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Abstract  

In this paper we are study on fuzzy transportation problem for industries to reduce the transportation cost 
of commodity from one source to another source. In this paper we are taking transportation cost, demand 
and supply all are in fuzzy trapezoidal number because the fuzzy number satisfy the condition of 
vagueness. Here we are using the propose algorithm to obtained the fuzzy optimal solution of fuzzy 
transportation problem with membership function. The solution procedure is illustrated with numerical 
example. 

Keywords: Fuzzy Transportation Problem; Trapezoidal Number; Fuzzy Optimal Solution; Membership 
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1. INTRODUCTION 

A fuzzy transportation problem is a transportation problem in which the transportation costs, supply and demand 

quantities are fuzzy quantities. The objective of the fuzzy transportation problem is to determine the shipping 

schedule that minimizes the total fuzzy transportation cost while satisfying fuzzy supply and demand limits. In the 

real world is inevitable owing to some unexpected situations. There are cases that the cost coefficients and the 

supply and demand quantities of a transportation problem may be uncertain due to some uncontrollable factors. To 

deal quantitatively with imprecise information in making decisions, Bellman and Zadeh [2] and Zadeh [15] 

introduced the notion of fuzziness. By using this fact much researcher study on fuzzy transportation problem like 

Nuran [8] solve fuzzy transportation problem at two stages, in first stage they calculated satisfaction level between 

fuzzy demand and fuzzy supplies and in second stage by considering the unit transportation costs from zero to 

maximum satisfaction level. Pandian and Natarajan [11] introduced the new algorithm, zero point method to find 

the fuzzy optimal solution of fuzzy transportation problem. Parra et al [12] proposed a method for solving fuzzy 

transportation problem and also to find the possibility distribution of the objective value of the transportation 

problem provided all the inequality constraints are of ≤ types or ≥ types. Chanas et al [3] developed a method for 

solving transportation problems with fuzzy supplies and demands via the parametric programming technique using 

the Bellman-Zadeh certerion [2]. Chanas and Kuchta [4] introduced a method for solving a transportation problem 

with fuzzy cost coefficient by transforming the given problem to a bicriterial transportation problem with crisp 

objective function which provides only crisp solution to the given transportation problem. Liu and Kao [10] 

developed a solution procedure for computing the fuzzy objective value of the fuzzy transportation problem, where 

at least one of the parameters are fuzzy numbers using Zadeh’s extension principal. Nagoor Gani and Abdul Razak 

[11] obtained a fuzzy solution for a two stage cost minimizing fuzzy transportation problem in which supplies and 

demands are trapezoidal fuzzy numbers using a parametric approach. Ritha and Vinotha [13] presenting two stage 

cost minimizing fuzzy transportation problem with multi-objective constraints they used fuzzy geometric 

programming approach to solve multi-objective fuzzy transportation problem. Verma et al [14] apply the fuzzy 

programming technique with hyperbolic and exponential membership functions to solve multi-objective 

transportation problem, the solution derived is a compromise solution. 

In this paper, we are using proposed algorithm for finding the fuzzy optimal solution for a fuzzy transportation 

problem where all parameters transportation cost, demand, and supply are in fuzzy trapezoidal fuzzy. Because we 
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know that the fuzzy number satisfies the condition of vagueness i.e. condition of uncertainty of demand of market 

and the supply of availability.    

When we use proposed new algorithm for finding an optimal solution for a fuzzy transportation problem, we have 

the following advantages: 

(i) We o not use linear programming techniques. 

(ii) We do not use goal and parametric programming technique. 

(iii) The optimal solution is a fuzzy number. 

2. BASIC DEFINITION AND FORMULATION: 

2.1 Definition: Let A be a classical set and 𝜇𝐴(𝑥) be a function from A to [0,1]. A fuzzy set A* with membership 

function 𝜇𝐴(𝑥) is defined by  𝐴∗ =   𝑥, 𝜇𝐴(𝑥)  : 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝜇𝐴 𝑥 ∈ [0,1]    

2.2 Definition: A real fuzzy number A = (a1, a2, a3, a4) is a fuzzy subset from the real line R with the membership 

function 𝜇𝐴(𝑥) satisfying the following conditions: 

(i) 𝜇𝐴(𝑥)  is a continuous mapping from R to the closed interval [0,1]. 

(ii) 𝜇𝐴(𝑥)  = 0 for every 𝑎𝜖(−∞, 𝑎1]  

(iii) 𝜇𝐴(𝑥) is strictly increasing and continuous on [𝑎1 , 𝑎2] 

(iv) 𝜇𝐴(𝑥) = 1 for every 𝑎𝜖[𝑎2 , 𝑎3] 

(v) 𝜇𝐴(𝑥) is strictly decreasing and continuous on [𝑎3 , 𝑎4] 

(vi) 𝜇𝐴(𝑥) = 0 for every 𝑎𝜖[𝑎4 , +∞] 

2.3 Definition: A fuzzy number A is a trapezoidal fuzzy number denoted by A = (a1, a2, a3, a4) where a1, a2, a3 and 

a4 are real numbers and its membership function 𝜇𝐴(𝑥) is given below: 

𝜇𝐴 𝑥 =

 
  
 

  
 

0                                   for x ≤  a1

 x − a1 
 a2 − a1 

                           for a1 ≤ x ≤ a2

1                                          for a2 ≤ x ≤ a3

 a4 − x 
 a4 − a3 

                       for a3 ≤ x ≤ a4

0                                for x ≥ a4

  

We need the following definition of the basic arithmetic operators on fuzzy trapezoidal numbers based on the 

function principal which can be found in [3,5]. 

2.4 Definition: If 𝐴 = (𝑎1 , 𝑎2 , 𝑎3, 𝑎4) is trapezoidal fuzzy number, then the defuzzified value or the ordinary crisp 

of A, a given below 

𝑎 =
(𝑎1 + 2𝑎2 + 2𝑎3 + 𝑎4)

6
 

We need the following definitions of ordering on the set of fuzzy numbers based on the magnitude of a fuzzy 

number which can be found in [1]  

2.5 Definition: 

 Fuzzy Feasible solution: Any set of fuzzy non negative allocations 𝑥𝑖𝑗 = [−2𝛿, −1𝛿, 1𝛿, 2𝛿] where 𝛿small 

positive number, which satisfies the row is and column sum is a fuzzy feasible solution. 

 Fuzzy basic feasible solution: A feasible solution is a fuzzy basic feasible solution if the number of non 

negative allocation is at most (m + n -1) where m is the number of rows and n is the number of columns in 

transportation table. 

 Fuzzy non degenerate basic feasible solution: Any fuzzy feasible solution to a transportation problem 

containing m origins and n destinations is said to be fuzzy non degenerate, if it contains exactly (m + n -1) 

occupied cells. 

 Fuzzy degenerate basic feasible solution: If a fuzzy basic solution contains less than (m + n -1) non negative 

allocations, it is said to be degenerate.  
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2.6 Definition: If A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4) two trapezoidal fuzzy numbers then the arithmetic 

operations on A and B as follows: 

 Addition :  

 𝑎1 , 𝑎2 , 𝑎3, 𝑎4 ⊕  𝑏1 , 𝑏2, 𝑏3 , 𝑏4 =  𝑎1 + 𝑏1 , 𝑎2 + 𝑏2, 𝑎3 + 𝑏3, 𝑎4 + 𝑏4  

 Subtraction: 

  𝑎1 , 𝑎2 , 𝑎3, 𝑎4 ⊖  𝑏1 , 𝑏2, 𝑏3 , 𝑏4 =  𝑎1 − 𝑏4 , 𝑎2 − 𝑏3 , 𝑎3 − 𝑏2, 𝑎4 − 𝑏1  

 Multiplication:  𝑎1, 𝑎2 , 𝑎3 , 𝑎4 ⨂ 𝑏1, 𝑏2 , 𝑏3, 𝑏4 =  𝑡1, 𝑡2, 𝑡3, 𝑡4  

 

   Where                                        𝑡1 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎1𝑏1 , 𝑎1𝑏4 , 𝑎4𝑏1 , 𝑎4𝑏4  

𝑡2 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎2𝑏2, 𝑎2𝑏3 , 𝑎3𝑏2 , 𝑎3𝑏3  

𝑡3 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎2𝑏2 , 𝑎2𝑏3 , 𝑎3𝑏2 , 𝑎3𝑏3  

𝑡4 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎1𝑏1 , 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4  

We need the following definition of the defuzzified value of fuzzy number based on graded mean integration 

method. 

2.6 Fuzzy Transportation Problem:  

Let a transportation problem with m fuzzy origins and n fuzzy destinations. Let 𝐶𝑖𝑗 =  𝑐𝑖𝑗
(1)

, 𝑐𝑖𝑗
(2)

, 𝑐𝑖𝑗
(3)

, 𝑐𝑖𝑗
(4)

  be the 

transportation cost of one unit of the product from fuzzy origins i
th

 to fuzzy destination j
th

. Let 

𝑎𝑖 =  𝑎𝑖
(1)

, 𝑎𝑖
(2)

, 𝑎𝑖
(3)

, 𝑎𝑖
(4)

  be the quantity of commodity available at fuzzy origin i, 𝑏𝑗 =  𝑏𝑗
(1)

, 𝑏𝑗
(2)

, 𝑏𝑗
(3)

, 𝑏𝑗
(4)

  be 

the quantity of commodity needed at fuzzy destination j, 𝑋𝑖𝑗 =  𝑥𝑖𝑗
(1)

, 𝑥𝑖𝑗
(2)

, 𝑥𝑖𝑗
(3)

, 𝑥𝑖𝑗
(4)

  is quantity transported from i
th

 

fuzzy origins to j
th

 fuzzy destination. The linear programming model representing the fuzzy transportation is given 

by 

Minimize = 𝑍 =    𝑐𝑖𝑗
(1)

, 𝑐𝑖𝑗
(2)

, 𝑐𝑖𝑗
(3)

, 𝑐𝑖𝑗
(4)

 𝑛
𝑗 =1

𝑚
𝑖=1  𝑥𝑖𝑗

(1)
, 𝑥𝑖𝑗

(2)
, 𝑥𝑖𝑗

(3)
, 𝑥𝑖𝑗

(4)
  

Subject to the constraint 

   𝑥𝑖𝑗
(1)

, 𝑥𝑖𝑗
(2)

, 𝑥𝑖𝑗
(3)

, 𝑥𝑖𝑗
(4)

 =  𝑎𝑖
(1)

, 𝑎𝑖
(2)

, 𝑎𝑖
(3)

, 𝑎𝑖
(4)

 𝑛
𝑗=1  for i = 1,2,....,m 

  𝑥𝑖𝑗
(1)

, 𝑥𝑖𝑗
(2)

, 𝑥𝑖𝑗
(3)

, 𝑥𝑖𝑗
(4)

 =  𝑏𝑗
(1)

, 𝑏𝑗
(2)

, 𝑏𝑗
(3)

, 𝑏𝑗
(4)

 𝑛
𝑗=1  for j = 1,2,....,n 

 𝑥𝑖𝑗
(1)

, 𝑥𝑖𝑗
(2)

, 𝑥𝑖𝑗
(3)

, 𝑥𝑖𝑗
(4)

 ≥ 0 

The given fuzzy transportation problem is said to be balanced if 

   𝑎𝑖
(1)

, 𝑎𝑖
(2)

, 𝑎𝑖
(3)

, 𝑎𝑖
(4)

 =   𝑏𝑗
(1)

, 𝑏𝑗
(2)

, 𝑏𝑗
(3)

, 𝑏𝑗
(4)

 𝑛
𝑗 =1

𝑚
𝑖=1  

i.e if the total fuzzy capacity is equal to the total fuzzy demand. 

3. NEW PROPOSED ALGORITHM  

Step1: Check the given problem is balanced. 

Step 2: We check the number of rows and columns are equal or not. 

If number of rows are not equal to number of columns and vice versa. The dummy row or dummy column must be 

added with zero cost elements with zero demand/supply, so our matrix becomes a square matrix. 

Step3: Find the smallest element of each row of the given matrix and subtract this smallest element from all element 

of that row. Therefore, there will be at least one zero in each row of this new matrix. In this new matrix find the 

smallest element of each column of the given matrix and subtract this smallest element from all element of that 

column. 

Thus each row and column have at least one zero in new reduced matrix. 

Step4: In reduced matrix, find a row with exactly single zero. Make assignment to this single zero by square box 

and mark cross overall other zeros in the corresponding column, proceed in this way until all the row have been 

examined. Same process we have to use for column. 
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Step 5: If the number of assignment is equal to number of column or row, the problem in idle condition. 

If the number of assignment is not equal to number of column or row, the solution is not in idle condition, and then 

we go to next step 

Step 6: We draw the minimum number of horizontal and vertical line crossing the all zeros. 

Step7: Develop the new revised cost matrix as follows: 

(i) Find the smallest element of reduced matrix not covered by the any minimum number of line. 

(ii) Subtract this element from all uncovered elements and add this smallest element to all the elements lying at the   

intersection of horizontal and vertical lines. 

Step 8: Go to step 5 and repeat the procedure until an idle condition is obtained. 

Step 9: Firstly we have select those cell for allocation in row/column of idle transportation table which have only 

assignment, after that we have reaming cells for allocation in transportation table. 

Step 10: Now we check the solution is optimal or not. If solution is not optimal then we are using MODI method to 

get the optimal solution. 

4. NUMERICAL EXAMPLE 

To solve the following fuzzy transportation problem starting with initial fuzzy feasible solution obtained by using 

proposed algorithm: 

Table 1 

 D1 D2 D3 D4 Demand 

S1 [1,2,3,4] [1,3,6,8] [-1,0,1,2] [3,5,6,8] [0,2,4,6] 

S2 [4,8,12,16] [6,7,11,12] [2,4,6,8] [1,3,5,7] [2,5,9,13] 

S3 [1,5,9,13] [0,4,8,12] [0,6,8,14] [4,7,9,12] [2,4,6,7] 

Supply [1,3,5,7] [0,2,4,6] [1,3,5,7] [1,3,5,7]  

By using definition 2.4, Fuzzy Transportation Problem is balanced i.e   Sum of supply = Sum of demand 

                  [3, 11, 17, 27] = [4, 11, 19, 27] 

Our problem is balanced but number of row and number of column are not equal, so by using step 2 we get 

the following table 2 

Table 2 

 D1 D2 D3 D4 Demand 

S1 [1,2,3,4] [1,3,6,8] [-1,0,1,2] [3,5,6,8] [0,2,4,6] 

S2 [4,8,12,16] [6,7,11,12] [2,4,6,8] [1,3,5,7] [2,5,9,13] 

S3 [1,5,9,13] [0,4,8,12] [0,6,8,14] [4,7,9,12] [2,4,6,7] 

S4 0 0 0 0 0 

Supply [1,3,5,7] [0,2,4,6] [1,3,5,7] [1,3,5,7]  

By using step 3 to 5 we get the following table 3 

Table 3 

 D1 D2 D3 D4 Demand 

S1 [-1,1,3,5] [-1,2,6,9] 0 [1,4,6,9] [0,2,4,6] 

S2 [-3,3,9,15] [-1,2,8,11] [-5,-1,3,7] 0 [2,5,9,13] 

S3 [-11,-3,5,13] 0 [-12,-2,4,14] [-8,-1,5,12] [2,4,6,7] 

S4 0 0 0 0 0 

Supply [1,3,5,7] [0,2,4,6] [1,3,5,7] [1,3,5,7]  
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By using step 9 we get the following table 4 

Table 4 

 D1 D2 D3 D4 Demand 

S1  

[1,2,3,4] 

 

[1,3,6,8] 

        [0,2,4,6] 

[-1,0,1,2] 

 

[3,5,6,8] 

[0,2,4,6] 

S2     [-12,-3,7,17] 

[4,8,12,16] 

 

[6,7,11,12] 

     [-5,-1,3,7] 

[2,4,6,8] 

      [1,3,5,7] 

[1,3,5,7] 

[2,5,9,13] 

S3          [-4,0,4,7] 

[1,5,9,13] 

        [0,2,4,6] 

[0,4,8,12] 

       

[0,6,8,14] 

 

[4,7,9,12] 

 

[2,4,6,8] 

 

Supply 

 

[1,3,5,7] 

 

[0,2,4,6] 

 

[1,3,5,7] 

 

[1,3,5,7] 

 

 

After applying proposed new algorithm we get the number of occupied cell m + n -1 = 6 and get the following 

allotment which supply from one destination to another destination,  

x13 = [0,2,4,6]         x21 = [-12,-3,7,17]        x23 = [-5,-1,3,7]  

x24 = [1,3,5,7]         x31 = [-4,0,4,7]       x32 = [0,2,4,6] 

This is a non degenerate fuzzy basic feasible solution. Here we get fuzzy feasible value [-289, -9, 199, 552] of our 

fuzzy transportation problem and we get the crisp value of the fuzzy transportation problem z is 107.167.  

Since the above solution is not optimal so we are using MODI method to get the optimum solution and get the 

following occupied cell 

x11 = [-12,-3,7,17]         x13 = [-17,-5,7,18]          x23 = [-17,-4,10,24]  

x24 = [1,3,5,7]         x31 = [-4,0,4,7]       x32 = [0,2,4,6] 

Transportation Cost = [1,2,3,4]* [-12,-3,7,17] + [-1,0,1,2]* [-17,-5,7,18]+[2,4,6,8]* [-17,-4,10,24]  + 

                                     [1,3,5,7]*[1,3,5,7] + [1,5,9,13]* [-4,0,4,7]  + [0,4,8,12]* [0,2,4,6]   

                   = [-48, -9, 21, 68] + [-34, -5, 7, 36] + [-136, -24, 60, 192] + [1, 9, 25, 49] + [-52, 0, 36, 91] +   

                       [0, 8, 32, 72]        

                   = [-261, -15, 171, 484] 

Here we get fuzzy optimal value [-261, -15, 171, 484] of our fuzzy transportation problem and we get the crisp 

value of the fuzzy transportation problem z is 89.167.  

Now by the definition2.3, we are finding the fuzzy membership function for the fuzzy transportation cost as follows 

𝜇𝑐11
=

 
 
 

 
 
 𝑥 − 1 

1
        1 ≤ 𝑥 ≤ 2

1                 2 ≤ 𝑥 ≤ 3
 4 − 𝑥 

1
     3 ≤ 𝑥 ≤ 4

0           𝑎𝑡ℎ 𝑒𝑟𝑤𝑖𝑠𝑒

  

To compute the interval of confidence for each level α the trapezoidal shapes will be described by function of α in 

the following manner. 

Here 𝛼 =  𝑥1
(𝛼)

− 1  𝑎𝑛𝑑 𝛼 =  4 − 𝑥2
(𝛼)

  

Therefore 𝑐11 =  𝑥1
(𝛼)

, 𝑥2
(𝛼)

 = [𝛼 + 1, 4 − 𝛼]     (i) 

and  
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𝜇𝑥11
=

 
 
 

 
 
 𝑥 + 12 

9
       − 12 ≤ 𝑥 ≤ −3

1                   − 3 ≤ 𝑥 ≤ 7
 11 − 𝑥 

4
       7 ≤ 𝑥 ≤ 1

0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Here 𝛼 =  𝑥1
 𝛼 

+ 12 /9 𝑎𝑛𝑑 𝛼 =  11 − 𝑥2
 𝛼 

 /4 

Therefore 𝑥11 =  𝑥1
(𝛼)

, 𝑥2
(𝛼)

 = [9𝛼 − 12, 11 − 4𝛼]     (ii) 

Now from equation (i) and equation (ii), we get 

      𝑐11 ∗ 𝑥11 =   𝛼 + 1  9𝛼 − 12 ,  4 − 𝛼  11 − 4𝛼   

            = [9𝛼2 − 3𝛼 + 12, 4𝛼2 − 27𝛼 + 44]   (A) 

Similarly we find the other values, 

     𝑐13 ∗ 𝑥13 =   𝛼 − 1 (12𝛼 − 17),  17 − 12𝛼  18 − 11𝛼    

            = [12𝛼2 − 29𝛼 + 17, 132𝛼2 − 403𝛼 + 306]                 (B) 

     𝑐23 ∗ 𝑥23 =   2𝛼 + 2  13𝛼 − 17 ,  8 − 2𝛼  24 − 14𝛼    

                     = [26𝛼2 − 8𝛼 − 34, 28𝛼2 − 160𝛼 + 192]                     (C) 

      𝑐24 ∗ 𝑥24 =   2𝛼 + 1  2𝛼 + 1 ,  7 − 2𝛼  7 − 2𝛼    

                                       = [4𝛼2 + 4𝛼 + 1, 4𝛼2 − 28𝛼 + 49]                                (D) 

      𝑐31 ∗ 𝑥31 =   4𝛼 + 1  4𝛼 − 4 ,  13 − 4𝛼  7 − 3𝛼    

            = [16𝛼2 − 12𝛼 − 4, 12𝛼2 − 67𝛼 + 91]                          (E) 

      𝑐34 ∗ 𝑥34 =   4𝛼 ∗ 2𝛼 ,  12 − 4𝛼  6 − 2𝛼    

            = [8𝛼2, 8𝛼2 − 48𝛼 + 72]                                                  (F) 

From equation (A), (B), (C), (D), (E) and (F), we get   

Fuzzy minimum cost = 𝑐13 ∗ 𝑥13 + 𝑐21 ∗ 𝑥21 + 𝑐23 ∗ 𝑥23 + 𝑐24 ∗ 𝑥24 + 𝑐31 ∗ 𝑥31 +  𝑐33 ∗ 𝑥33   

                                  = [75𝛼2 − 48𝛼 − 8, 188𝛼2 − 733𝛼 + 754] 

The equations to be solved are 

75𝛼2 − 48𝛼 − 8 − 𝑥1 = 0 

188𝛼2 − 733𝛼 + 754 − 𝑥2 = 0 

We retain only two roots 𝛼 in [0, 1] 

𝛼 =
 48 +  (48)2 − 300(−39 − 𝑋1) 

150
  

𝛼 =
 733 +  (733)2 − 752(754 − 𝑋1) 

376
  

Therefore  

𝜇𝑐𝑜𝑠𝑡  𝑧(𝑥) =

 
 
 
 

 
 
  48 +  (48)2 − 300(−39 − 𝑋1) 

150
         − 261 ≤ 𝑥 ≤ −15

1                                                                            − 15 ≤ 𝑥 ≤ 171

 733 +  (733)2 − 752(754 − 𝑋1) 
376

      171 ≤ 𝑥 ≤ 484

0                                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Which are the required fuzzy membership functions of fuzzy transportation minimum cost z [-261, -15, 

171, 484] 

5. Conclusion 

In our study we have provided an optimal solution for fuzzy transportation problems in fuzzy number, but we have 

seen in some previous study obtained results are in crisp values, and then it might lose some helpful information. 

The new proposed algorithm provides that the optimal value of the objective function and shipping units are in 

fuzzy trapezoidal numbers for the fuzzy transportation problem with the unit shipping costs, the supply quantities 

and the demand quantities all are in fuzzy trapezoidal numbers. This method is very easy to understand and to apply 

and also, it can serve as an important tool for the decision makers when they are handling various types of logistic 

problems having fuzzy parameters. 
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