SCITECH
RESEARCH ORGANISATION|

Journal of Progressive Research in Mathematics

 www.scitecresearch.com/journals
Approximation of Fourier Series of a function of Lipchitz class by Product Means

${ }^{1}$ Subrata K Sahu, ${ }^{2}$ D. Acharya, ${ }^{3}$ P.C.Nayak and ${ }^{4}$ U.K.Misra*

${ }^{1}$ National Institute of Science and Technology, Ganjam, Odisha, India
E-mail: subrata_sai11@yahoo.com
${ }^{2}$ National Institute of Science and Technology, Ganjam, Odisha, India
E-mail: dpak.acharya888@gmail.com
${ }^{3}$ Bhadrak(Autonomous) College, Bhadrak, Odisha, India
E-mail: pcnayak02@gmail.com
${ }^{4}$ National Institute of Science and Technology, Ganjam, Odisha, India
E-mail: umakanta_misra@yahoo.com
*Correspondence author

Abstract

Lipchitz class of function had been introduced by McFadden [8]. Recently dealing with degree of approximation of Fourier series of a function of Lipchitz class Nigam [12] and Misra et al.[9,10,11] have established certain theorems. Extending their results, in this paper a theorem on degree of approximation of a function $f \in W\left(L^{p}, \xi(\mathrm{t})\right)$ by product summability $(E, s)\left(N, p_{n}, q_{n}\right)$ has been established.

Keywords: Degree of Approximation; $W\left(L^{p}, \xi(\mathrm{t})\right.$ class of function; $(E, s)\left(N, p_{n}, q_{n}\right)$ product mea; Fourier series; Lebesgue integral.

2010-Mathematics subject classification: 42B05, 42B08.

1. Introduction:

Let $\sum a_{n}$ be a given infinite series with sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be sequences of positive real numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \quad \text { and } \quad Q_{n}=\sum_{v=0}^{n} q_{v} \tag{1.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
t_{n}=\frac{1}{r_{n}} \sum_{v=0}^{n} p_{n-v} q_{v} s_{v} \tag{1.2}
\end{equation*}
$$

where

$$
r_{n}=p_{0} q_{n}+p_{1} q_{n-1}+\ldots+p_{n} q_{0}(\neq 0), p_{-1}=q_{-1}=r_{-1}=0
$$

Then $\left\{t_{n}\right\}$ is called the sequence of $\left(N, p_{n}, q_{n}\right)$ mean of the sequence $\left\{s_{n}\right\}$. If

$$
\begin{equation*}
t_{n} \rightarrow s \quad, \text { as } n \rightarrow \infty, \tag{1.3}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be $\left(N, p_{n}, q_{n}\right)$ summable to s.
The necessary and sufficient conditions for regularity of $\left(N, p_{n}, q_{n}\right)$ method are[3]:
(i) $\frac{p_{n-v} q_{v}}{r_{n}} \rightarrow 0$, as $n \rightarrow \infty$, for each integer $v \geq 0$
and
(ii) $\sum_{v=0}^{n}\left|p_{n-v} q_{v}\right|<H\left|r_{n}\right|$,
where H is a positive number independent of n.
The sequence -to-sequence transformation [5],

$$
\begin{equation*}
T_{n}=\frac{1}{(1+q)^{n}} \sum_{v=0}^{n}\binom{n}{v} q^{n-v} s_{v} \tag{1.6}
\end{equation*}
$$

defines the sequence $\left\{T_{n}\right\}$ of the (E, q) mean of the sequence $\left\{s_{n}\right\}$. If

$$
\begin{equation*}
T_{n} \rightarrow s, \text { as } \quad n \rightarrow \infty \tag{1.7}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be (E, q) summable to s. Clearly (E, q) method is regular [5].
Further, the (E, q) transform of the $\left(N, p_{n}, q_{n}\right)$ transform of $\left\{s_{n}\right\}$ is defined by

$$
\begin{align*}
\tau_{n}= & \frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k} t_{k} \\
& =\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} s_{v}\right\} \tag{1.8}
\end{align*}
$$

If

$$
\begin{equation*}
\tau_{n} \rightarrow s, \text { as } \quad n \rightarrow \infty \tag{1.9}
\end{equation*}
$$

then $\quad \sum a_{n}$ is said to be $(E, q)\left(N, p_{n}, q_{n}\right)$ - summable to s.
Let $f(t)$ be a periodic function with period 2π and L - integrable over $(-\pi, \pi)$, The Fourier series associated with f at any point x is defined by

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) \tag{1.10}
\end{equation*}
$$

The L_{∞} - norm of a function $f: R \rightarrow R$ is defined by

$$
\begin{equation*}
\|f\|_{\infty}=\sup \{f(x) \mid: x \in R\} \tag{1.11}
\end{equation*}
$$

and the $L_{v}-$ norm is defined by

$$
\begin{equation*}
\|f\|_{v}=\left(\int_{0}^{2 \pi}|f(x)|^{\nu}\right)^{\frac{1}{v}}, v \geq 1 \tag{1.12}
\end{equation*}
$$

The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial $P_{n}(x)$ of degree n under norm $\|\cdot\|_{\infty}$ is defined by

$$
\begin{equation*}
\left\|P_{n}-f\right\|_{\infty}=\sup \left\{\left|P_{n}(x)-f(x)\right|: x \in R\right\} \tag{1.13}
\end{equation*}
$$

and the degree of approximation $E_{n}(f)$ of a function $f \in L_{v}$ is given by [17]

$$
\begin{equation*}
E_{n}(f)=\min _{P_{n}}\left\|P_{n}-f\right\|_{v} \tag{1.14}
\end{equation*}
$$

This method of approximation is called Trigonometric Fourier approximation.
A function $f \in \operatorname{Lip} \alpha$ if [8]

$$
\begin{equation*}
|f(x+t)-f(x)|=O\left(|t|^{\alpha}\right), \quad 0<\alpha \leq 1 \tag{1.15}
\end{equation*}
$$

and $f \in \operatorname{Lip}(\alpha, r)$, for $0 \leq x \leq 2 \pi$, if [8]

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1, r \geq 1, \quad t>0 \tag{1.16}
\end{equation*}
$$

For a positive increasing function $\xi(t)$ and an integer $r>1, f \in \operatorname{Lip}(\xi(t), r)$ if [15]

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O(\xi(t)) \tag{1.17}
\end{equation*}
$$

For a given positive increasing function $\xi(t)$ and an integer $p>1$ the function $f(x) \in W\left(L^{p}, \xi(t)\right)$, if [7]

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{p}(\sin x)^{p \beta} d x\right)^{\frac{1}{p}}=O(\xi(t)), \beta \geq 0 \tag{1.18}
\end{equation*}
$$

We use the following notation throughout this paper:

$$
\begin{align*}
& \phi(t)=f(x+t)+f(x-t)-2 f(x) \tag{1.19}\\
& \quad s_{n}(f ; x): \text { nth partial sum of the Fourier series given by }(1.10) \tag{1.20}
\end{align*}
$$

and

$$
\begin{equation*}
K_{n}(t)=\frac{1}{2 \pi(1+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} \tag{1.21}
\end{equation*}
$$

Further, the method $(E, q)\left(N, p_{n}, q_{n}\right)$ is assumed to be regular and this case is supposed throughout the paper.

2. Known Theorems:

Bernestein[2], Alexits[1], Sahney and Goel [13], Chandra [4] and several others have determined the degree of approximation of the Fourier series of the function $f \in \operatorname{Lip\alpha }$ by $(C, 1),(C, \delta),\left(N, p_{n}\right)$ and $\left(\bar{N}, p_{n}\right)$ means. Subsequently, working on the same direction Sahney and Rao[14], and Khan[6] have established results on the degree of approximation of the function belonging to the class $\operatorname{Lip\alpha }$ and $\operatorname{Lip}(\alpha, r)$ by $\left(N, p_{n}\right)$ and $\left(N, p_{n}, q_{n}\right)$ means respectively. However, dealing with product summability Nigam et al [12] proved the following theorem on the degree of approximation by the product $(E, q)(C, 1)$ - mean of Fourier series.

Theorem 2.1:

If a function f is 2π-periodic and of class Lip α, then its degree of approximation by $(E, q)(C, 1)$ summability mean on its Fourier series $\sum_{n=0}^{\infty} A_{n}(t)$ is given by $\left\|E_{n}^{q} C_{n}^{1}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1$, where $E_{n}^{q} C_{n}^{1}$ represents the (E, q) transform of $(C, 1)$ transform of $s_{n}(f ; x)$.

Subsequently Misra et al [9] have established the following theorem on degree of approximation by the product mean $(E, q)\left(N, p_{n}\right)$ of the Fourier series:

Theorem 2.2:

If f is a 2π - Periodic function of class $\operatorname{Lip}(\alpha, r)$, then degree of approximation by the product $(E, q)\left(N, p_{n}\right) \quad$ summability means on its Fourier series (defined above) is given by $\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right), 0<\alpha<1, r \geq 1$, where τ_{n} as defined in (1.8) .

Further, Misra et al [10] have established the following theorem on degree of approximation by the product mean $(E, s)\left(N, p_{n}, q_{n}\right)$ of the Fourier series:

Theorem 2.3:

If f is a 2π-Periodic function of the class $\operatorname{Lip}(\alpha, l)$, then degree of approximation by the product $(E, s)\left(N, p_{n}, q_{n}\right) \quad$ summability means on its Fourier series (1.10) is given by $\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{l}}}\right), 0<\alpha<1, \quad l \geq 1$., where τ_{n} is as defined in (1.8).

Recently, Misra et al [11] proved the following Theorem

Theorem -2.4 :

For a positive increasing function $\xi(t)$ and an integer $l>1$, if f is a 2π - Periodic function of the class $\operatorname{Lip}(\xi(t), l)$, then degree of approximation by the product $(E, s)\left(N, p_{n}, q_{n}\right)$ summability on its Fourier series (1.10) is given by $\left\|\tau_{n}-f\right\|_{\infty}=O\left((n+1)^{\frac{1}{l}} \xi\left(\frac{1}{n+1}\right)\right), l \geq 1, \quad$ where τ_{n} is as defined in (1.8).

In this paper, we have established a theorem on degree of approximation by the product mean $(E, s)\left(N, p_{n}, q_{n}\right)$ of the Fourier series of a function of class $W\left(L^{p}, \xi(\mathrm{t})\right)$. We prove:

3. Main Theorem

Let $\xi(t)$ be a positive increasing function and f a $2 \pi-$ Periodic function of the class $W\left(L^{p}, \xi(t)\right), p>1, t>0$. Then degree of approximation by the product $(E, s)\left(N, p_{n}, q_{n}\right)$ summability means on the conjugate series (1.10) of the Fourier series (1.9) is given by

$$
\begin{equation*}
\left\|\tau_{n}-f\right\|_{r}=O\left((n+1)^{\beta+\frac{1}{l}} \xi\left(\frac{1}{n+1}\right)\right), l \geq 1 \tag{3.1.1}
\end{equation*}
$$

provided

$$
\begin{equation*}
\left(\int_{0}^{\frac{1}{n+1}}\left(\frac{t \phi(t) \sin ^{\beta} t}{\xi(t)}\right)^{l} d t\right)^{\frac{1}{l}}=O\left(\frac{1}{n+1}\right) \tag{3.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\int_{\frac{1}{n+1}}^{\pi}\left(\frac{t^{-\delta}|\phi(t)|}{\xi(t)}\right)^{l} d t\right)^{\frac{1}{l}}=O\left((n+1)^{\delta}\right) \tag{3.1.3}
\end{equation*}
$$

hold uniformly in x, where δ is an arbitrary number such that $m(1-\delta)-1>0$ and τ_{n} is as defined in (1.7).

4. Required Lemmas:

We require the following Lemmas for the proof the theorem.
Lemma -4.1:

$$
\left|K_{n}(t)\right|=O(n) \quad, 0 \leq t \leq \frac{1}{n+1}
$$

Proof of Lemma-4.1:

For $0 \leq t \leq \frac{1}{n+1}$, we have $\sin n t \leq n \sin t$.
then

$$
\begin{aligned}
& \left|K_{n}(t)\right|=\frac{1}{2 \pi(1+s)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} s^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{\sin \left(v+\frac{1}{2}\right)}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2 \pi(1+s)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} s^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{(2 v+1) \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2 \pi(1+s)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} s^{n-k}(2 k+1)\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v}\right\}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{(2 n+1)}{2 \pi(1+s)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} s^{n-k}\right| \\
& =O(n)
\end{aligned}
$$

This proves the lemma.

Lemma-4.2:

$$
\left|K_{n}(t)\right|=O\left(\frac{1}{t}\right), \text { for } \frac{1}{n+1} \leq t \leq \pi .
$$

Proof of Lemma-4.2:

$$
\text { For } \frac{1}{n+1} \leq t \leq \pi, \text { we have by Jordan's lemma, } \sin \left(\frac{t}{2}\right) \geq \frac{t}{\pi}, \sin n t \leq 1
$$

Then

$$
\begin{aligned}
\left|K_{n}(t)\right| & =\frac{1}{2 \pi(1+s)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} s^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2 \pi(1+s)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} s^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} \frac{\pi p_{k-v} q_{v}}{t}\right\}\right| \\
& =\frac{1}{2(1+s)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} s^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v}\right\}\right| \\
& =\frac{1}{2(1+s)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} s^{n-k}\right| \\
& =O\left(\frac{1}{t}\right) .
\end{aligned}
$$

This proves the lemma.

5. Proof of Theorem 3.1:

Using Riemann -Lebesgue theorem, for the n-th partial sum $s_{n}(f ; x)$ of the Fourier series (1.10) of $f(x)$ and following Titchmarch [16], we have

$$
s_{n}(f ; x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \phi(t) \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} d t
$$

Using (1.2), the $\left(N, p_{n}, q_{n}\right)$ transform of $s_{n}(f ; x)$ is given by

$$
t_{n}-f(x)=\frac{1}{2 \pi r_{n}} \int_{0}^{\pi} \varphi(t) \sum_{k=0}^{n} p_{n-k} q_{v} \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} d t
$$

Denoting the $(E, q)(N, p, q)$ transform of $s_{n}(f ; x)$ by τ_{n}, we have

$$
\begin{align*}
& \begin{aligned}
&\left\|\tau_{n}-f\right\|=\frac{1}{2 \pi(1+s)^{n}} \int_{0}^{\pi} \varphi(t) \sum_{k=0}^{n}\binom{n}{k} s^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} d t \\
&=\int_{0}^{\pi} \phi(t) K_{n}(t) d t \\
&=\left\{\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right\} \phi(t) K_{n}(t) d t \\
& \text { 5.1) }=I_{1}+I_{2}, \text { say. }
\end{aligned}
\end{align*}
$$

Now

$$
\begin{aligned}
\left|I_{1}\right| & =\frac{1}{2 \pi(1+s)^{n}}\left|\int_{0}^{1 / n+1} \varphi(t) \sum_{k=0}^{n}\binom{n}{k} s^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} d t\right| \\
& \leq\left|\int_{0}^{\frac{1}{n+1}} \varphi(t) K_{n}(t) d t\right| \\
& \leq\left(\int_{0}^{\frac{1}{n+1}}\left|\frac{t \phi(t) \sin ^{\beta} t}{\xi(t)}\right|^{l} d t\right)^{\frac{1}{l}}\left(\int_{0}^{\frac{1}{n+1}}\left|\frac{\xi(t) \bar{K}_{n}(t)}{t \sin ^{\beta} t}\right|^{m} d t\right)^{\frac{1}{m}} \text {, where } \frac{1}{l}+\frac{1}{m}=1, \text { using }
\end{aligned}
$$

Hölder's inequality

$$
=O(1)\left(\int_{0}^{\frac{1}{n+1}}\left(\frac{\xi(t)}{t^{1+\beta}}\right)^{m} d t\right)^{\frac{1}{m}}, \text { using Lemma } 4.1 \text { and (3.1.2) }
$$

$$
\begin{aligned}
& =O\left(\xi\left(\frac{1}{n+1}\right)\left(\int_{0}^{\frac{1}{n+1}} \frac{d t}{t^{(1+\beta) m}}\right)^{\frac{1}{m}}\right. \\
& =O\left(\xi\left(\frac{1}{n+1}\right)\right) O\left((n+1)^{-\frac{1}{m}+1+\beta}\right) .
\end{aligned}
$$

$$
\begin{equation*}
=O\left(\xi\left(\frac{1}{n+1}\right)(n+1)^{\beta+\frac{1}{l}}\right) . \tag{5.2}
\end{equation*}
$$

Next

$$
\begin{aligned}
\left|I_{2}\right| \leq & \left(\int_{\frac{1}{n+1}}^{\pi}\left|\frac{t^{-\delta} \phi(t) \sin ^{\beta} t}{\xi(t)}\right|^{l} d t\right)^{\frac{1}{2}}\left(\int_{\frac{1}{n+1}}^{\pi}\left|\frac{\xi(t) \bar{K}_{n}(t)}{t^{-\delta} \sin ^{\beta} t}\right|^{m} d t\right)^{\frac{1}{m}}, \\
& \text { where } \frac{1}{l}+\frac{1}{m}=1, \text { using Hölder’s inequality } \\
& O\left((n+1)^{\delta}\right)\left(\int_{\frac{1}{n+1}}^{\pi}\left(\frac{\xi(t)}{t^{\beta+1-\delta}}\right)^{m} d t\right)^{\frac{1}{m}}, \text { using Lemma 4.2 and (3.1.3) } \\
& =O\left((n+1)^{\delta}\right)\left(\int_{\frac{1}{\pi}}^{n+1}\left(\frac{\xi\left(\frac{1}{y}\right)}{y^{\delta-\beta-1}}\right)^{m} \frac{d y}{y^{2}}\right)^{\frac{1}{m}},
\end{aligned}
$$

since $\xi(t)$ is a positive increasing function, so is $\xi(1 / y) /(1 / y)$. Using second mean value theorem we get

$$
\begin{aligned}
& =O\left((n+1)^{1+\delta} \xi\left(\frac{1}{n+1}\right)\right)\left(\int_{\varepsilon}^{n+1} \frac{d y}{y^{m(\delta-\beta-1)+2}}\right)^{\frac{1}{m}}, \text { for some } \frac{1}{\pi} \leq \varepsilon \leq n+1 \\
& =O\left((n+1)^{1+\delta} \xi\left(\frac{1}{n+1}\right)\right) O\left((n+1)^{\beta+1-\delta-\frac{1}{m}}\right) \\
& =O\left((n+1)^{\beta+\frac{1}{l}} \xi\left(\frac{1}{n+1}\right)\right)
\end{aligned}
$$

Then from (5.2) and (5.3), we have

$$
\left|\tau_{n}-f(x)\right|=O\left((n+1)^{\beta+\frac{1}{l}} \xi\left(\frac{1}{n+1}\right)\right), \text { for } r \geq 1
$$

$$
\begin{aligned}
\left\|\tau_{n}-f(x)\right\|_{r}= & \left(\int_{0}^{2 \pi} O\left((n+1)^{\beta+\frac{1}{l}} \xi\left(\frac{1}{n+1}\right)\right)^{l} d x\right)^{\frac{1}{l}}, l \geq 1 . \\
& =O\left((n+1)^{\beta+\frac{1}{l}} \xi\left(\frac{1}{n+1}\right)\right)\left(\int_{0}^{2 \pi} d x\right)^{\frac{1}{l}} \\
& =O\left((n+1)^{\beta+\frac{1}{l}} \xi\left(\frac{1}{n+1}\right)\right) .
\end{aligned}
$$

This completes the proof of the theorem.

References

[1] G.Alexits. (1928) \ddot{U} ber die Annanherung einer stetigen function durch die Cesarochen Mittel in hrer Fourier reihe, Math. Annal 100, 264-277.
[2] S.Bernstein. (1912) Sur l' order de la Melleure approximation des function continue par des polynomes de degree' donne'e, Memories Acad. Roy-Belyique 4, 1-104.
[3] D.Borwein. (1958) On product of sequences, Journal of London Mathematical Society, 33, 352-357.Sd
[4] P.Chandra. (1970) On degree of approximation of functions belonging to Lipchitz class, Nanta Math. 80, 8889.Df
[5] G.H. Hardy. (1949) Divergent series, First edition, Oxford University press.Mm
[6] Huzoor H. Khan. (1982)On degree of approximation of function belonging to the class, Indian Journal of pure and
applied Mathematics, 13, 132-136.
[7] Shyam Lal. (1999) on degree of approximation of Fourier series of function belonging to the Neighbourhood $W\left(L^{p}, \xi(\mathrm{t})\right)$ class by ($\left.\mathrm{C}, 1\right)(\mathrm{E}, 1)$ means, Tamkang Journal of mathematics 30,47-52Jh
[8] L. McFadden. (1942) Absolute \ddot{N} orlund summabilty, Duke Maths. Journal, 9,168-207.Ss
[9] U.K.Misra, M. Misra, B.P. Padhy and M.K. Muduli. (2011) On degree of approximation by product mean $(E, q)\left(N, p_{n}\right)$ of Fourier series, Gen. Math. Notes ISSN $2219-7184$, Vol.6, No.2,
[10] U.K.Misra, M. Misra, B.P. Padhy and P.C.Das. "Degree of approximation of the Fourier Series of a function of Lipchitz class by Product Means", Communicated to Journal of Mathematical Modeling, SciKnow PublicationSs
[11] U.K.Misra, M. Misra, B.P. Padhy ,P.palo and P.Samanta. (2014) Aapproximation of the Fourier Series of a function of Lipchitz class by Product Means", Journal of Advanced in Mathematics, Vol.9,No.4,2475-2484.
[12] H.K. Nigam and Ajay Sharma. (2010) On degree of Approximation by product means, Ultra Scientist of Physical Sciences, Vol. 22 (3) M, 889-894,.
[13] B .N. Sahney and D.S.Goel. (1973) On degree of approximation of continuous functions, Ranchi University Mathematical Journal, 4, 50-53.
[14] B .N. Sahney and G.Rao. (1972) Errors bound in the approximation function, Bulletin of Australian Mathematical Society, 6
[15] A.H.Sidiqui : Ph.D. Thesis, Aligarh Muslim University, Aligarh, a967
[16] E.C. Titchmarch. (1939) The theory of functions, oxford university press, p.p402-403.
[17] A . Zygmund. (1959) Trigonometric Series, second Edition ,Vol.I, Cambridge University press.

