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Abstract: 
Optimal control theory is applied to a system of ordinary differential equations modelling a co-infection 

of malaria and sleeping sickness. The objective is to minimise chances of a malaria individual acquiring sleeping 
sickness. Two controls are used, one preventing infection and another preventing bites by the tsetse fly to the 
co-infected. The optimal controls are characterized in terms of the optimality system, which is solved 
numerically for three different scenarios. Results show that controlling co-infections of malaria and sleeping 
sickness can best be achieved if the bites from the tsetse fly are prevented. 
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1  Introduction 

 Human African Trypanosomiasis (HAT), or sleeping sickness is a vector-borne disease caused by protozoan 

parasites. It is a major health threat to rural poor several African countries and kills over 60,000 people every year [21]. The 

disease is endemic in 36 countries in Sub-Saharan Africa [20], challenging to diagnose, and is regarded as fatal if left 

untreated [2]. Infection with HAT occurs when an individual is bitten by an infected tsetse fly. The parasites responsible for 

causing HAT belong to a group of closely related trypanosomes in the Trypanosoma brucei species complex, which enter 

the blood stream via the bite of blood feeding tsetse flies Glossina species. The disease exists in chronic form, caused by 

Trypanosoma brucei gambiense and acute form caused by Trypanosoma brucei rhodesiense [17]. The tsetse fly can acquire 

these parasites by feeding on infected animals or infected human individuals. The fly remains infective for life which 

makes human/fly contact a crucial component of the disease [4].  

 

Over the last several years, with increasing parasite drug-resistance, and mosquito insecticide-resistance, malaria 

is still persistent in many parts of the world. The burden of malaria is not favored by the increasing number of malaria 

co-infections with many other killer diseases such as trypanosomiasis. Co-infections with malaria often lead to 

complications and severe cases for parasitic diseases [3]. These co-infections have long been recognized as major 

contributors to anemia in endemic countries, where severe anemia accounts for up to one half of the malaria-attributable 

deaths in children younger than 5 years of age. Trypanosomiasis, like malaria is a vector-borne protozoal disease which 

disproportionately affect the poor giving rise to immense human suffering. Malaria exerts its effect directly on human 

health, while trypanosomiasis causes damage largely through its effect on the health and productivity of the livestock on 

which so many poor people depend [8]. Both diseases are poorly understood combined with complex life cycles 

characterized by multiple stages in both the spreading vectors and human host with incubation periods ranging from weeks 

to months [4]. Trypanosomiasis parasites are very hard to treat especially when the parasites have reached the central 

nervous system [19]. A co-infection of such a disease with malaria would make a case so severe that the chances of 

recovery despite treatment may be minimal to none. 

 

Mathematical models provide a rational basis for finding optimal control strategies for infectious diseases. Some 

models of sleeping sickness (or HAT) have been designed to study the disease at population level such as [11, 9, 15]. 

However, these models did not account for time dependent control strategies and their discussions are based on prevalence 
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of the disease at equilibria. Time dependent control strategies have been studied for tuberculosis models [10] (and the 

references there in). Approaches of studying control strategies produce valuable theoretical results which can be used to 

suggest or design epidemic control programs. In this paper, a mathematical model for the dynamics of malaria and 

trypanosomiasis is developed. Since the major aim of the study is the co-infection of malaria and HAT, the model follows 

only those individuals with malaria that end up with an additional infection of sleeping sickness. Although there is reduced 

contact when an individual is ill with malaria [13], people in rural areas live in bushes, sleep with their cattle or near the 

kraals and are thus more likely to come in contact with tsetse flies from these animals. For this case, transmission of 

trypanosomiasis to a malaria infective is assumed via a sigmoid function. This is so since when infected with malaria, 

individuals may be hard to find by the tsetse fly and thus few may be infected, but as they recover, more can become 

infected. Since malaria in endemic in Uganda [5], it is assumed in the model that there is a constant malaria flow into the 

population. A single equation is used for the population of the tsetse fly. This is done since the major interest is on the 

dynamics of sleeping sickness in a human with malaria. A linear increase in the tsetse fly vector is considered. When the 

vector bites a human infected with both diseases, there is an increase in its population. The tsetse fly decreases due to many 

factors such as death, failure to transmit and migration. In the model is assumed that the increase due to infection is less 

than the decrease due to death or to other causes, or else sleeping sickness would be endemic in Uganda as well. Analysis of 

the model is done to determine stability and biological interpretation before optimal control is done. 

 

2  Model formulation 

The model developed in this paper is based on the assumption that malaria is endemic in the area of study. This 

assumption is made since the major objective is to study the dynamics of sleeping sickness (or HAT) co-infection with 

malaria. Therefore, the susceptible individuals to sleeping sickness (HAT) are infected with malaria. A parameter b  is 

used to denote the constant flow of malaria infectives within the population. Let M  denote the number of malaria 

infected individuals and V  the number of tsetse flies ready to transmit HAT, at any time t . Let c  denote the biting rate 

of the tsetse fly and e  the probability of transmission of sleeping sickness to a malaria infected individual. Thus, if K  is 

the half saturation constant, that is the point at which there is a 50% chance of an individual infected with malaria to 

become infected with trypanosomiasis, then rate at which co-infections are generated in the population is given by 

22

2

MK

ceVM


. The sigmoid functional response is used here based on the fact that individuals sick with malaria have limited 

movements, thereby making it hard for the tsetse flies to bite them. Therefore, at low densities, malaria infected humans are 

hard to find by the tsetse fly, but when the densities are high, bites by the tsetse fly increase rapidly. The removal rate of the 

malaria infected through death, recovery or hospitalization is modelled by parameter  . Once infection of M  by V  

takes place, individuals move to the co-infected class T . These individuals recover, die, or are hospitalized at a rate  .  

 

Let the transmitting tsetse fly vector V  multiply linearly as a function of itself at a constant rate g . A logistic 

growth could be considered as well but for simpler analysis, we shall use the linear growth here. As a result of bites to a 

co-infected human, it is assumed that the tsetse fly becomes infected leading to additional growth in the sub compartment at 

a rate cd , where d  is the probability of acquiring infection on each bite of an infected human. The tsetse fly is removed 

at a rate  , and this incorporates different mechanisms such as failure to locate an infected human, death, or emigration to 

a new location. Thus, g> . The dynamics described above are given by the following equation:  

  (1) 

The model is analysed for stability and an optimal control strategy for prevention of co-infections is determined.  

2.1  Equilibrium points and their stability 

 Since malaria is endemic in this population, a disease-free equilibrium point is not possible. However, a sleeping 

sickness-free equilibrium point exists and is given by .,0,0
b

=)E(M* 









 This is the point when malaria exists without 
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trypanosomiasis in the population. The linear stability of )E(M*  is governed by the development potential of malaria in 

the population Md  given by .


b
 When ,<



b
dM  malaria does not develop and thus no co-infections are expected. In 

this case, individuals have more chances of recovery than acquiring sleeping sickness during the malaria episode. When 



b
dM > , malaria develops and co-infections are probable. The word probable is used here since when individuals are 

very sick with malaria, there will be few contacts with the tsetse fly [14] and co-infections will be few. Stability of this point 

is analyzed using the following theorem:  

Theorem 2.1 The equilibrium point )E(M*  is globally asymptotically stable if  

  (2)  

Proof: 
Consider a Lyapunov function  

 ,VT= 21    (3) 

 where 1,2=,ii  are positive constants. At 0=  ,,0,0 L










b
 and when 0.>  0,,, VT  The derivative of the 

Lyapunov function is such that  

  

 To have a negative derivative of  ,  

 g.<cdT  and    T<
MK

ecVM
22

2




  (4) 

This implies that  

 .
cd

g
<

)M(K

ecVM
22

2 






 (5) 

 Eliminating V  using the first equation of model (1) implies that  

  (6) 

 Therefore, 0<'  provided >b  and g> . This implies that )E(M*
 is globally asymptotically stable when 

1>=*



b
dM  and 1<=*



g
dT . 

*

Md  and 
*

Td  are the thresholds for containment of sleeping sickness in a population 

with endemic malaria. A slight deviation from these points could lead to explosion of malaria and trypanosomiasis 

co-infection.    

 

When 1<*

Md  and 1>*

Td , then there is co-infection in the population. A co-infected endemic equilibrium 

point is when both malaria and sleeping sickness exist in the population. At this point, VTM ,,  are all greater than zero. 

This point is obtained by setting the left hand side of equation (1) to zero and solving the resulting system. This gives the 

equilibrium point *E  equal to:  
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  (7) 

 where  

 ,
g)(

bcd
=


C  (8) 

 is the basic reproductive number for the co-infection. Therefore, the endemic equilibrium exits if 1>C  otherwise the 

trypanosomiasis-free point )E(M*  exists. This term is a product of two mechanisms. The first 


b
 gives the probability 

of a new malaria infective acquiring sleeping sickness during the removal process. The second term 
g

cd


 is the 

probability of the tsetse fly becoming infected before emigration or death. Thus, C  is the number of co-infections 

generated from a single sleeping sickness infective when introduced in a population where malaria is endemic. In the next 

subsection, we seek to find an optimal way to control these co-infections at minimum cost possible. 

 

2.2  Analysis of optimal control  

 We introduce into model (1) time dependent preventive control 1)(0 1  tu  to reduce transmission of 

sleeping sickness among malaria infected individuals. This can be done through protection of the infected such as 

hospitalisation or providing insecticide treated nets. Therefore, )(1 tu  is the effort for effective prevention of infection of a 

malaria individual with sleeping sickness. An additional control )(2 tu  where 1)(0 2  tu  is used as the effort 

required to prevent infectious bites from sleeping sickness infected individuals to the tsetse fly. This can be done by 

providing protection of the infected individuals, and keeping them away from exposure. This control therefore models the 

effort required to reduce transmission of the disease from an infected human to the vector. Incorporating these controls in 

the model gives  

 




























.V(t))TVucd(1gV=
dt

dV

,T
MK

(t))cVMue(1
=

dt

dT

,M
MK

(t))cVMue(1
b=

dt

dM

2

22

2

1

22

2

1







 (9) 

 The objective is then to minimize the number of infections with co-infection of malaria and sleeping sickness, and the 

subsequent transmission to the tsetse fly. Note that when 0,=)(),( 21 tutu  the model in equation (9) reduces to the 

previous model in equation (1). This would give a state without intervention. So the objective is to reduce the number of 

co-infections, while keeping costs as minimum as possible. To achieve this, relative costs associated with each control 

effort/policy are incorporated, directed towards limiting malaria and sleeping sickness co-infections. The objective 

function J  to be used over a feasible set of controls )(1 tu  and ),(2 tu  applied over the pre-defined finite time interval 

],[ 0 ftt  is given by  

 .}dtua
2

1
ua

2

1
VAT{A=)u,J(u 2

22

2

1121

f
t

0
t

21   (10) 

 It is assumed, as in prior studies of [7, 12], that the costs of the prevention and treatments are non linear and take quadratic 

form. TA1  is the cost associated with controlling sleeping sickness in the human, while VA2  is the cost associated with 

prevention of transmission in the tsetse fly. The rest of the parameters a  and b  are relative cost weights for each control 

measure aimed at preventing co-infections by providing treated nets and treatment of the infected to avoid further 

transmission to the tsetse fly. The goal is to minimize the number of co-infected individuals )(tT , while minimising the 
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cost of controls )(),( 21 tutu . Therefore, an optimal control 
*

2

*

1 ,uu  is sought such that  

 ,U}u,u|u,{J(umin=)u,J(u 2121
2u,1u

*

2

*

1   (11) 

 where the control set 1,2}=ifor   [0,1],  ]t,[t :u | u,{(u= f0i21 U . The necessary conditions that an optimal 

control must satisfy are derived from the Pontryagin’s Maximum Principle [18]. It converts equations (9)-(11) into a 

problem of minimizing a point-wise Hamiltonian H , with respect to ),( 21 uu  given by  

 













 M
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






  

 where VTM  , ,   are the adjoint or co-state variables. By differentiating the Hamiltonian with respect to each state 

variable, the differential equation for the associated adjoint is determined. The corollary in [7] gives the existence of 

optimal control due to the convexity of the integrand of J  with respect to 1u  and 2u , a priori boundedness of the state 

solutions, and the Lipschitz property of the state system with respect to the state variables. Applying Pontryagin’s 

Maximum Principle [7] and the existence result for the optimal control from [18], the following proposition is made:  

Proposition 2.1 Consider an optimal control 
*

2

*

1 u,u  and solutions *** V,T,M  of the corresponding system (9) that 

minimizes )u,J(u 21  over U . Then, there exists adjoint functions VTM ,,   satisfying  

 ,
MK

2VM
(t))cue(1

MK

2VM
(t))cue(1= T221M221M 














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
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


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


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 ,](t))Vucd(1[A= V2T1T    (12) 

       




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
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
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
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
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1
2V )(t))Tucd(1(g

MK
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(t))cMue(1
A=   

 and with transversality conditions  

 .0=)(t=)(t=)(t fVfTfM   (13) 

On the interior of the control set, where 1,<u<0 i  for 1,2=i  we have 

21 u

H
=

u

H
=0








 and thus obtain the 

controls 
*

1u  and 
*

2u  satisfying the optimality condition given as  
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 (14) 

   
Proof: 

 Proposition 2.1 is proved using Corollary 4.1 in Fleming and Rishel [7]. Applying Pontryagin’s Maximum 

Principle gives  

 

(15) 

                                                       

evaluated at the optimal control pair and corresponding states, which results in the stated adjoint system (12) and (13) [12]. 

On the interior of the control set, where 1,<<0 iu  for 1,2=i  we have  
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 and thus obtain the controls 
*

1u  and 
*

2u  satisfying the optimality condition. Solving for 
*

2

*

1 ,uu  on the interior of the 

control set gives 

 













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=u
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 (16) 

Taking the bounds into account gives the characterization of 
*

1u  and 
*

2u  in equation (14), and this completes the proof.    

   

3  Numerical results 
 In this section, the numerical results of the optimal control model are studied. These results are obtained by 

solving the optimality system of three ODE’s from the state and adjoint equations. An iterative scheme is used to solve the 

optimality system. First, the state equations are solved with a guess for the controls over the simulated time using fourth 

order Runge-Kutta scheme. The controls are then updated by using a convex combination of the previous controls and the 

value from the characterizations in equation (14). This process is repeated and iterations are stopped if the values of the 

unknowns at the previous iterations are very close to the ones at the present iterations [18].  

A simple model with prevention and treatment as control measures to study the effects of preventing co-infections 

of malaria and sleeping sickness is explored. Malaria is considered endemic in the area and a bite by a tsetse fly to an 

infected individual leads to co-infection with sleeping sickness. Therefore, providing protection from tsetse fly bites may 

be adopted as a control and prevention strategy. Using various combinations of the two controls, numerical results from the 

simulations are investigated and compared. 

In the simulation it is assumed that the weight factor 2A  associated with preventing tsetse fly bites is less than 

,1A  which is for protecting malaria infected individuals from sleeping sickness during the malaria episode. This 

assumption is based on the fact that although protecting a person sick with malaria for the duration of the episode involves 

making sure treatment is provided and taken at the correct intervals and also involves use of bed nets, it is equally hard to 

protect sick people from tsetse bites since some of them are in hospitals and others stay at home. In addition, it is harder to 

prevent tsetse flies from biting humans. Therefore, this cost involves finding the sick, and providing treatment of both 

malaria and sleeping sickness, and may also need to provide protection against both such as bed nets. All these factors 

weigh heavily on the effectiveness of a control program. In all numerical simulations, the weight factors 4=1A  and 

10=2A  are chosen to illustrate the optimal treatment strategy. Other epidemiological parameters are presented in Table 

1. In all figures, the solid line represents the simulation of the infected malaria, co-infected and vector without control, and 

the dashed line with control. 

  

Table  1: Parameter Description and Values  

 
  

   Figure 1 shows the simulation of the model without control, that is, both 1u  and 2u  equal to zero. In (a), the evolution 

of malaria infected individuals with time is given, in (b) the co-infected and in (c), the vector. In (d), the controls, 1u  

(solid) and 2u  (dashed), are plotted as a function of time. The figure shows that malaria individuals steadily decrease to 

zero and the co-infected also first increase then decrease to a minimum. The vector increases steadily to a maximum.  
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Figure 2 shows the simulation of the infected humans and vector when transmission to the vector is controlled. It is 

observed that to minimize the total number of infections to the tsetse fly, optimal control 2u  is at the upper bound through 

about 100 days, then steadily declines. The proportion of tsetse flies at the final time ft  = 160 (days) is 0.6571 in the case 

with control and 1.0000 without control, and the proportion of tsetse flies prevented at the end of the control program is 

0.3429 (= 1.0000- 0.6571). (See Table 2). 

Figure  1: Simulation of malaria infected, co-infected, the vector without control, i.e. 0== 21 uu . The blue circled line 

is for the variables without control, while the red squared line are the variables with control. Control 1 ( 1u ) is represented 

by the magenta starred line, while control 2 ( 2u ) is the black diamond. Other parameter values are in Table 1. 

 

Table  2: Computed parameters Controls 
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Figure  2: Simulation of malaria infected, co-infected, the vector with a control strategy when 00,= 21 uu . The blue 

circled line is for the variables without control, while the red squared line are the variables with control. Control 1 ( 1u ) is 

represented by the magenta starred line, while control 2 ( 2u ) is the black diamond. Other parameter values are in Table 1.  

  In Figure 3, there is no control of bites to the human by the vector 0=2u , but the transmission of 

trypanosomiasis in the malaria infected is controlled, 0.1 u  To minimize the total number of co-infections, optimal 

control 1u  is at the upper bound for about 130 days, and then drops to the lower bound. The total number of co-infections 

at the final time ft  = 160 (days) is 0.6913 in the case with control. On the other hand, at the final time ft , the fraction of 

malaria infected individual with control is 0.6283 compared to 0.2561 without control. It can be noted that protecting 

individuals against sleeping sickness without controlling the vector does not cut down on the number of infections within 

the community. When the malaria infected are protected from sleeping sickness, it only means that there will be more 

people who are healthy to be infected by the tsetse fly. Thus, it is imperative that vector control should be enforced as a 

priority before individual protection.  
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Figure  3: Simulation of malaria infected, co-infected, the vector with a control strategy when 0=0, 21 uu  . The blue 

circled line is for the variables without control, while the red squared line are the variables with control. Control 1 ( 1u ) is 

represented by the magenta starred line, while control 2 ( 2u ) is the black diamond. Other parameter values are in Table 1 

.  Figure 4 is when both controls are applied. It is observed that the only significant reduction is in the vector, 

from 1.0000 without control to 0.6753 with control. Therefore, the number of vectors averted are 0.3247, slightly less than 

when one control was used in Figure 2. Thus, it is more beneficial to apply all possible controls at the same time. We have 

to note here that the upper bound for the controls is 0.95 while the lower bound is 0.05. All these numerical results are 

shown in Table 2.  
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Figure  4: Simulation of malaria infected, co-infected, and the vector with a control strategy when 0, 21 uu . The blue 

circled line is for the variables without control, while the red squared line are the variables with control. Control 1 ( 1u ) is 

represented by the magenta starred line, while control 2 ( 2u ) is the black diamond. Other parameter values are in Table 1. 

  In conclusion, results identify optimal control strategies for three scenarios. Although the results in this study 

may vary depending on the population size, cost of implementing treatment controls and parameter values of the model, a 

control program that follow our strategies may effectively reduce the number of co-infections of malaria and sleeping 

sickness, and could also be employed as a vector control strategy.  
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