
Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                            

ISSN: 2395-0218   

 
  Volume 5, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm                                                 463  

 
SCITECH                                                                        Volume 5, Issue 1  

RESEARCH ORGANISATION|               Published online: August 22, 2015| 
Journal of Progressive Research in Mathematics 

www.scitecresearch.com/journals     
A Direct Transformation of a Matrix Spectrum 

A.S. Iskhakov
1
, S.M. Skovpen

2
 

1
‘VNIIEM Corporation’ JSC, Moscow, Russian Federation. 

2
Northern (Arctic) Federal University, Severodvinsk, Russian Federation. 

 

Abstract.  

A method is presented for calculating a matrix spectrum with a given set of eigenvalues. It can be used to 
build systems with different spectrums with the aim of choosing desired alternative. It enables a practical 
implementation of control algorithms without resort to transformation of variables. 
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1. Introduction 

In algebra, the problems deal with eigenvalues belong to spectral ones. A matrix spectrum is changed via its 

elements. This procedure can be implemented in various ways. For example, in computing mathematics, a matrix is 

multiplied by other matrix for solving systems of linear algebraic equations. 

The problem of target transforming a spectrum is the subject of control theory. It is called as the method of 

characteristic equation setting, arrangement of eigenvalues, spectrum control, and modal control [1-4]. To change a 

spectrum the relationships between coefficients of characteristic polynomial and its roots are used. They are known 

as Vieta’s formulas. 

The spectrum setting allows those coefficients to be found. Because the matrix has alternate spectrum and 

coefficients, the elements of the matrix need to be changed. However, this procedure is made not with the parent 

matrix, but its transformed form called Frobenius. A Frobenius matrix have a row of elements representing 

coefficients of characteristic polynomial up to a sign. They are changed by summing with elements called feedback 

coefficients. As a result, we obtain a given spectrum. 

Such spectrum transformation, which is pertinently called Frobenius, has a clear theoretical basis; moreover, it 

specifies an obvious way for its practical application, which implies supplementing the elements of the row of 

Frobenius matrix to the values making a matrix spectrum equal to a given set of numbers. 

The reason for searching a new method of a spectrum transformation is the requirement for obtaining a desired 

spectrum for concrete technical systems using real-time control algorithms. A more detailed explanation of the 

necessity of other approach for solving this problem is given in Appendix 1. 

The method for calculating a desired spectrum, for which the authors found possible to use the definition in the 

headline, does not based on a Frobenius matrix. 

It can be used to calculate the feedback coefficients of a control system with the aim to obtain a desired spectrum of 

closed-loop system without resort to transformation of variables. This allows practical problems of control to be 

solved at the design phase of the system. By simulating the system behavior with different spectrums it is possible 

to find a suitable alternative, which can be further implemented as a direct digital control algorithm. The paper is an 

outgrowth of the work [5]. We ask that authors follow simple guidelines. In essence, we ask you to make your paper 

look exactly like this document. 

2. Informal Reasoning 

In the matrix, a Frobenius transformation forms the row of elements reflecting the coefficients of the characteristic 

polynomial. An additive influence of the feedback onto these elements varies a spectrum. The feedback elements 
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are calculated in the obvious way as the differences of the row elements and the coefficients of the polynomial with 

roots that equal to the values of a given spectrum. 

The proposed method is based on the relationships between the elements and the spectrum not for the transformed 

matrix but the original one. These relations represent another kind of Vieta’s formulas, where the sums of the main 

minors of the matrix appear instead of characteristic polynomial coefficients. In contrast to the Frobenius form and 

Vieta’s formulas these minors contain all of the matrix elements. 

In order to change a spectrum by a given set of eigenvalues, the matrix elements are replaced by unknowns, and 

then the corresponding elements of minors and combinations of the matrix eigenvalues are replaced by the same 

combinations of numbers from a given set. In this case, the identities are transformed into a system of equations for 

the unknowns. As a result, after the unknown will be replaced by the solution of the obtained system of equations, 

the matrix gains a desired spectrum. Feedback elements can also be calculated in obvious way as the differences 

between replaced matrix elements and elements of solution. 

3. Aim of the Work 

Suppose ][ , jiaA  , kji ,1,   is a given kk real matrix, (А) is its spectrum, and }{ i  is a set of real 

numbers. By Ax denote the matrix A with k replaced elements by unknowns. 

The objective is to consider a range of issues related to evaluation of the unknowns, which are substituted into the 

matrix Ax, such that the condition  )( xA  is satisfied. 

4. Definitions 

4.1. Replacement is a replacing the elements of the matrix A (replaced elements) by other elements (replacing 

elements). Replacing matrix Ax (matrix with replacement) is a matrix with replacing elements. 

4.2. Spectral equations of matrix A (replacement system) are k equations that was formed by replacing the 

coefficients of Vieta’s formulae by the sums of main minors of the matrix Ax and by replacing the roots by the 

elements from a given set . 

4.3. Replacement of the i-th order is a replacement leading to spectral equations of the i-th order. Linear 

replacement is a replacement of the first order. Non-linear replacement is a replacement of the second order or 

higher. 

4.4. Spectral transformation of the matrix A is a replacing the elements of the matrix Ax by the solution of spectral 

equations. 

5. Frobenius Transformation of a Spectrum and Its Alternative 

For a matrix 
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where σi and ai are the i-th root of the characteristic polynomial and the result of summation in the i-th row, which 

are the coefficients of the characteristic polynomial considering the sign. 

Frobenius transformation of a spectrum is based on obtaining the elements on the left-hand side (taking into account 

the sign) by non-singular transformation of the matrix A and by supplementing them to the values that satisfy a 
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given set. This corresponds to the fact that the sum on the right-hand side (2) are replaced by the same relationships 

between the numbers of a given set }{ i , and the elements on the left-hand side are supplemented by 

unknowns xi. This leads the system to the equations 
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kk

k
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with an obvious solution 111 adx  , where di is a sum in the i-th row. Substituting the solution into Frobenius 

matrix one forms its spectrum with the values from a given set Λ. 

The possibility to change a matrix spectrum by supplementing the matrix elements to the values that satisfy a given 

set provides an alternative to Frobenius transformation of a matrix. 

To perform this procedure, we use the system (2) in the form of sums of main minors on the left-hand side. The 

example of such system for a matrix of the 3-rd order is given by 

.
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In this case, all of the matrix elements being in the system. In particular, this system enables one to evaluate how 

each element influences on the spectrum. This can’t be done with the help of Frobenius transformation. 

Now, we supplement arbitrary elements of A, for example, the main diagonal elements by unknowns x1, x2, and x3. 

As a result, the matrix A takes the form 
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and we obtain the system of equations for supplements the same as (3): 
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 (4) 

By solving (4), we consider the goal has been achieved. Indeed, substituting the solutions into the matrix Ax one 

makes it equal to a given set without resort to transforming the matrix. 

Further efforts are aimed to simplifying the method of solving, since just the solving this particular system, after 

opening the brackets, is very complicated, and the solving complexity increases many-fold when the dimension 

increases. Difficulties in solving a particular system can be even more enhanced when we need to solve multivariate 

problems associated with a choice of complementary elements. The above example is illustrated by supplementing 

diagonal elements. Besides this embodiment, other variants can be used, the number of which also extremely 

increases with increasing a size of the matrix. Frobenius transformation of a spectrum does not have the variety of 

alternatives, as it has the unique solution to (3) when an appropriate condition is satisfied. 

6. Spectral Equations 

The above computational difficulties can be significantly reduced by choosing as the unknowns the elements 

together with its supplements instead of just the supplements. After solving the equations, we can determine the 

supplements as easy as in the Frobenius transformation. 

For this purpose, the k arbitrary elements of A are replaced by unknowns, which are denoted for presentation by the 

capital letter X with the same indexes. For example, instead of the matrix 
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with unknown supplements to the elements a12, a21, a22 it is assumed the replacing matrix 



















333231

232221

131211

aaa

aXX

aXa

Ax
,            (5) 

where instead of the elements a12, a21, a22 called in definition 4.1 as replaced, the replacing elements X12, X21, X22 

considered as the unknowns are located. 

The result is the system of equations for X12, X21, X22 of the form 
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        (6) 

 

In general case, replacement of k elements of A with combining the replacing elements Xi,j into the vector Xi,j and 

building Ax gives the system of equations 

F(X) = 0,                (7) 

 

where F is the non-linear vector function with size of k called by the spectral equation. 

In a similar way, we can choose 

k

k
CN 2                (8) 

different replacing sets of elements and obtain replacing matrices in the form of (5) and equations in the form of (7). 

The number N very rapidly increases with the size of A. For small values of k, it is given in Table 1. 

 

Table 1 

k 2 3 4 5 6 7 

N 6 84 1820 53130 1947772 85900584 

n 1 20 495 15504 776475 26978328 

M 5 64 1325 37626 1171297 58922256 

7. Types of Spectral Equations 

The type of the system (7) depends on the arrangement of replacing elements in Ax. If we allocate the replacing 

elements in different rows and columns, as it is shown for the matrix (5), the system can takes the linear or non-

linear form of degree from 2 to k. However, not all of the systems have a solution. Using a particular matrix, we can 

at once determine a group of systems that do not have a solution. 

Further, for the sake of simplicity, we will denote the replacing and non-replaced elements of matrices by the 

numbers that equal to the indexes and dots, respectively. 

The right-hand side of the first equations of the system (6) is the fixed sum, and the left-hand side has the unknown, 

therefore, the equation is consistent with arbitrary values of а11, а33, and d1. But, for the other matrix 
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there are no unknowns on the left-hand side of 

1332211 daaa  , 

so, the last expression is inconsistent. 
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It is straightforward to make the following generalization. The matrix (9) belongs to the family of matrices, which is 

formed by replacing k elements of A that lie outside of the main diagonal in the two triangle areas containing (k
2
 – 

k) elements. This means that a necessary condition to solve (7) is that at least a one replacing element must be 

located on the main diagonal. It follows that the number of inconsistent equations (7) is equal to the number of 

combinations 

k

kk
Cn


 2 .              (10) 

The dependence (10) is also given in Table 1. 

Subtracting (10) from (8), we obtain 

M = N – Nk               (11) 

(given in Table 1) that is the number of solvable systems (7). Under appropriate conditions, this number is the sum 


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iMM
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where Mi is the number of the i-th order equations. 

Determining the terms in (12) for a general case as functions of k is the problem that needs to be solved. Even 

calculating M1, i.e. determining the number of the linear systems (7), is unobvious procedure that requires an 

analysis of equations of the form (6). We can say definitely (or, rather, we can suggest, since there is no rigorous 

proof) about only the single term Mi for i = k. It is equal to 1. In other words, there is only one way to replace k 

elements of matrix that allows a spectral equation of order k to be obtained by replacing the elements on the main 

diagonal. 

We consider next a particular case for a matrix of the third order. By analyzing 64 consistent equations (7), we 

establish 18, 45 and 1 variants to replace 3 elements according to (11). Replacements are described by two types of 

the first order equations, six types of the second order equations, and one type of the third order equation. Equations 

of all types are resulted. 

8. Linear Replacements 

At first, we discuss the variants with evident solving the problem of choosing elements for linear replacement 

associated with a replacement of rows and columns of A. 

There is only one element of replacing rows and columns in the summands of minors. Each of summand contains 

one unknown, and the multipliers obtained from the remaining elements give the coefficient at the summand. 

Assembly of these coefficients forms a matrix denoted by R. These equations belong to the type 1.1. 

Some summands on the left-hand side, as it can be seen from the system (6), do not have replacing elements. We 

combine these elements in the row i into the element bi. Then, after combining the elements bi and di into the 

vectors b and d respectively, we can represent the equation (7) in the linear form 

bdRX                 (13) 

by replacing rows and columns. 

The solution to (13) exists under condition 

0det R .             (14) 

The number of equations (13) is 
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They do not describe all of possible linear systems but determine only obvious ones. 

If replacing elements are not rows or columns, we can also get the linear system (7). In this case, the summands of 

minors can contain a product of replacing elements. Indeed, for example, for the matrix 
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the replacement system is 
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In the third row, we obtain the summand with a product of unknowns X11 and X32. In this case, we have a formal 

reason to assign (17) to the second order system. However, we can find X11 from the first equation (i.e. X11 is 

known), and the system becomes linear. These equations belong to the type 1.2. The given types of equations 

exhaust linear replacements. 

9. The Second Order Replacements 

9.1. Replacing a single diagonal element 

Replacements with a single diagonal elements lead to different types of the second order equations. Consider the 
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which differs from (16) in a single element. The second and third equations for (18) is given by 
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The last equation of (19) is like (17) only externally. In the product, there is no variable expressed from the first 

equation. This type of replacement is denoted as 2.1. 

The matrix 
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differs from (18) in a single element and contains by a single product of elements in two equations: 
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This type of replacement is denoted as 2.2. 

The matrix 
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but the third equations has the product of three elements. 

This type is denoted as 2.3. 
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which differs from (16) in a single element, is characterized by the equations 
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with two products of two unknowns in the third row. This type is denoted as 2.4. 

9.2. Replacement of two diagonal elements 

When two diagonal elements are replaced the type of equations depends on a choosing the third element. Consider 

two matrices 
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with identical replaced diagonal elements and common first equation 1332211 daXX  . For the matrix a), the 
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with a single product in the second row and two products in the third row are denoted as 2.6. 

9.3. Replacement of the k order 

The last equation of (7) contains the k! summands with products of k elements while the single summand has all 

unknown multipliers. Replacement of k elements using variants of (10) gives spectral equations of the k order only 

for unique case when the main diagonal of a matrix is replaced. Other variants of replacement lead to equations of 

the lower order. This conclusion is done without proving due to analysis of all spectral equations of the third order 

matrix. 

10. Spectral Transformation of the Second Order Matrix 

For the matrix 
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Two of fore elements can be replaced in six ways. Only one of those with replacing the elements a12, а21 leads to 

incompliance equations in the form (6). From five remaining ways, fore are replacements of rows and columns and 

lead to linear spectral equations. Replacing the main diagonal elements a12, а21 leads to the second order equation. 

10.1. Linear equations 

Replacement of rows and columns gives the replacing matrices 
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We present them in the form of (13) as 
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For the matrices (29), the conditions (14) are given by 

1) 021 a ,   2) 012 a ,   3) 012 a ,   4) 021 a . 

If these conditions are satisfied, the equations take the form 
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Substituting the equations into (29) one gives the matrices 

1) 










 

2221

212
2
22122221 /)(

aa

adadaad
,   2) 









 111122
2
11111

1211

/)( adadada

aa
, 

(31) 

3) 












22122
2
22122

12221

/)( aadada

aad
,   4) 

















11121

212
2
1111111 /)(

ada

adadaa
 

with a spectrum that equal to a given set },{ 21  . 

10.2. The Second Order Equation 

Replacing the diagonal elements a11, а22 gives the matrix 











22.

.11
xA  

with the equation 

.

,

221122211

12211

daaXX

dXX




 

Its solution 

 2211 , XX ,           (32) 

where 21d , )(4 22112
2
1 daad  , forms matrices 















21

12

2,1 a

a
Ax          (33) 

with a given spectrum. 
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Example 1. Given a set }2,1{  and a matrix 











43

21
A . 

After calculating the matrices (31), we obtain 

1) 






 

43

21
,   2) 









20

21
,   3) 













43

21
,   4) 









23

01
. 

They have the spectrum that contains the elements from the given set. 

With these results, the solution (32) 

 

Х11 = 1.5 + i2.398,   Х22 = 1.5 – i2.398 

as well as the matrices (33) 















398.25.13

2398.25.1

1 i

i
Ax ,   














398.25.13

2398.25.1

2 i

i
Ax  

are complex. 

11. Spectral Transformation of the Third Order Matrix 

From Table 1, we have the 84 variants for choosing three elements. Among them, the 20 variants lead to 

incompliant systems. The remaining 64 variants represent systems of the first, second and third order. These 

systems are described by equations of tow, six and one types respectively. Each value Mi in (12) is found via 

analysis of equations. 

11.1. Linear spectral equations 

Replacing rows and columns one gives the matrices 

1) 

















...

...

131211

,   2) 

















...

232221

...

,   3) 

















333231

...

...

,   4) 

















..31

..21

..11

,   5) 

















.32.

.22.

.12.

,   6) 

















33..

23..

13..

  (34) 

with appropriate equations. For example, for the matrix 1), we obtain the following equations 

.

,

,

3312213322311332112322113312312332211

2322333223113331121122211

1332211

daaXaaXaaXaaXaaXaaX

daaaaaXaXaXaX

daaX







      (35) 

They can be presented in the form (13) as 

 

iii bdXR  ,               (36) 

 

 

where TXXXX ],,[ 1312111  , TXXXX ],,[ 2322212  , TXXXX ],,[ 3332313  , TXXXX ],,[ 3121114  , 

TXXXX ],,[ 3222125  , TXXXX ],,[ 3323136  , 
Tdddd ],,[ 321 , 33221 aaf  , 33112 aaf  , 22113 aaf  , 

322333221 aaaag  , 332131232 aaaag  , 312232213 aaaag  , 331232134 aaaag  , 311333115 aaaag  , 

321131126 aaaag  , 221323127 aaaag  , 231121138 aaaag  , 211222119 aaaag  , 
Tgfbb ]0,,[ 1141  , 
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Tgfbb ]0,,[ 5252  , 
Tgfbb ]0,,[ 9363  , 



















321

312111

001

ggg

aafR , 



















654

322122

010

ggg

afaR , 



















987

323133

100

ggg

faaR , 



















321

131214

001

ggg

aafR , 



















654

232215

010

ggg

afaR , 



















987

332316

100

ggg

faaR . 

 

As it mentioned above, choice of replacing elements in different rows leads to leaner equations of the type 1.2. 

Matrices and equations for all of remaining variants for such types are resulted in Appendix 2. The first equation is 

not cited because it remains identical for replacements with other elements. 

11.2. Matrices with the Second Order Replacement 

In Appendix 2, we consider matrices and equations of the types 2.1-2.4 when a single diagonal element is replaced. 

In addition, we result equations of the type 2.5 and 2.6 when two diagonal elements are replaced. 

11.3. Matrix with the Third Order Replacement 

For the third order matrix, 63 of 64 variants for choosing three elements lead to equations of the first and second 

order. The remaining matrix 



















33..

.22.

..11

xA        (37) 

is characterized by the third order equation 

.

,

,

3332112312213322311322113312312332211

2322333223113331121122211

1332211

dXaaaXaaaXaaaaaaXXX

daaXXaaXXaaXX

dXXX







      (38) 

The result obtained can be generalize for an arbitrary order matrix. 

Example 2. With a set }1,0,1{  , consider variants of transforming a spectrum by replacing rows and 

columns in the matrices 

1) 

















987

654

321

,   2) 

















353

222

010

,   3) 

















010

221

010

,   4) 

















010

001

000

. 

The matrix 1). Let’s calculate 01 d , 12 d , 03 d  and determine matrices and vectors (36): 

Td ]0,1,0[  , 141 f , 102 f , 63 f , 31 g , 62 g , 33 g , 64 g ,  125 g , 66 g , 37 g , 68 g , 

39 g , 
Tbb ]0,3,14[41  , Tbb ]0,12,10[52  , Tbb ]0,3,6[63  , 





















363

7414

001

1R , 





















6126

8102

010

2R , 





















363

663

100

3R , 





















363

3214

001

4R , 





















6126

6104

010

5R , 





















363

687

100

6R . 

The matrices are non-singular, hence, there are all the solutions: 

TTXXXbdRX ]889.18,444.16,14[],,[)( 1312111
1

11   , 
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TTXXXbdRX ]833.11,10,167.8[],,[)( 2322212
1

22   , 

TTXXXbdRX ]6,667.4,333.3[],,[)( 3332313
1

33   , 

TTXXXbdRX ]46,30,14[],,[)( 3121114
1

44   , 

TTXXXbdRX ]636.3,10,5.4[],,[)( 3222125
1

55   , 

TTXXXbdRX ]6,5.15,273.1[],,[)( 3323136
1

66   . 

With these solutions, replacing matrices (34) 















 



987

654

889.18444.1614

1x
A ,   



















987

833.1110167.8

321

2xA ,   





















6667.4333.3

654

321

3xA , 

























9846

6530

3214

4xA ,   























6636.37

654

35.41

5xA ,   

























6636.37

5.1554

273.15.41

6xA  

take the spectrum 

   1410516.1,1,1
1

 xA ,      1,10847.8,1 15

2
 

xA ,      1,10044.2,1 15

3
 

xA , 

   1410437.5,1,1
4

 xA ,      1410421.2,1,1
5

 xA ,      1,10876.2,1 15

6

 xA  

that is equal to a given set with calculating accuracy. 

The matrix 2). Omitting intermediate calculations, here and further, we find matrices 





















404

325

001

1R ,   





















303

531

010

2R ,   





















262

220

100

3R , 





















234

015

001

4R ,   



















000

232

010

5R ,   





















234

253

100

6R . 

Among all the matrices, only R5 is singular and hence the solution Х5 does not exist. 

With the remaining matrices, the solutions to the systems (36) are 

TX ]6,8,6[1  ,   TX ]2,4,2[2  ,   TX ]3,4,3[3  , 

TX ]63,34,6[4  ,   TX ]3,273.1,545.0[6  . 

 

 

Substituting them into the matrices (34) 















 



353

222

686

1x
A ,   



















353

242

010

2xA ,   





















343

222

010

3xA , 

























3563

2234

016

4xA ,   























353

273.122

545.010

6xA  

one forms the spectrum 
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   1,10142.110125.3,10142.110125.3 715715

1
  iiAx ,      88 10944.2,10944.2,1

2

  xA , 

   88 10133.4,10133.4,1
3

  xA ,      1,1088.3,1088.3 88

4
 

xA , 

   88 10269.3,10269.3,1
6

  iiAx  

that is equal to a given set. 

The matrix 3). Let’s evaluate the matrices 





















102

012

001

1R ,   



















000

101

010

2R ,   





















102

220

100

1R ,   





















202

012

001

4R , 



















000

231

010

5R ,   





















101

210

100

6R . 

The matrices R2 and R5 are singular and hence the solutions Х2 and Х5 do not exist. With the remaining solutions 

TX ]4,5,2[1  ,   TX ]2,2,1[3  , 

TX ]2,5,2[4  ,   TX ]2,4,2[6   

the matrices 















 



010

221

452

1x
A ,   





















221

221

010

3xA ,   

























012

225

012

4xA ,   

























210

421

210

6xA  

take the given spectrum 

   1,0,1
1

 xA ,      0,1,1
3

 xA ,      1,10148.2,1 15

4
 

xA ,      0,1,1
6

 xA . 

The matrix 4). Among the matrices 

 



















100

010

001

1R ,   



















000

100

010

2R ,   



















000

000

100

3R ,   



















000

000

001

4R , 



















000

001

010

5R ,   



















001

010

100

6R , 

R1 and R6 are non-singular. With them, the solutions are 

 

TXX ]0,1,0[61  . 

For replacing matrices 



















010

001

010

1x
A ,   



















010

101

000

6xA , 

these solutions provide a given spectrum. 

Example 3. Spectrum transformation with linear replacement of elements in different rows and columns. Consider 

the matrix and equation 12) given in Appendix 2. From the first equation, we define the unknown 



Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                            

ISSN: 2395-0218   

 
  Volume 5, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm                                                 475  

3311122 aadX   

at once. Two others are reduced to an equation for Х13 and Х23 with the matrix 










 3211311222313221

3231

aaaaXaaa

aa
 

and the vector 














3321122233113

331121122233112 )(

aaaXaad

aaaaXaad
. 

With the set and matrix 1) from example 2, the solution 

TTXXX ]38.14,10,434.2[],,[ 232213   

for the matrix 15) 



















987

38.14104

434.221

15xA  

forms the given spectrum    1410065.8,1,1
15

 xA . 

All calculations was made in MathCAD. 

12. Conclusion 

A method for obtaining a matrix spectrum equal to a given set of numbers without transformation to a Frobenius 

form is stated. Calculating tool is a system of equations, which having obtained by replacement of arbitrary matrix 

elements by unknowns. Their number is equal to the size obtained from relationships between matrix elements in 

the form of main minors and elements of a given set. 

The method has many variants for choosing replacing elements and equations to calculating replacing elements 

from linear to non-linear with an order equal to the size. 
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Appendix 1. Proving the method of a direct spectrum transformation 

In technical systems, variables having a certain physical sense are used. These variables characterize energy stores 

such that a speed of moving mass, a solenoid current, a capacity voltage and similar parameters, which are 

measured by sensors. To obtain a Frobenius matrix it is required both direct and reverse transformation of variables 

in the feedback loop. The reverse transformation is explained by the fact that a combination of physical variables 

must enter into the system input. Firmware implementing the transformation needs additional hardware expenses, 

and software realization needs expenditure of time. This leads to delay in the feedback loop and to deteriorate 

dynamical properties of system. As a result, the advantage of a control method based on the variation of system 

spectrum is used not to the full owing to the features of the method using to implement a spectrum transformation. 

Appendix 2. Replacing matrices and spectral equations for the third order matrix 

A.2.1. Linear replacements 

For the type 1.2, replacement of the element а11 (number 7) refers to the matrix (16) and equation (17): 
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8) 

















.3231

...

..11

,   9) 

















...

23..

13.11

,   10) 

















...

23.21

..11

, 

 

8) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaaaXXaXaaXaaXaaaX

daXaaaaaXXaaX




 

 

9) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaXaXXaaaaaXaXaaaX

daXaaaXaXaaaX




 

 

10) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

dXaaXaXaaaXaaXaaaaX

dXaaaXaaXaaaX




 

 

Replacing the element a22 gives 

 

11) 

















...

.22.

1312.

,   12) 

















...

2322.

13..

,   13) 

















.3231

.22.

...

,   14) 

















..31

.2221

...

, 

 

11) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daXXaaaaaXaaXaaXaXa

daaaXaXaaaXXa




 

 

12) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daXXaXaaaaaaXaXaaXa

daXaXaXaaaaXa




 

 

13) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

dXXaXaaaaaXaaXaaaXa

dXaaXXaaaaaXa




 

 

14) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

dXXaaaaaXaaXaXaaaXa

daaaXXaaaXaXa




 

Replacing the element а33 gives 

15) 

















3332.

...

.12.

,   16) 

















33..

...

1312.

,   17) 

















33.31

..21

...

,   18) 

















33..

23.21

...

, 

 

15) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaaXaaXaXXaaaaXXaa

dXaXaaaXaaXaa




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16) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaXaaaXaXaaXaaXXaa

daaXaaXXaaXaa




 

 

17) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

dXaaaaaXXaaXaXaaXaa

daaXaXaXaXaaa




 

 

18) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

daaaaXaXXaaXaaXaXaa

daXXaaaXaXaaa




 

A.2.2. The Second Order Replacement with a Single Diagonal Element 

For the type 2.1, replacement of the element а11 (number 1) refers to the matrix (18) and equation (19): 

 

2) 

















...

..21

13.11

, 

 

2) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

daaXaaXaXaaXXaaaaaX

daaaaaXaXXaaX




 

Replacing the element а22 gives 

 

3) 

















...

2322.

.12.

,   4) 

















..31

.2221

...

, 

 

3) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daXaaXaaaXaaaaXXaXa

daXaXaaaaaXXa




 

 

4) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

dXXaaaaaXaaXaXaaaXa

daaaXXaaaXaXa




 

Replacing the element а33 gives 

 

5) 

















3332.

...

13..

,   6) 

















33.31

23..

...

, 

 

5) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaXXaaXaaXaXaaaXaa

dXaXaaXXaaaaa




 

6) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

dXaaaXaXXaaaaXaaXaa

daXXaXaXaaaaa




 

For the type 2.2, replacement of the element а11 (number 7) refers to the matrix (20) and equation (21): 
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8) 

















..31

...

13.11

, 

8) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

dXaXaaXaaaaaXXaaaaX

daaaaXXaXaaaX




 

Replacing the element а22 gives 

9) 

















...

.2221

.12.

,   10) 

















.32.

2322.

...

, 

9) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daXaaaaaXXaXaaaXaXa

daaaXaaaaXXXa




 

10) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

daXaXXaaaaXaaaXaaXa

dXXaXaaaaaaXa




 

Replacing the element а33 gives 

11) 

















3332.

23..

...

,   12) 

















33.31

...

13..

, 

 

11) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaaXXaXaaXaaaXaXaa

dXXXaaaXaaaaa




 

12) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

dXaXaaaXaaaaXXaaXaa

daaXaXXXaaaaa




 

The type 2.3 (number 13) refers to the matrix (22) and equation (23): 

 

14) 

















..31

.22.

13..

,   15) 

















33..

..21

.12.

, 

 

14) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

dXXXaaXaaaaaXXaaaXa

daaaXXXaaaaXa




 

15) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

daaaaaaXXXaXaaaXXaa

daaXaaaXaXXaa




 

For the type 2.4, replacement of the element а11 (number 16) refers to the matrix (24) and equation (25): 

17) 

















.32.

...

13.11

,   18) 

















..31

23..

..11

,   19) 

















.32.

..21

..11

, 

17) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaXXaXaaaXaXaaaaaX

dXaaaaXaXaaaX




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18) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

dXaaaXXaaaaaaXXaaaX

daXaaXaaXaaaX




 

19) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

daaaXaXaXaXXaaaaaaX

dXaaaaaaXXaaX




 

Replacing the element а22 gives 

20) 

















..31

.22.

.12.

,   21) 

















..31

2322.

...

,   22) 

















.32.

.22.

13..

,   23) 

















...

.2221

13..

, 

 

20) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

dXXaaaaaaXaaaXaXaXa

daaaXXaaaaXXa




 

 

21) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

dXXaaXaaaaaaaXXaaXa

daXaXXaaaaaXa




 

 

22) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daXXXaXaaaXaXXaaaXa

dXaaXaXaaaaXa




 

 

23) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

daXXaaaaXaaXXaaaaXa

dXaaXaaaaXaXa




 

Replacing the element а33 gives 

24) 

















33..

23..

.12.

,   25) 

















33.31

...

.12.

,   26) 

















33..

..21

13..

,   27) 

















3332.

..21

...

, 

24) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaaaXaXaXaaaaXXXaa

daXXaaaXaaXaa




 

 

25) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

dXaaaaaXaXaaaXaXXaa

daaXaXaXaaXaa




 

26) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaXaaaXXaaXXaaaXaa

daaXaaXXaXaaa




 

27) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

daaaXaaXXaXXaaaaXaa

dXaXaaaXaXaaa




 

A.2.3. The Second Order Replacement with Two Diagonal Elements 

For the type 2.5, replacement of the elements a11, a22 (number 28) refers to the matrix (a) of (26) and equation (27) 

29) 

















...

.2221

..11

, 
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29) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

daXaaaXaXaaXaaaaaXX

daaaXaaaXXaXX




 

Replacing the elements a11, a33 gives 

30) 

















33..

...

13.11

,   31) 

















33.31

...

..11

, 

 

30) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaXaaXXaaaaXaaaXaX

daaXaaXXXaaaX




 

31) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

dXaaaaXXaaaaaXaaXaX

daaXaXaXXaaaX




 

Replacing the elements a22, a33 gives 

32) 

















33..

2322.

...

,   33) 

















3332.

.22.

...

, 

32) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daXaaXaXaaaaaaXaXXa

daXXXaaXaaaXa




 

33) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

daXaXaaXaaXaaaaaXXa

dXaXXaaXaaaXa




 

For the type 2.6, replacement of the element a11, a22 (number 34) refers to the matrix (b) of (26) and equation (28): 

35) 

















..31

.22.

..11

,   36) 

















...

2322.

..11

,   37) 

















.32.

.22.

..11

, 

 

35) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

dXXaaaXaaaaaaXaaaXX

daaaXXaaXaaXX




 

36) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daXaaXXaaaaaaXaaaXX

daXaXaaaXaaXX




 

37) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

daXaXaXaaaXaaaaaaXX

dXaaXaaaXaaXX




 

Replacing the elements a11, a33 gives 

38) 

















33..

...

.1211

,   39) 

















3332.

...

..11

,   40) 

















33..

23..

..11

,   41) 

















33..

..21

..11

, 

 

38) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaaaaXXaXaaaaaXXaX

daaXaaaXXaXaX




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39) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaaaaXXaaXaaaaaXaX

dXaXaaaXXaaaX




 

40) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daaaaXXXaaaaaaXaXaX

daXXaaaXXaaaX




 

41) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

daaaaaXXXaaXaaaaXaX

daaXaaaXXXaaX




 

Replacing the elements a22, a33 gives 

 

42) 

















33..

.22.

.12.

,   43) 

















33..

.2221

...

,   44) 

















33..

.22.

13..

,   45) 

















33.31

.22.

...

, 

 

42) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daXaaaaXaXaaaaaXXXa

daaXXaaXaaXXa




 

43) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daXaaaaXXaaXaaaaXXa

daaXXaaXaXaXa




 

44) 
,

,

3312213322311332112322113312312332211

2322333223113331121122211

daXXaaaXaaaaXaaaXXa

daaXXaXXaaaXa




 

45) 
.

,

3312213322311332112322113312312332211

2322333223113331121122211

dXXaaaaXaaaaaXaaXXa

daaXXXaXaaaXa




 


