
                                                                                         Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                            

ISSN: 2395-0218  

 
Volume 4, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm                                                           399|  

 
SCITECH                                                                                Volume 4, Issue 4    

RESEARCH ORGANISATION|                     Published online: August 04, 2015| 

Journal of Progressive Research in Mathematics 

www.scitecresearch.com/journals  

Approximation of  Fourier Series of a function of Lipchitz class 

by Product Means  
1
 Subrata K Sahu, 

2
 D. Acharya, 

3
 P.C.Nayak and  

4
 U.K.Misra

⃰
 
 

1
 National Institute of Science and Technology, Ganjam, Odisha, India 

E-mail: subrata_sai11@yahoo.com 
2

 National Institute of Science and Technology, Ganjam, Odisha, India 

E-mail: dpak.acharya888@gmail.com 
3
 Bhadrak( Autonomous ) College, Bhadrak, Odisha, India 

E-mail: pcnayak02@gmail.com 
4

 National Institute of Science and Technology, Ganjam, Odisha, India 

E-mail: umakanta_misra@yahoo.com  
⃰ Correspondence  author  

 

 Abstract:  Lipchitz class of function had been introduced by McFadden [8]. Recently dealing with degree of 

approximation of Fourier series of a function of Lipchitz class Nigam [12] and Misra et al.[9,10,11] have established 

certain theorems. Extending their results, in this paper a theorem on degree of approximation of a function 

( , (t))pf W L    by   product summability    , , ,n nE s N p q   has been established. 

Keywords: Degree of Approximation;  ( , ( t ) )pW L  class of function;
 
  , , ,n nE s N p q  product mea; Fourier 

series; Lebesgue integral.  

2010-Mathematics subject classification: 42B05, 42B08. 

 

1. Introduction:  

              Let  na  be a given infinite series with sequence of partial sums  ns . Let  np  and  nq
 
be  sequences of 
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Then   nt  
 is called the sequence of ( , , )n nN p q   mean of the sequence ns . If 

(1.3)                                                ,stn  as n  ,  
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then the series  na  is said to be ( , , )n nN p q  summable  to s . 

The necessary and sufficient conditions for regularity of ( , , )n nN p q method are[3 ]: 

(1.4)               (i) 0

n

n

r

qp 
, as ,n  for each integer 0                             

    and 

(1.5)   (ii)
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 where H is a positive number independent of n . 

The sequence –to-sequence transformation [5],   
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defines the sequence  nT   of the  ,E q   mean of the sequence   ns  . If 

(1.7)                      sTn   , as n ,    

then the series  na  is said to be  qE,  summable to s . Clearly   qE,   method is regular [5].  

Further, the  ,E q  transform of the  , ,n nN p q  transform of  ns   is defined by  
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If  

(1.9)                     sn    , as n , 

then    na  is said to be   , , ,n nE q N p q - summable to s .   

           Let )(tf   be a periodic function with period 2 and L- integrable over (-,), The Fourier series associated with

f  at any point x is defined by  

(1.10)    
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 The L -  norm of a function  RRf :  is defined by  

(1.11)                        Rxxff 


:)(sup  

and  the L -  norm is defined by  
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(1.12)                   
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The degree of approximation of a function RRf :  by a trigonometric polynomial )(xPn  of degree n under norm  


.  is defined by   

(1.13)     sup ( ) ( ) :n nP f P x f x x R


        

and   the degree of approximation  )( fEn  of  a function  Lf   is given by [17] 

(1.14)    
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This method of approximation is called Trigonometric Fourier approximation. 

 A function  f Lip  if [8]  

(1.15)     ( ) ( ) , 0 1f x t f x O t


     ,  

and    rLipf , , for 20  x , if [8]  
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For a positive increasing function  t  and an  integer 1r  ,   ,f Lip t r  if  15  

(1.17)                                              
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For a given positive increasing function  t  and an integer 1p  the function    ( ) ,pf x W L t , if  7  
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 We use the following notation throughout this paper: 

(1.19)         ),(2)()()( xftxftxft 
 

(1.20)                                
( ; ) :ns f x nth partial sum of the Fourier series given by (1.10) 

and 
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Further, the method   , , ,n nE q N p q  is assumed to be regular and this case is supposed throughout the paper. 
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2. Known Theorems: 

        Bernestein[2], Alexits[1], Sahney and Goel [13], Chandra [4] and several others have determined the degree of 

approximation of the Fourier series of the function f Lip  by  ,1C ,  ,C  ,  , nN p  and  , nN p means. 

Subsequently, working on the same direction Sahney and Rao[14], and Khan[6] have established results on the degree of 

approximation of the function belonging to the class Lip  and  ,Lip r by  , nN p  and  , ,n nN p q means 

respectively. However, dealing with product summability  Nigam et al [12] proved the following theorem on the degree 

of approximation by the product    1,, CqE - mean of Fourier series. 

Theorem 2.1: 

If  a function  2f is  - periodic  and of  class Lip , then its degree of approximation by    1,, CqE  

summability  mean  on its Fourier series 
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, where  

1

n

q

n CE    represents the   qE,   transform of  1,C  transform of  xfsn ; . 

Subsequently Misra et al [9] have established the following theorem on degree of approximation by the product 

mean    npNqE ,,  of the Fourier series: 

Theorem 2.2: 

If  f  is a  2  Periodic function of class  ,Lip r , then degree of approximation by the product 

  npNqE ,,  summability  means on its Fourier series (defined above) is given by 

 
1

1
,0 1, 1

1
n

r

f O r

n


 




 
     
 
  

 ,   where  n  as defined in (1.8) . 

Further, Misra et al [10] have established the following theorem on degree of approximation by the product 

mean    , , ,n nE s N p q  of the Fourier series: 

Theorem 2.3: 

If  f  is a  2  Periodic function of the class  ,Lip l , then degree of approximation by the product 

  , , ,n nE s N p q  summability  means on its Fourier series (1.10) is given by 
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, where n  is as defined in (1.8). 

Recently,  Misra  et al [ 11] proved the following Theorem 

Theorem -2.4 : 

For a positive increasing function  t  and an integer 1l  , if  f  is a  2  Periodic function of the class 

  ,Lip t l , then degree of approximation by the product   , , ,n nE s N p q  summability   on its Fourier series 

(1.10) is given by  
1 1

1 , 1,
1

l
n f O n l

n
 



  
     

  
   where n  is as defined in (1.8). 

In this paper, we have established a theorem on degree of approximation by the product mean  

  , , ,n nE s N p q   of the Fourier series of a function of class ( , (t))pW L   .  We prove:  
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3. Main Theorem 

Let  t  be a positive increasing function and  f   a  2   Periodic function of the class 

  , , 1, 0pW L t p t   . Then degree of approximation by the product   , , ,n nE s N p q   summability means 

on the conjugate series (1.10) of the Fourier series (1.9) is given by  

(3.1.1)  
1 1

1 , 1
1

l
n r

f O n l
n


 

  
     

  
,  

    provided 

(3.1.2)                                
 

 

1
1

1

0

sin 1

1

ll
n t t t

dt O
t n






 

    
         

 

  

and 

(3.1.3)                                
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hold uniformly in x  , where  is an arbitrary number such that  1 1 0m     and n  is as defined in 

(1.7). 

4. Required Lemmas: 

        We require the following Lemmas  for the proof the theorem. 

Lemma -4.1: 
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Proof of Lemma-4.1:  
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This proves the lemma.  

Lemma-4.2: 
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Proof of Lemma-4.2: 
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  This proves the lemma. 

5. Proof of Theorem 3.1: 

             Using Riemann –Lebesgue theorem, for the n-th partial sum  xfsn ;  of the Fourier series (1.10) of )(xf  

and following Titchmarch [16], we have 
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Using (1.2),  the  , ,n nN p q  transform  of  xfsn ;  is given by  
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Denoting the    , , ,E q N p q  transform of  xfsn ;  by n , we have  
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since  t is a positive increasing function, so is     1/ / 1/y y . Using second mean value theorem we get         
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Then  from (5.2) and (5.3) , we have  

                                 
1 1

1
1

l
n f x O n

n


 

  
     

  
 , for  1r   . 



                                                                                         Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                            

ISSN: 2395-0218  

 
Volume 4, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm                                                           407|  

   

1

2 1

0

1
1 , 1.

1

l l

l
n r

f x O n dx l
n




 


   
          

  

                

1
21

0

1
1

1

l

lO n dx
n





    

     
   

  

               
1 1

1
1

lO n
n




  
    

  
. 

This completes the proof of the theorem.
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