Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

RESEARCH ORGANISATION| Published online: August 22, 2015

Journal of Progressive Research in Mathematics
www.scitecresearch.com/journals

A Direct Transformation of a Matrix Spectrum

A.S. Iskhakov', S.M. Skovpen?
LVNIIEM Corporation’ JSC, Moscow, Russian Federation.
Northern (Arctic) Federal University, Severodvinsk, Russian Federation.

O OC SCITECH Volume 5, Issue 1
i’

Abstract.

A method is presented for calculating a matrix spectrum with a given set of eigenvalues. It can be used to
build systems with different spectrums with the aim of choosing desired alternative. It enables a practical
implementation of control algorithms without resort to transformation of variables.
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1. Introduction

In algebra, the problems deal with eigenvalues belong to spectral ones. A matrix spectrum is changed via its
elements. This procedure can be implemented in various ways. For example, in computing mathematics, a matrix is
multiplied by other matrix for solving systems of linear algebraic equations.

The problem of target transforming a spectrum is the subject of control theory. It is called as the method of
characteristic equation setting, arrangement of eigenvalues, spectrum control, and modal control [1-4]. To change a
spectrum the relationships between coefficients of characteristic polynomial and its roots are used. They are known
as Vieta’s formulas.

The spectrum setting allows those coefficients to be found. Because the matrix has alternate spectrum and
coefficients, the elements of the matrix need to be changed. However, this procedure is made not with the parent
matrix, but its transformed form called Frobenius. A Frobenius matrix have a row of elements representing
coefficients of characteristic polynomial up to a sign. They are changed by summing with elements called feedback
coefficients. As a result, we obtain a given spectrum.

Such spectrum transformation, which is pertinently called Frobenius, has a clear theoretical basis; moreover, it
specifies an obvious way for its practical application, which implies supplementing the elements of the row of
Frobenius matrix to the values making a matrix spectrum equal to a given set of numbers.

The reason for searching a new method of a spectrum transformation is the requirement for obtaining a desired
spectrum for concrete technical systems using real-time control algorithms. A more detailed explanation of the
necessity of other approach for solving this problem is given in Appendix 1.

The method for calculating a desired spectrum, for which the authors found possible to use the definition in the
headline, does not based on a Frobenius matrix.

It can be used to calculate the feedback coefficients of a control system with the aim to obtain a desired spectrum of
closed-loop system without resort to transformation of variables. This allows practical problems of control to be
solved at the design phase of the system. By simulating the system behavior with different spectrums it is possible
to find a suitable alternative, which can be further implemented as a direct digital control algorithm. The paper is an
outgrowth of the work [5]. We ask that authors follow simple guidelines. In essence, we ask you to make your paper
look exactly like this document.

2. Informal Reasoning

In the matrix, a Frobenius transformation forms the row of elements reflecting the coefficients of the characteristic
polynomial. An additive influence of the feedback onto these elements varies a spectrum. The feedback elements
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are calculated in the obvious way as the differences of the row elements and the coefficients of the polynomial with
roots that equal to the values of a given spectrum.

The proposed method is based on the relationships between the elements and the spectrum not for the transformed
matrix but the original one. These relations represent another kind of Vieta’s formulas, where the sums of the main
minors of the matrix appear instead of characteristic polynomial coefficients. In contrast to the Frobenius form and
Vieta’s formulas these minors contain all of the matrix elements.

In order to change a spectrum by a given set of eigenvalues, the matrix elements are replaced by unknowns, and
then the corresponding elements of minors and combinations of the matrix eigenvalues are replaced by the same
combinations of numbers from a given set. In this case, the identities are transformed into a system of equations for
the unknowns. As a result, after the unknown will be replaced by the solution of the obtained system of equations,
the matrix gains a desired spectrum. Feedback elements can also be calculated in obvious way as the differences
between replaced matrix elements and elements of solution.

3. Aim of the Work

Suppose A=[a;;], i, ] elLk isa given kxk real matrix, o(4) is its spectrum, and A={\;} is a set of real
numbers. By A, denote the matrix A with k replaced elements by unknowns.

The objective is to consider a range of issues related to evaluation of the unknowns, which are substituted into the
matrix Ay, such that the condition o(A;)=A is satisfied.

4. Definitions

4.1. Replacement is a replacing the elements of the matrix A (replaced elements) by other elements (replacing
elements). Replacing matrix A, (matrix with replacement) is a matrix with replacing elements.

4.2. Spectral equations of matrix A (replacement system) are k equations that was formed by replacing the
coefficients of Vieta’s formulae by the sums of main minors of the matrix A, and by replacing the roots by the
elements from a given set A.

4.3. Replacement of the i-th order is a replacement leading to spectral equations of the i-th order. Linear
replacement is a replacement of the first order. Non-linear replacement is a replacement of the second order or
higher.

4.4. Spectral transformation of the matrix A is a replacing the elements of the matrix A, by the solution of spectral
equations.

5. Frobenius Transformation of a Spectrum and Its Alternative

For a matrix

81 8 ..o By
A= 8y 8y . ’ )
1 A2 - A
it is known Vieta’s formalas
d =01 +0,+...+ 0y,
a, = 6,05 + 01053 +...+ 6,_10, @

ak =07035..0y;

where ojand a; are the i-th root of the characteristic polynomial and the result of summation in the i-th row, which
are the coefficients of the characteristic polynomial considering the sign.

Frobenius transformation of a spectrum is based on obtaining the elements on the left-hand side (taking into account
the sign) by non-singular transformation of the matrix A and by supplementing them to the values that satisfy a
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given set. This corresponds to the fact that the sum on the right-hand side (2) are replaced by the same relationships
between the numbers of a given set A={A;}, and the elements on the left-hand side are supplemented by
unknowns x;. This leads the system to the equations

al+X1:7\,1+}\,2+...+}\,k = dl’

a.k + Xk = 7\’17\’2"'7\’k = dk
with an obvious solution X; =d; —a;, where d; is a sum in the i-th row. Substituting the solution into Frobenius
matrix one forms its spectrum with the values from a given set A.

The possibility to change a matrix spectrum by supplementing the matrix elements to the values that satisfy a given
set provides an alternative to Frobenius transformation of a matrix.

To perform this procedure, we use the system (2) in the form of sums of main minors on the left-hand side. The
example of such system for a matrix of the 3-rd order is given by

81+ 8p 833 =2y,

8y98pp — 8981 + 841833 — 813831 T 80833 — Ap3dgy = A,

81189833 + 842873831 + 81381837 — 81981833 — 81189383, — 838,831 = 83.
In this case, all of the matrix elements being in the system. In particular, this system enables one to evaluate how
each element influences on the spectrum. This can’t be done with the help of Frobenius transformation.

Now, we supplement arbitrary elements of A, for example, the main diagonal elements by unknowns X;, X, and Xa.
As a result, the matrix A takes the form

at+X a a3
Ac=| ay A, T X%, a3 |
agy as g3+ X3

and we obtain the system of equations for supplements the same as (3):
(811 + X)(@22 + X2) — 812891 + (811 + X1 )(833 + X3) — 13831 + (Az + Xp)(8g3 + X3) — 8383, = Uy, (4)
(8311 %1 )(8p + X5 )(8g3 + X3) + 812893331 + Q13891837 — B428p1(833 + X3) — (811 + X1 )A383, — 343(82 + Xp)@3; = d3.

By solving (4), we consider the goal has been achieved. Indeed, substituting the solutions into the matrix A, one
makes it equal to a given set without resort to transforming the matrix.

Further efforts are aimed to simplifying the method of solving, since just the solving this particular system, after
opening the brackets, is very complicated, and the solving complexity increases many-fold when the dimension
increases. Difficulties in solving a particular system can be even more enhanced when we need to solve multivariate
problems associated with a choice of complementary elements. The above example is illustrated by supplementing
diagonal elements. Besides this embodiment, other variants can be used, the number of which also extremely
increases with increasing a size of the matrix. Frobenius transformation of a spectrum does not have the variety of
alternatives, as it has the unique solution to (3) when an appropriate condition is satisfied.

6. Spectral Equations

The above computational difficulties can be significantly reduced by choosing as the unknowns the elements
together with its supplements instead of just the supplements. After solving the equations, we can determine the
supplements as easy as in the Frobenius transformation.

For this purpose, the k arbitrary elements of A are replaced by unknowns, which are denoted for presentation by the
capital letter X with the same indexes. For example, instead of the matrix

a; QX 3
Ac=|agtXy ayptXs

agy azp a33
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with unknown supplements to the elements a;,, as, ay, it is assumed the replacing matrix
1 X2 A3
Ac=1 X1 Xzo 3 (5)

31 383y 4ag3

where instead of the elements ai,, as, ax, called in definition 4.1 as replaced, the replacing elements Xi, Xo1, X2,
considered as the unknowns are located.

The result is the system of equations for Xy, X51, X5, of the form
g+ Xpptagg=0dy,
11X 5y — X1pX 91 + 81833 — Q15837 + X 22833 — Apgdgp = Uy, (6)
11X 20833+ X128p3851 + 813X 21832 — X1, X 21853 — 8180385, — 13X 55831 = .

In general case, replacement of k elements of A with combining the replacing elements X;; into the vector X;; and
building A, gives the system of equations

F(X) =0, (7

where F is the non-linear vector function with size of k called by the spectral equation.

In a similar way, we can choose
k

different replacing sets of elements and obtain replacing matrices in the form of (5) and equations in the form of (7).
The number N very rapidly increases with the size of A. For small values of k, it is given in Table 1.

Table 1
k 2 3 4 5 6 7
N 6 84 1820 53130 1947772 85900584
n 1 20 495 15504 776475 26978328
M 5 64 1325 37626 1171297 58922256

7. Types of Spectral Equations

The type of the system (7) depends on the arrangement of replacing elements in A,. If we allocate the replacing
elements in different rows and columns, as it is shown for the matrix (5), the system can takes the linear or non-
linear form of degree from 2 to k. However, not all of the systems have a solution. Using a particular matrix, we can
at once determine a group of systems that do not have a solution.

Further, for the sake of simplicity, we will denote the replacing and non-replaced elements of matrices by the
numbers that equal to the indexes and dots, respectively.

The right-hand side of the first equations of the system (6) is the fixed sum, and the left-hand side has the unknown,
therefore, the equation is consistent with arbitrary values of a3, azs, and d;. But, for the other matrix

12 .
Ac=| . . 23], ©)

there are no unknowns on the left-hand side of
8y +ap, +ag3 =0y,

s0, the last expression is inconsistent.
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It is straightforward to make the following generalization. The matrix (9) belongs to the family of matrices, which is
formed by replacing k elements of A that lie outside of the main diagonal in the two triangle areas containing (k* —
k) elements. This means that a necessary condition to solve (7) is that at least a one replacing element must be
located on the main diagonal. It follows that the number of inconsistent equations (7) is equal to the number of
combinations

n :lez_k . (10)

The dependence (10) is also given in Table 1.
Subtracting (10) from (8), we obtain
M =N — N (11)

(given in Table 1) that is the number of solvable systems (7). Under appropriate conditions, this number is the sum
M= M, (12)

where M; is the number of the i-th order equations.

Determining the terms in (12) for a general case as functions of k is the problem that needs to be solved. Even
calculating My, i.e. determining the number of the linear systems (7), is unobvious procedure that requires an
analysis of equations of the form (6). We can say definitely (or, rather, we can suggest, since there is no rigorous
proof) about only the single term M; for i = k. It is equal to 1. In other words, there is only one way to replace k
elements of matrix that allows a spectral equation of order k to be obtained by replacing the elements on the main
diagonal.

We consider next a particular case for a matrix of the third order. By analyzing 64 consistent equations (7), we
establish 18, 45 and 1 variants to replace 3 elements according to (11). Replacements are described by two types of
the first order equations, six types of the second order equations, and one type of the third order equation. Equations
of all types are resulted.

8. Linear Replacements

At first, we discuss the variants with evident solving the problem of choosing elements for linear replacement
associated with a replacement of rows and columns of A.

There is only one element of replacing rows and columns in the summands of minors. Each of summand contains
one unknown, and the multipliers obtained from the remaining elements give the coefficient at the summand.
Assembly of these coefficients forms a matrix denoted by R. These equations belong to the type 1.1.

Some summands on the left-hand side, as it can be seen from the system (6), do not have replacing elements. We
combine these elements in the row i into the element b;. Then, after combining the elements b; and d; into the
vectors b and d respectively, we can represent the equation (7) in the linear form

RX =d-b (13)
by replacing rows and columns.
The solution to (13) exists under condition
detR=0. (14)
The number of equations (13) is
my; =2k (15)

They do not describe all of possible linear systems but determine only obvious ones.

If replacing elements are not rows or columns, we can also get the linear system (7). In this case, the summands of
minors can contain a product of replacing elements. Indeed, for example, for the matrix

11 12

A=l. . .| (16)
32

the replacement system is
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Xy1+85;+833 =0y,
X 11892 — 842891 + X11833 — 813X 31 + 89833 — 83X 32 = 3, 17

X 11892833+ X1283831 + 813891 X 30 — X12821833 — X11823X 3 — 81389,831 = U3.

In the third row, we obtain the summand with a product of unknowns X;; and Xs,. In this case, we have a formal
reason to assign (17) to the second order system. However, we can find X;; from the first equation (i.e. Xy is
known), and the system becomes linear. These equations belong to the type 1.2. The given types of equations
exhaust linear replacements.

9. The Second Order Replacements

9.1. Replacing a single diagonal element

Replacements with a single diagonal elements lead to different types of the second order equations. Consider the
matrix

1 12 .
A=l . .|, (18)
31

which differs from (16) in a single element. The second and third equations for (18) is given by

X11892 — X181 + X11833 — 843X 37 + 89833 — 8383, = Uy,

(19)
X 11820833 + X1283X 31 + 84381835 — X128p1833 = X118p3932 — 843892 X 31 = U3.

The last equation of (19) is like (17) only externally. In the product, there is no variable expressed from the first
equation. This type of replacement is denoted as 2.1.

The matrix
A =21 . . (20)

differs from (18) in a single element and contains by a single product of elements in two equations:

X1182p = X12X 1 + X14833 — 815831 + 892833 — 8383, = Uy,

X11892833+ X17825831 + 813X 5183, — X1 X 51833 — X118p3835 — 813825831 = U3. )
This type of replacement is denoted as 2.2.
The matrix
1 . .
A=|. . 23 (22)
32
differs from (16) in a single element and also contains the product of elements in two equations
X11892 — 812891 + X11833 — 8831 + 825833 — X23X5, =0y, 23)
X118p2833+ 815X 23831 + 81381 X35 — 819851833 — X11X 53X 35 — 8y 3850831 = U,
but the third equations has the product of three elements.
This type is denoted as 2.3.
The matrix
11 12
A = 23|, (24)
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which differs from (16) in a single element, is characterized by the equations
X182 = X181 + X11833 — 81383, +8p)833 — X 383, = s, (25)
X11820833+ X12X 53831 + 81381835 — X1p821833 — X11X 25835 — 138,583, = U3
with two products of two unknowns in the third row. This type is denoted as 2.4.
9.2. Replacement of two diagonal elements

When two diagonal elements are replaced the type of equations depends on a choosing the third element. Consider
two matrices

11 12 . 11 . 13
al. 22 ., b|. 22 . (26)

with identical replaced diagonal elements and common first equation X,;+ X,,+a3=d,. For the matrix a), the
equations

X11X 50 = X181 + X 11833 — 813831 + X 2833 — 89383, = Uy,

(27)
X11X 22833 + X 1983831 + 813991837 — X12821833 — X118p383, — 83X 5837 = U3
differ from 2.2 in the first equation. They are denoted as 2.5. For the matrix b), the equations
X11X 50 — 84581 + X11833 — X13831 + X 5833 — 89383, = Uy, 28)

X11X 22833 + 815853831 + X1382183) — 81281833 — X118p3835 — X13X 25831 = U3
with a single product in the second row and two products in the third row are denoted as 2.6.

9.3. Replacement of the k order

The last equation of (7) contains the k! summands with products of k elements while the single summand has all
unknown multipliers. Replacement of k elements using variants of (10) gives spectral equations of the k order only
for unique case when the main diagonal of a matrix is replaced. Other variants of replacement lead to equations of
the lower order. This conclusion is done without proving due to analysis of all spectral equations of the third order
matrix.

10. Spectral Transformation of the Second Order Matrix

a a
A [ 11 12} 7
A Ay

For the matrix

we write the system (2) as

a1201+62,

3.2 = 6102 .

Two of fore elements can be replaced in six ways. Only one of those with replacing the elements a;,, a,; leads to
incompliance equations in the form (6). From five remaining ways, fore are replacements of rows and columns and
lead to linear spectral equations. Replacing the main diagonal elements a;,, a,; leads to the second order equation.

10.1. Linear equations

Replacement of rows and columns gives the replacing matrices

111122..311.4.12 29
)..’)2122’)21.’).22 (29)
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1) Xi1tag, =dy, A+ Xy =0y,
X11820 = X181 =3, 811Xy — 81X,y =dy,
Xi1tag, =dy, A+ Xy =0y,
X1182p — 815X 51 =0y, 11X 55 — Xq851 = dy.

We present them in the form of (13) as
RiXj=d-b, (30)

where Xy =[Xy3, Xg,1" X, =[Xy1, Xp01", Xz =[Xqq, XpqI" X4 =[X12, X2,1" d =[d,, dz]T )
1 0 0 1 1 0
bl=b3:[a22,O]T, b2:b4:[311:0]T, Rl:{ } RZ:{ } Rsz{ }

a —an —&, ap Ay —ap
0 1
R, = :
—a 9,

For the matrices (29), the conditions (14) are given by
1) a,y#0, 2) a,#0, 3) a,#0, 4) a,;#0.
If these conditions are satisfied, the equations take the form
Xy =[d; —agy, (a0, —83, —d,)/8y,]", X, =[(8y0; —a;—dy)/ @y, dy —ay,]"
X3 =[0y—ayy, (ap,0; —a%,—d,)/ap,]", Xy =[(ay10y—af; —d,)/ 8y, dy —ay4]" .

Substituting the equations into (29) one gives the matrices

1) d;—ay, (azzdl_agz—dz)/au L 2) agg ap ’
(810,

ayy ay) —aj—dy)/ay, d-ay,
(31)
2
d; —ay, a, a; (agdy—ag—dy)/ay
3) ) , 4)
(201 —a3,—dy) /@, ay, ayg dy—ay,
with a spectrum that equal to a given set A={A;,A,}.
10.2. The Second Order Equation
Replacing the diagonal elements a;;, a,, gives the matrix
A 1 .
L 22
with the equation
Xi1+ Xgp =0y,
X11X 22 — 84585, =05,
Its solution
Xip=otp, Xp=aFf, (32)
where a=d,/2, B= \/df/4—(a12a21+d2) , forms matrices
+ a
A, = {“ P 12 } (33)
’ 3y OoFfp

with a given spectrum.
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Example 1. Given aset A ={1, 2} and a matrix

After calculating the matrices (31), we obtain

-1 -2 1 2 -1 2 10
1){3 4}’ 2) {O 2}’ 3) -3 4] 4 {3 2]

They have the spectrum that contains the elements from the given set.
With these results, the solution (32)

X11=15+i2.398, X, =15-i2.398
as well as the matrices (33)

A 1.5+i-2.398 2 [15-i-2.398 2
. 3 15-i.2.398|" "2 3 1.5+i-2.398

are complex.

11. Spectral Transformation of the Third Order Matrix

From Table 1, we have the 84 variants for choosing three elements. Among them, the 20 variants lead to
incompliant systems. The remaining 64 variants represent systems of the first, second and third order. These
systems are described by equations of tow, six and one types respectively. Each value M; in (12) is found via
analysis of equations.

11.1. Linear spectral equations

Replacing rows and columns one gives the matrices

11 12 13 e e 1 . . .12 . .. 13
ny{. . .|, 221 22 23|, 3)|. . .|, H|21r . .|, 5. 22 .|, 6)|. . 23| (34)
31 32 33 31 . . .32 . . . 33

with appropriate equations. For example, for the matrix 1), we obtain the following equations
Xi1+ap, +agg=dy,
X11822 — X181 + X11833 — X13831 + 892833 — 8p383, = Uy, (35)
X 11820833 + X 1283831 + X13891830 — X128p1833 — X11893832 — X1389,831 = d3.

They can be presented in the form (13) as

RiXi:d_bi’ (36)

T T T T
where X1 =[X11 Xq20 Xq3]' Xy =[Xo1, Xp2, X3l X3 =[X31, X352, X33l Xg=[X11 Xop, X591
T T T _ _ _
Xs :[Xlz- X22’ X32] ' xe :[Xlsn Xzsv Xss] , d= [dl! dzv ds] ’ fl —azz+a33| fz —all+3'33’ f3 - a114"3122v
01 =8pp833— 89383y,  Up =8pad3; —Ap1833, U3 =Api8zp —8pp831, U4 = 1383y — 15833, U5 =891833~ A1383y,

_ _ _ _ T
U6 =812831— 1832, U7 =183~ &3y, Ug =381 — 183,  Ug =418p0 — 81081, by =Db,=[f},9;,0] ,
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1 0 0 0 1 0
bzzbsz[fz,g5,0]T, b3:b6:[f3,99,0]T, Ri=|fi —ap —ag | Ry=|-a;; f; —ag|,
g9 O 93 94 95 s
0 0 1 1 0 0 0 1 0 0 0 1
Ry=|—-a3 —ay f3|  Ry=|fi —a, —a3| Ry=|-ay f, —a;|, Re=|-a; -azp f3|.
97 s 99 g 9 93 94 O9s s 97 9s 99

As it mentioned above, choice of replacing elements in different rows leads to leaner equations of the type 1.2.
Matrices and equations for all of remaining variants for such types are resulted in Appendix 2. The first equation is
not cited because it remains identical for replacements with other elements.

11.2. Matrices with the Second Order Replacement

In Appendix 2, we consider matrices and equations of the types 2.1-2.4 when a single diagonal element is replaced.
In addition, we result equations of the type 2.5 and 2.6 when two diagonal elements are replaced.

11.3. Matrix with the Third Order Replacement

For the third order matrix, 63 of 64 variants for choosing three elements lead to equations of the first and second
order. The remaining matrix

11 . .
A=|. 22 . 37)
33
is characterized by the third order equation
X117+ Xgp+ X33 =10y,
X11X 22 = 812871 + X171 X33~ 343831 + X 25X 33— p5d3, = U, (38)
X11X 22X 33+ 84583831 + 8138183, — X118p3837 — 813X 92831 — 81851 X 33 = 3.
The result obtained can be generalize for an arbitrary order matrix.

Example 2. With a set A =41, 0,—1}, consider variants of transforming a spectrum by replacing rows and
columns in the matrices

1 2 3 010 010 0 0O
1)|4 5 6{, 2)|2 2 2|, 3|1 2 2|, 4|1 0 0Of.
7 8 9 3 53 010 010
The matrix 1). Let’s calculate d; =0, d, =-1, d;=0 and determine matrices and vectors (36):

d=[0,-10]", f;=14, f,=10, f,=6, g,=-3, 9,=6, g3=-3, 9,=6, 95=-12, g5=6, g;=-3, gg =6,

1 0 0

gy=-3, b=b=[14,-30", b,=h=[10,-12,0]", by=bs=[6,-30]", R =14 -4 -7/,

-3 6 -3

[0 1 0 0 0 1 1 0 0 0 1 0]

R,=|-2 10 -8|, R;=|-3 -6 6 |, R,=|14 -2 -3|, Rs=|-4 10 -6/,

|6 -12 6 -3 6 -3 -3 6 -3 6 -12 6 |
0 0 1
Rg=|-7 -8 6
-3 6 -3

The matrices are non-singular, hence, there are all the solutions:

X, =Ryt(d —by) =[Xy1, Xq0, X;3]" =[-14, —16.444, —18.889]" ,
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X, =RyM(d —b,) =[X,1, Xu0, X,5]" =[-8.167, 10, —11.833]" ,
X3 =R3M(d —by) =[X3;, X35, X33]" =[-3.333,-4.667,-6]",
Xy = Ril(d —by) =[X11, X33, )(31]T =[-14,-30, —46]T ’

X5 =RsY(d —bs) = [ Xy, Xop, X3,]" =[-4.5,—10, —3.636]" ,
X = Rg(d —bg) =[X;3, X g, X33]" =[~1.273,—15.5,—6]" .

With these solutions, replacing matrices (34)

14 -16.444 -18.889 1 2 3 1 2 3
A, =| 4 5 6 |, A,=|-8167 -10 -11.833|, A, =| 4 5 6 |,
7 8 9 7 8 9 -3.333 —4.667 —6
[-14 2 3 1 -45 3 1 -45 -1.273
A,=|-30 5 6|, A =4 5 6| A,=|4 5 -155
—46 8 9 7 —3636 -6 7 -3636 -6

take the spectrum
olA, )= {L-11516-10%, ofa)-1{1-8847-10"%, -1, oA, )=1{1 2084.107%, -1,
olA, )=11-1,5437.20%}, ofp, )=11-1,2421.10") ofA, )= 1-2876-107%

that is equal to a given set with calculating accuracy.
The matrix 2). Omitting intermediate calculations, here and further, we find matrices

1 0 0 0 1 0 0 0 1
R=| 5 -2 -3|, Ry=|-1 3 -5/, Ry=[0 -2 2 |,
-4 0 4 -3 0 3 2 6 -2
1 00 01 0 0 0 1
R,=| 5 -1 0|, Re=|-2 3 -2, Rg=|-3 -5 2
—4 -3 2 0 0 0 4 3 -2

Among all the matrices, only Rs is singular and hence the solution X5 does not exist.

With the remaining matrices, the solutions to the systems (36) are
X,=[-6,-8-6]", X,=[-2-4,-2]", Xz=[-3-4,-3]",

X, =[-6,—34,-63]", Xz =[-0.545-1.273 3] .

Substituting them into the matrices (34)

-6 -8 —6 0 1 0 0 1 0
A= 2 2 2| A =|-2 -4 -2|, A =[2 2 2|
'3 5 3 3 5 3 -3 -4 -3
(-6 10 0 1 -0.545
A,=|-34 2 2|, A =|2 2 -1273
|63 5 3 35 3

one forms the spectrum
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oA, )= |-8125-10"5+i-1.142.107, -3.125.10%°~i.1142.107, -1}, ofA, )= —2.944.10%,2.944.10°%},
o(A,)=11 -4.13310%,4.133.10°], ofA, )-{-3.88-10%388.10°%, -1},

G(Ax6)= %l i-3.269-10°%, —i-3.269-10—8}

that is equal to a given set.

The matrix 3). Let’s evaluate the matrices

1 00 010 0 0 1 1 00

Ri=[ 2 -1 0|, Ry=|-1 0 -1|, Ry=|0 -2 2|, R,=[2 -1 0f,
-2 0 1 000 2 0 -1 -2 0 2
0 1 0 00 1

Ry=|-1 3 -2|, Rg=|0 -1 2
0 0 0 1 0 -1

The matrices R, and Rs are singular and hence the solutions X, and X5 do not exist. With the remaining solutions
X, =[-2,-5-4]", Xz=[-1,-2,-21",
X,=[-2,-5-2", Xg=[2-4,-2

the matrices

2 -5 -4 0 1 0 —2 10 01 -2
A=l1 2 2|, A=[1 2 2| A,=|-5 22|, A =1 2 -4
0 1 0 -1 -2 -2 -2 10 01 -2

take the given spectrum

ola,)-8.0.-1, ola,)--10}. ofa,)-12148107%-1f, ol )-f.-10}

The matrix 4). Among the matrices

1 0 0 01 0 0 01 1 00
R, = -1 0|, R,= -1|, Ry=|0 0 0|, R,=|0 0 Of,
0 0 1] 0 0 0 0O 0 00O
[0 1 O] 0 0 1
Rs=|-1 0 0|, Rg=|0 -1 0O},
10 0 0] 1 0 0
R; and Rg are non-singular. With them, the solutions are
X;=Xg=[0,1,0]".
For replacing matrices
010 0 0O
A, =|1 0 0, A =|1 0 1},
010 010

these solutions provide a given spectrum.

Example 3. Spectrum transformation with linear replacement of elements in different rows and columns. Consider
the matrix and equation 12) given in Appendix 2. From the first equation, we define the unknown
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Xpp=0;—ay;—ag3
at once. Two others are reduced to an equation for X5 and X,; with the matrix

{ as; as; }
3183y —A31X5; 82831 — 31832

and the vector
—dy +(ay; +833) X pp — 815871 + 811833
{ d3 —ay1833X 25 + 815821833 }
With the set and matrix 1) from example 2, the solution
[X13, X50, X,5]" =[2.434,-10, —14.38]"

for the matrix 15)

1 2 2.434
A, =4 -10 -14.38
X15
7 8 9

forms the given spectrum c(Ax15): {1 -1, —8.065-10‘14}.

All calculations was made in MathCAD.
12. Conclusion

A method for obtaining a matrix spectrum equal to a given set of numbers without transformation to a Frobenius
form is stated. Calculating tool is a system of equations, which having obtained by replacement of arbitrary matrix
elements by unknowns. Their number is equal to the size obtained from relationships between matrix elements in
the form of main minors and elements of a given set.

The method has many variants for choosing replacing elements and equations to calculating replacing elements
from linear to non-linear with an order equal to the size.
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Appendix 1. Proving the method of a direct spectrum transformation

In technical systems, variables having a certain physical sense are used. These variables characterize energy stores
such that a speed of moving mass, a solenoid current, a capacity voltage and similar parameters, which are
measured by sensors. To obtain a Frobenius matrix it is required both direct and reverse transformation of variables
in the feedback loop. The reverse transformation is explained by the fact that a combination of physical variables
must enter into the system input. Firmware implementing the transformation needs additional hardware expenses,
and software realization needs expenditure of time. This leads to delay in the feedback loop and to deteriorate
dynamical properties of system. As a result, the advantage of a control method based on the variation of system
spectrum is used not to the full owing to the features of the method using to implement a spectrum transformation.

Appendix 2. Replacing matrices and spectral equations for the third order matrix

A.2.1. Linear replacements

For the type 1.2, replacement of the element ay; (number 7) refers to the matrix (16) and equation (17):
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(N 11 . 13 1 . .
8. . .|, 9|. . 23|, 10)|21 . 23|,
31 32

X11822 — 815X 51 + X11833 — 813837 + 80833 — X385, =,

8)

X 11822853 + 81X 23851 + 813X 2185, — 81 X 51833 — X11X 2383, — 83850831 = U3,
9) X11822 — 812851 + Xq1833 — X138371 + 80833 — X385, =,

X 11822853 + 812X 23831 + X1385185, — 8821833 — X11X 2385, — X138,0831 = U3,
10) X 11822 — 812851 + X1 1833 — 813X 31 + 80833 — 853X, =,

X 11822853 + 812853 X 31 + 813821 X 35 — 89891833 — X11823X 3 — Q13892 X 31 = 3.
Replacing the element a,, gives

12 13 .. 13 e S
1) . 22 .|, 12)|. 22 23|, 13)|. 22 .|, 14) |21 22 .|,
31 32 . 31

811X 95 — X198 + 891833 — X383 + X 55833 — 383, = Uy,

11)
811X 29833 + X18p3837 + X138p1832 — X12871833 — 8183837 — X13X 25831 =3,

11X 5p — 8481 + 841833 — X13831 + X 0833 — X383, =y,

12)
11X 29833 + 315X 23851 + X 13821832 — 81281833 — 11X 2385, — X13X 25831 = U3,

11X 5p — 8481 + 841833 — 83X 31 + X o833 — Ap3X 3, =y,

13)
11X 29833 + 81 2823X 31 + 81381 X 32 — 81281833 — A11323X 30 — A3 X 2 X5 =g,

12) A1 X5y — 315X p1 + 811833 — 843X 31 + X 2833 — Apdz, = Uy,
A1 X 29833+ 31283X 31+ 313X 21837 — &1 X 21833 — 84 180383, — A 3X 5o X531 = 3.

Replacing the element as3 gives

L 12 . . 12 13 o
15 (. . .|, 18)|. . .|, 10|21 . .| 18|21 . 23|,
32 33 .. 33 31 . 33 .. 33

15) 81189, — X181 +831X 53— 19831 + 89, X33~ 83X 5, =y,
811897 X 33+ X18p3837 + 81381 X 32 — X181 X 33— 8118p3X 30 — 81385831 = U3,
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16) 81189, — X181 +831X 53— Xq3831 + 895X 33— 8383, =y,
811397 X 33+ X18p3837 + X138p1830 — X181 X 33— 81189383, — X1382,83; = U3,

17) 81189, — 345X 51 831X 53— 813X 31 + 895X 33— 8383, =y,
811897 X 33+ 8128p3X 31 + 813X 21832 — 812X 21X 33— 81189383, — 813857 X 31 = U3,

18) 81189, — 45X 51+ X 53— 13831 + 89, X33 — X383, =y,
811897 X 33+ 815X o383 + 813X 21830 — 12X 21X 33— 811X 53837 — 81 38,831 = 3.

A.2.2. The Second Order Replacement with a Single Diagonal Element

For the type 2.1, replacement of the element a1, (number 1) refers to the matrix (18) and equation (19):

11 . 13
)21 . .|,

2) X11822 — 845X 51 + X833 — X381 +8pp833 — Ap3dg, =,
X 11892833+ 8183831 + X13X 2185, — 812X 1833 — X1182385, — X1382831 = 3.

Replacing the element a,, gives

12 . S
3)|. 22 23|, 4|21 22 .|,
31

11X 92 — X1p8p1 841833 — Ay 58371 + X 50833 — X383, =,

3)
11X 29833+ X15X 93831 + 1389183 — X 12821833 — 811X 93832 — 813X 20831 = U3,

811X 95 — @15 X o1 + 841833 — 833X 31 + X833 — 33, = Uy,
11X 59833 +81283X 31 + 813X 21832 — 819X 21833 — 89183837 — 13X o X3 = 3.

4)

Replacing the element as3 gives

13
. 6)| . . 23],

5) .
32 33 31 . 33

A1187 — 842851 +391X 33— X383 + 859X 33— Ap3X 3, =y,
A48 X 331283851 + X138p1 X 32 — 81281 X 33— 81 183X 3 — X1382,851 = U3,

5)

6) A18p — 812851 + 891X 33— 83X 31 + 8 X33~ X383, =y,
811397 X 33+ 81283 X 31 + 81 38183, — 312 X 51X 33— 811X 2385, — 3855 X 3 = 3.

For the type 2.2, replacement of the element ay; (number 7) refers to the matrix (20) and equation (21):
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11 . 13
8. . .|
31

8) X 11822 — 842851 + Xy 1833 — X13X 31 + 8,833 — Ap3dg, =,
X 11892833+ 812823 X 31+ X1387183, — 19891833 — X1183832 — X138, X 31 =3

Replacing the element a,, gives
.12 . .o .
9)|21 22 .|, 10)|. 22 23],
32

9 A1 X 59 — X12X 91 + 81833 — Q13831 + X 2833 — pgdz, = Uy,

11X 29833 + X 1803831 + 313X 218332 — X12X 21833 — 811893832 — d13X 20831 = U3,

10) a1 X 5p — 881 + 841833 — Ay3851 + X o833 — Xp3X 3, =dy,

11X 29833+ 315X o383 + 81381 X 32 — &1 2821833 — A1 X 23X 32 — 813X 20831 = 3.

Replacing the element as; gives

o .. 13
). . 23|, 12)| . . .|,
32 33 31 . 33

11) 811897 — 84851 311X 33— 813851 + 855X 33— Xp3X 3, =y,
311392 X 33+ 815X 23851 + 81381 X 32 — 812851 X 33— 811X 23X 32 — 84385831 = U3,
A187 — 842851 311X 33— X 13X g1 + 8, X33 —8p383, = dy,

12)
11397 X 33+ 31283X 31+ X 13891837 — 81281 X 33 — 84180383, — X138, X531 = 3.

The type 2.3 (number 13) refers to the matrix (22) and equation (23):

14y . 22 .|, 19|21 . .|,
31 . . .. 33

11X 50 — 84851 + 811833 — X13X31 + X833 — 8383, =,

14)
81X 20833+ 899853 X 31 + X1389183p — 817891833 — X118p3835 — X13X 2 X351 =03,
15) 11857 — X12X o1 +811 X33 — 13831 +8pp X 33— Ap3dz, = Uy,

11372 X 33+ X 12893831 + 313X 21832 — X12X 21X 33 — 81183837 — 8138p,831 = 3.

ISSN: 2395-0218

For the type 2.4, replacement of the element ay; (humber 16) refers to the matrix (24) and equation (25):

11 . 13 11 . . 11 . .
iy, . ., 18| . . 23|, 19|21 . .|,
32 . 31 . . . 32
X189 — 84281 + X11833 — X13831 +8pp833 — 893X 3, =y,

17)
X 11822833 + 812873831 + X1381X 30 — 81981833 — X11823X 3 — X1382583; = U3,
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X118, — 8181 + X11833— 813X 31+ 8p0833 — X383, = U,

18)
X 11820833 + 815X 23X 31+ 813891832 — 81981833 — X11X 23835 — 813857 X 31 =3,

X1189p — 835X 51 + Xq4833 — 813831 + 89833 — 853X 3, =y,

19)
X 11822833 + 81283831 + 813X 21X 35 — 819 X 51833 — X1183X 32 — 8385837 = 3.

Replacing the element a,, gives
.12 . . . . .. 13 . .13
200 . 22 .|, 21)| . 22 23|, 22)|. 22 .|, 23)|21 22 . |,
31 . . 31 .. . 32

Q11X 52 — X198p1 841833 — 43X 31 + X 50853 — 8p3d3, = Uy,

20)
a1 X 5853 + X1283X 31+ 83891830 — X128p1833 — 81189385, — 43X 2, X531 =3,

a1 X 5p — 81 + 841833 — 813X 31 + Xp833 — X383, =05,

21)
311X 29833 + 81, X 23X 31+ 8138183, — 1891833 — 31X 23832 — A 3X 22X 31 =03,

a1 X o5 — 8981 + 81833 — X13831 + X 2833 — 893X 3o =0,

22)
311X 29833 + 19893 X 31+ X1381X 37 — 812821833 — X11823X 3 — X13X 2831 =3,

A1 X5y — 315X p1 811833 — 8138371 + X pp833 — Ap3X 3, =y,

23)
a1 X 29833 31283851 + X13X 2183 — &1 X 21833 — 81180383, — X13X 20831 = 3.

Replacing the element as3 gives
.12 .12 . .. 13 .
28 (. . 23|, 25|. . .|, 26)|22 . .|, 20|22 . .|,
33 31 . 33 . . 33 . 32 33

11897 — X181 + 811X 33— 813831 +8p X33~ X383, = dy,

24)
11392 X 33+ X 12X 03831 + 313801832 — X12821X 33 — 811X 3832 — 81.382,831 = U3,

11857 — X181 + 811X 33— 813X 31 + 8, X 33— 8p383, = Uy,

25)
311392 X 33+ X128p3X 31+ 313801832 — X181 X 33— 81180383, — 81382 X 31 = U3,

11897 — X 51 + 811X 33— Xq3831 + 8 X 33— 8p3a3, = dy,

26)
311397 X 33+ 81283831 + X 13X 21832 — 812X 21X 33— 81180383, — X1382,831 = U3,

27) 818y — 819X 51 + 811X 33— 813831 + 89 X33~ ApaX 35 =,
811897 X 33+ 812825831 + 813X 91X 3 — 817 X 51X 33— 811893 X 30 — By 3890831 = U3.

A.2.3. The Second Order Replacement with Two Diagonal Elements

For the type 2.5, replacement of the elements ay;, a;; (number 28) refers to the matrix (a) of (26) and equation (27)

1 . .
29) |21 22 .|,
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29) X11X 92 =815 X 51 + X 1833 — 5837 + X 55833 — 383, =y,
X11X 20833 + 812873831 + 813X 21835 — 819 X 51833 — X118p383, — 813X 5583, = 3.

Replacing the elements ay;, as; gives

30).:.,31).::,

30) X 11822 — 842851 + Xq1X 33— X13831 + 85 X33 —8pgd3, = Uy,
X11892X 33+ 812873831 + X1382185, — 17891 X 33 — X1182385, — X1382831 = U3,

31) X118 — 42851 + X11X 33— 813X 31 + 895X 33— 383, =y,
X 11822 X 33 +81283X 31 + 8138183, — 81891 X33 — X118p383p — 813892 X 37 = 3.

Replacing the elements ay,, ass gives

32)|. 22 23|, 33)|. 22 .|,
33 . 32 33
11X 5p — 1281 + 811X 33— 813831 + Xpp X33~ X383, =y,

32)
311X 2o X33+ a15X 93831 + 313821832 — 12821 X 33— 811X o383, — Ay3X 25831 = U3,

33) 11X 5y — 8981 + 811X 33— Ay 3831 + X35 X33 —8p3X 3, =d,,
11X 29X 33+ 81893837 + 81381 X3 — 81281 X 33— 81 183X 32 — 813X 20831 = 3.

For the type 2.6, replacement of the element a;4, a», (number 34) refers to the matrix (b) of (26) and equation (28):

1 . . 1 . . i
35)|. 22 .|, 36)|. 22 23}, 37)|. 22 .|,
31 .. S . .32

35) X11X2p — 8381 + X11833 — 813X 31 + X 02833 — pgdz, = Uy,
X11X 20833 + 81 2823X 31 + 81 38185, — 312891833 — X11823832 — Y 3X 22X 31 =03,

36) X11X2p — 83851 + X11833 — 843831 + X 25833 — X383, = dy,
X11X 20833 + 81 2823X 31 + 84 387185, — 12891833 — X11X 2385, — 13X 52831 = U3,

37) X11X 92 =881 + Xq1833 — 813831 + X 2833 — 83X 30 =y,
X11X 20833 + 812873831 + 813851 X 35 — 819891833 — X11823X 30 — 813X 5583, = 3.

Replacing the elements ay;, as; gives

11 12 . 1 . . 11 . . 1 . .
‘)| . . .,8). . .| 40| . . 23|, 41) |21 . .|,
33 . 32 33 .. 33 .. 33

38) X11822 — X281 + X11 X33 — 13837 +p X33 — pgdz, = Uy,
X11892X 33+ X128p3851 + 81387185, — X181 X 33— X118p385, — 13857831 = U3,
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X11892 — 81981 + X11X 33— 83831 + 855X 33— 83X 3, =y,

39)
X 11822 X 33 + 8983837 + 81381 X 37 — 81281 X 33— X 11893832 — 813875837 = U3,

X189 — 842851 + X11X 33— 843831 + 8y X33~ X385, =dy,

40)
X11822X 33+ 815X 93831 + 813891832 — 819821 X 33— X11X 3832 — 813875831 = U3,

X11822 — 845X 51 + X 11X 33— 13837 +8p X33 —Apgdz, = Uy,

41)
X11822X 33+ 812873831 + 813X 2185, — 819 X 51X 33— X118p383, — 8385831 = U3

Replacing the elements a,,, ass gives

.12 . S .. 13 e
42) |. 22 .|, 43|21 22 .|, 44)|. 22 .|, 45)|. 22 .|,
33 .. 33 .. 33 31 . 33

42) 811X 90 — Xqp8p1 + 811X 33— 813831 + X35 X 33— 89383, =,
811X 29X 33+ X19893831 + 813891832 — X181 X 33— 81189383, — 813X 25831 = U3,

43) 811X 95 —81pX o1 + 811X 33— 83831 + X5pX 33— 8p383, =0,
811X 2 X33+ 8783837 + 813X 21832 — 812X 21X 33— 81189383, — 813X 25831 = U3,
811X 95 — 8581 + 891 X33~ Xq3831 + X35 X 33— 89383, =0,

44)
811X 2 X33+ 8783837 + X138p1832 — 812851 X 33— 811823837 — X13X 25831 =3,

11X 5p — 481 + 811X 33— 313X 31 + XX 33— 8383, =y,

45)
11X 2 X33+ 883X 31 + 13891837 — &1 281X 33 — 84180385, — A 3X 5o X351 = 3.
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