1) From the definition of XLR
, we know that the concept  )(, XLRXLR 

 is the supremum of those 

concepts whose the relative degree of misclassification of the extensions with respect to X is less than or equal to  , and 

))(,( XLRXLR 
 
is the supremum of those concepts whose the relative degree of misclassification of the extensions 

with respect to X is less than 1-
 
.                                                                                                                                             

(2) For a concept  BA, , the complementary of A may not necessarily be the extension of a concept. B(G,M,I). May not 

be a complemented lattice. The approximation operators XLR and XLR are not necessarily dual operators. 

As confirm know that an intersection of extensions is an extension of a concept. However, the union of extensions may 

not be the extension of a concept. This follows that XLR
 may contain X . Hence, c(E,X)> may be set up. We may 

easily attain that the new approximation operators do not satisfy properties (1a), (7) and (8) in Lemma 1.                            

To continue our discussion, we need to find some properties for the lower and upper approximation operators.                  

  

Theorem 1  For the set of objects GYX , , we have obtain: 

(1b) XLRXLR   

(2) UULRULRLRLR    ; 

(3)   YLRXLRYXLR   

(4) )( YXLRYLRXLR   

(5) YLRXLRYXLR   )( 

(6)  YXLRYLRXLR   

Proof.  (1b)  By Definition 6 we can conclude the inclusion XLRXLR   . 

(2)  Since   1, Ec  for any given extensions in B(G,M,I), we get 


LR  and  LR . Similarly, since   0, UEc

, we can obtain UULR 
 and UULR  .   

(3)  By Definition 1 we affirm that if GYX ， , then    XEcYXEc ,,   and c(E,XY)c(E,Y) . By Definition 6, we 

confirm XLRYXLR   )( and Y)(  LRYXLR  . 

Thus   YLRXLRYXLR    is correct. 

(4)  This inclusion is also consequence of the relationship    XEcYXEc ,,   and    YEcYXEc ,,  . By  
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Definition 6, we can conclude  

)( YXLRXLR    and )(Y YXLRLR   . 

Then, we have )( YXLRYLRXLR   . 

(5)  This property follows again from the fact given in item (3). 

(6)  Analogously to the discussion as item (4). 

2.5 Some Exploration of Approximation in Concept Lattice 

This section mainly from three aspects to explore the variable precision rough set approximation in concept lattice.            

1)  The effect on the lower and upper approximations for the change of ; 

2)  The lower and upper approximations concept lattice;  

3)  The relation between the lower approximation XLR
0

and X  .  

The above 1)---3) will be described as Subsections 3.2.1---3.2.3 respectively. To illustrate the theory validity, we give  

an example.                                                                                                                                                                           

2.5.1 Measure of Approximation  

We give an definition of measure of approximation in order to observe the effect on the lower and upper approximation 

for the change of .                                                                                                                                                                   

Definition 7  We define the measure of approximation as follows: 

     XLRcardXLRcardXLR  /,,  , 

where 5.00   . 

Remark 5 The -accuracy represents the imprecision of the approximate characterization of the set X relative to 

assumed classification error. It is interesting to note that with the increase of  the cardinality of the upper 

approximation will tend downward and the size of the lower approximation will tend upward which leads to the 

conclusion that is consistent with intuition that the relative accuracy may increase at the expense of a higher classification 

error.                                                                                                                                                                                           

2.5.2 Change of  

Theorem 2  Let GX  and 5.00 21   . Then  

XLRXLR
21   ,           (3.2.1) 

XLRXLR 21   .           (3.2.2) 

Proof.  To prove the expression (3.2.1).  

From this question c(E,X)1<2<0.5 holds, from Definition 6, we obtain XLRXLR
21   ; 

To prove the expression (3.2.2). 

From this question, we can have 1-1>1-2 , and c(E,X)<1-2<1-1 
holds. According to Definition 6, we confirm 

XLRXLR 21   .                                                                                                                                                                      

Remark 6 For a given set X of objects, we can classify X as we like mathematical ways. However, in general, it allows a 

certain error classification to be existed. When  changes, the accuracy of the classification also changes. According to 

the different requirements for accuracy,  can be selected appropriately.                                                                                

The following will obtain the results about the lower and upper approximation concept lattices with the changing of . 

Theorem 3  (1) Let 5.0...0 321  n . Then XLRXLRXLRXLR
n  ...

321
. 

(2) Let  XLRXLRXLRP
n ,...,,

21
 . Then P is a chain.                                                                                                      
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(3) Let      






 






 

 XLRXLRniXLRXLRIMGP
iiii  ,1|,,, . Then   ,,, IMGP is a lower 

approximation concept lattice, and  IMGP ,, B(G,M,I) holds.                                                                                             

Proof. To prove item (1), let 5.0...0 321  n . Using Theorem 2, we obtain  

XLRXLRXLRXLR
n  ...

321
, 

To prove item (2), let  XLRXLRXLRP
n ,...,,

21
 , then we know P  is an ordered set, for any element of P are 

comparable, thus P is a chain.                                                                                                                                                  

To prove item (3), from the Definition 6, XLR
i

is the extension of the concept   





 

XLRXLR
ii  , . 

Let      






 







 

 XLRXLRniXLRXLRIMGP
iiii  ,1|,,, . 

Then by Definition 5(2), we obtain that   ,,, IMGP is a lower approximation concept lattice. From Definition 6, we 

confirm   





 

XLRXLR
ii  , B(G,M,I). Thus, we claim  IMGP ,, B(G,M,I).  

Dually, Q  is also a chain, when  XLRXLRXLRQ n ,...,, 21 ,   ,,, IMGQ is a upper approximation concept lattice, 

when 

     






 








 
 XLRXLRniXLRXLRIMGQ iiii  ,1|,,, , 

and  IMGQ ,, B(G,M,I). 

2.5.3 =0 

Theorem 4: Let B(G,M,I) is a concept lattice. Then XXLR 
0  

holds for any XG. 

Proof. By Definition 6 and =0, we attain  

    YEMYXEcGEXLR ,,,0,|{
0

B} . 

Since   0, XEc follows 1
 
 

0



Ecard

XEcard
. Moreover, we obtain 

 
 




Ecard

XEcard
1.This means card(EX)=cardE.   

In light of Definition 1, we affirm EX=E, this implies XE  , and   YEMYXEGEXLR ,,,|{
0

B} 

holds.                                                                                                                                                                                         

For EBG, EX, we have XEE  , if 21, EE BG, XEXE  21 , , then XEXE  21 , , that is XEE  21 ,

  XXEE 


 21 ,   XEE 


 21 , through the recurrence method we can obtain XXLR 
0

.                              

Remark 7: BG 
is the set of all the extensions of concept lattice.  

(1) It is notes that with the decrease of  the lower approximation will tend to )(Xlapr , )(Xlapr  shown in [4]. When  

=0,  XlaprXLR 
0 ; 

(2) When X only contains E , and  EE , BG, then EXLR 
0

, and the lower approximation concept of the concept 

lattice is  EE , ; 

(3) When X contains iEEE ,...,, 21 , )2( i  and  EEEE i...21 BG, then EXLR 
0

, and the lower 

approximation concept is  EE , ; 

(4) When X contains iEEE ,...,, 21 , )2( i  and  EEEE i...21 BG not establish, then  EXLR 
0

, especially, 

app:ds:recurrence
app:ds:method
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when XEEE i  ...21 , then XXLR 
0

, and the lower  approximation concept is  XX  , ; 

(5) When X BG, then XXLR 
0

, and the lower approximation concept is  XX  , ; 

(6) For GX  , we have UXLR 0 , and the upper approximation concept is  UU , . 

2.6 An Example 

In this section we give an example to show the validities of the results in Subsections 3.1 and 3.2. 

Example 2: Let (G,M,I) be shown as Table 1. According to Example 1, we obtain B(G,M,I) as Figure 1. Let
 

  GX  6，5，3  and 4.0 . From Figure 1, we can obtain all of the extensions of concept lattice, they are also 

equivalence classes:                                                                                                                                                                   

 6,7,81,2,3,4,5,1 E ,  1,2,3,42 E ,  1,2,3,5,63 E ,  3,4,6,7,84 E ,  5,6,7,85 E ,  1,2,36 E ,  2,3,47 E

 6,858 ，E ,  6,7,89 E ,  2,310 E ,  4311 ，E ,  6512 ，E ,  6313 ，E ,  8614 ，E ,  415 E ,  316 E ,  617 E ,

 718 E ,  19E  and  6，5，3X .                                                                                                                                      

  

The classification errors of the set X computed for all classes are: 

 
 

8

5

8

3
11,

1

1

1 



cardE

XEcard
XEc ,   ,

4

3
,2 XEc  

5

2
,3 XEc ,  

5

3
,4 XEc ,  

2

1
,5 XEc ,  

3

2
,6 XEc ,

 
3

2
,7 XEc ,  

3

1
,8 XEc ,  

3

2
,9 XEc ,  

2

1
,10 XEc ,  

2

1
,11 XEc ,   0,12 XEc ,   0,13 XEc ,  

2

1
,14 XEc , 

    1,, 1815  XEcXEc ,       0,,, 191716  XEcXEcXEc . 

The extension of concept that satisfied   4.0, XEc is: 

           6,3,6,5,6,3,5,6,81,2,3,5,6，， , 

the corresponding family of concept is: 

                      ,,,,,6,5,,,,6,3,,,,8,6,5,,,1,2,3,5,6,,,,,,,,,,{ fdbacbafdabaihgfedcba

       },,,,6,,,,,,3 fdcbahgcba , 

their join is the concept: 

           afdcbaihgfedcba ，6,7,81,2,3,4,5,,,,,...,,,,,,,,,6... 





 


 , 

the lower approximation is:  8,7,6,5,4,3,2,1
4.0

XLR . 

From Definition 6, the extension of concept that satisfied   6.04.01, XEc  is: 

                  6,3,6,5,8,6,6,3,4,3,3,2,8,6,5,6,7,8,56,5,3,2,1 ，， , 

their join is the concept: 

           afdcbaihgfedcba ，8,7,6,5,4,3,2,1,,,,...,,,,,,,,,6... 





 


 , 

the upper approximation is:  8,7,6,5,4,3,2,14.0 XLR . 

From the result of Example 2, we can exam the validity (1b) in Theorem 1. The other results (2)—(6) in Theorem 1 can 

be exam as the about similar way.  

To exam the validity of Theorem 2, let 2.0 , we calculated the lower and upper approximation  

 6,5,3,2,1
0.2

XLR , and  8,7,6,5,4,3,2,120 XLR ， . 

We can easily obtain:  
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XLRXLR
0.40.2

 and XLRXLR 0.420 ， .   

To exam the validity of Theorem 4, we can computed  6,5,3,2,1X ,  6,5,3,2,1
0

XLR , there is XXLR 
0

.  

3. CONCLUSION  

Rough set theory is a hotspot of information science. As a development of rough set, variable precision rough set aims at 

dealing with uncertain or imprecise information, though it is still restricted under the equivalence relation. There is one-

to-one correspondence between extension of a concept in concept lattice and equivalence class of variable precision 

rough set. Based on variable precision rough set of -lower and upper approximations, we provide a kind of 

approximation operators in concept lattice. This operator can classify the undefinable object in the context into the 

definable objects. Combining variable precision rough set and concept lattice with all discussions, in this paper, we can 

have a better understanding of data analysis.                                                                                                                            

In the future, how to combine the advantages of the variable precision rough set and concept lattice effectively, how to 

research and improvement the knowledge reduction, rule acquisition, uncertainty information processing and huge 

amounts of data mining are the goal of our study.                                                                                                                     
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