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Abstract  

In this paper we have shown comparison between classical set and fuzzy set. Also we have discussed 

some basic definitions and properties related to fuzzy set that is used in this paper. Then we collected 

three theorems by reviewing some papers, which were unproved there and we proved these theorems. 

We have reviewed some research papers with proper references to do our work.   
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1. Introduction 

A well defined collection of objects or elements 𝑥 out of some universe 𝑋, is termed as set 𝐴 if and only if an 

element  𝑥  shows this property that either it belongs to the set 𝐴 and we can symbolically write 𝑥 ∈ 𝐴, or it is 

excluded, and we write 𝑥 ∉ 𝐴. This conception can be described by using a characteristic function 1𝐴  , which is a 

mapping of the form  

                            1𝐴:𝑋 → {0,1} 

 

where,     1𝐴 𝑥 =  
0; 𝑖𝑓 𝑥 ∉ 𝐴
1; 𝑖𝑓 𝑥 ∈ 𝐴.

  

Against this background, fuzzy sets can be introduced as a generalization of conventional sets by allowing elements 

of a universe not only to entirely belong or not to belong to a specific set, but also to belong to the set to a certain 

grade. For the description of fuzzy sets, the characteristic function  1𝐴  of a crisp set 𝐴 can be generalized to a 

membership function  𝜇𝐴  for a fuzzy set [01] 𝐴, which is a mapping of the form 

𝜇𝐴:𝑋 → [0,1] 

represents a fuzzy measure from a set-theoretical point of view. In general, a fuzzy set  𝐴 can thus be expressed by 

a set of pairs consisting of the elements  𝑥  of a universe 𝑋 and a certain grade of pre-assumed membership 𝜇𝐴(𝑥) 

of the form  

                                         𝐴 =   𝑥, 𝜇𝐴(𝑥)  𝑥 ∈ 𝑋, 𝜇𝐴 𝑥 ∈  0,1   

Thus, a fuzzy set 𝐴 in 𝑋 is characterized by its membership function 

𝜇𝐴:𝑋 → [0,1] 

http://www.scitecresearch.com/journals
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and  𝜇𝐴(𝑥) is interpreted as the degree of membership of element  𝑥 in fuzzy set  𝐴 for each  𝑥 ∈ 𝑋 .  

2. Some Basic Definitions and Operations 

2.1. Definition [01]: Suppose 𝑓,𝑔 ∈ 𝐼𝑋  are fuzzy sets. Then the standard compliment of  𝑓 is another fuzzy set  

𝑓:𝑋 → 𝐼; defined by, 

                            𝑓 𝑥 = 1 − 𝑓 𝑥 ,∀𝑥 ∈ 𝑋. 

2.2. Definition [01]: Suppose  𝑓,𝑔 ∈ 𝐼𝑋   are two fuzzy sets. Then the standard union of  𝑓 and  𝑔  is also a 

fuzzy set in  𝐼𝑋   denoted by  𝑓 ∪ 𝑔 and is defined by, 

 

                   𝑓 ∪ 𝑔  𝑥 = max 𝑓 𝑥 ,𝑔 𝑥  = 𝑓 𝑥 ∨ 𝑔 𝑥 ;  ∀𝑥 ∈ 𝑋. 
2.3. Definition [01]: Suppose 𝑓,𝑔 ∈ 𝐼𝑋  are two fuzzy sets. Then the standard intersection of  𝑓  and 𝑔  is also a 

fuzzy set in  𝐼𝑋  denoted by 𝑓 ∩ 𝑔 and is defined by, 

                          𝑓 ∩ 𝑔  𝑥 = min 𝑓 𝑥 ,𝑔 𝑥  = 𝑓 𝑥 ∧ 𝑔 𝑥 ;∀𝑥 ∈ 𝑋. 

2.4. Definition [01]: Suppose  𝑓,𝑔 ∈ 𝐼𝑋  are fuzzy sets. Then we say that “𝒇 is a subset of 𝒈” denoted by “ 𝑓 ⊂

𝑔”  iff  𝑓 𝑥 ≤ 𝑔 𝑥 ,∀𝑥 ∈ 𝑋. 

2.5. Definition [05]: Let 𝑋 and 𝑌 be sets, and let 𝑓:𝑋 → 𝑌 be a function. For a fuzzy set 𝜇 in  𝑋, the image of  𝜇 

under 𝑓 is the fuzzy set  𝑓(𝜇) in 𝑌 defined, for 𝑦 ∈ 𝑌, by the rule 

𝑓 𝜇  𝑦 =  
sup 𝜇 𝑧 : 𝑧 ∈ 𝑓−1 𝑦   𝑖𝑓 𝑓−1 𝑦 ≠ ∅

0                                         𝑖𝑓 𝑓−1 𝑦 = ∅.
  

2.6. Definition [05]: Let 𝑋 and 𝑌 be sets, and let 𝑓:𝑋 → 𝑌 be a function. For a fuzzy set 𝜈 in  𝑌, the inverse image 

of  𝜈 under 𝑓 is the fuzzy set 𝑓−1(𝜈) in 𝑋 by the rule 

𝑓−1 𝜈  𝑥 = 𝜈(𝑓 𝑥 )  for  𝑥 ∈ 𝑋. 

                                         (i.e,  𝑓−1 𝜈 = 𝜈 ∘ 𝑓). 

3. Some Basic Theorems 

3.1. Theorem [05]: For fuzzy sets  𝜇, 𝜇1 , 𝜇2 and  𝜈 in  𝑋: 

(i) 𝜈 ∩  𝜇1 ∪ 𝜇2 =  𝜐 ∩ 𝜇1 ∪  𝜐 ∩ 𝜇2  

(ii) 𝜈 ∪  𝜇1 ∩ 𝜇2 =  𝜐 ∪ 𝜇1 ∩  𝜐 ∪ 𝜇2  

(iii) 1 −  𝜇1 ∪ 𝜇2 =  1 − 𝜇1 ∩  1 − 𝜇2  

(iv) 1 −  𝜇1 ∩ 𝜇2 =  1 − 𝜇1 ∪ (1 − 𝜇2). 

Proof: 

(i) ∀ 𝑥 ∈ 𝑋;  
             𝜈 ∩  𝜇1 ∪ 𝜇2   𝑥 = 𝜈 𝑥 ∧  𝜇1 ∪ 𝜇2 (𝑥) 

 

                         = 𝜈 𝑥 ∧ {𝜇1 𝑥 ∨ 𝜇2 𝑥 } 

 

                         =  𝜈 𝑥 ∧ 𝜇1 𝑥  ∨   𝜈 𝑥 ∧ 𝜇2 𝑥   

 

                         =   𝜈 ∩ 𝜇1  𝑥  ∨   𝜈 ∩ 𝜇2  𝑥   
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                           =   𝜈 ∩ 𝜇1 ∪  𝜈 ∩ 𝜇2  (𝑥) 

 

∴ 𝜈 ∩  𝜇1 ∪ 𝜇2 =  𝜐 ∩ 𝜇1 ∪  𝜐 ∩ 𝜇2 . 

 

 

(ii)  𝜈 ∪  𝜇1 ∩ 𝜇2   𝑥 =  𝜈 𝑥 ∨  𝜇1 ∩ 𝜇2 (𝑥) 

 

                           = 𝜈 𝑥 ∨ {𝜇1 𝑥 ∧ 𝜇2 𝑥 } 

 

                           =  𝜈 𝑥 ∨ 𝜇1 𝑥  ∧   𝜈 𝑥 ∨ 𝜇2 𝑥   

 

                           =   𝜈 ∪ 𝜇1  𝑥  ∧   𝜈 ∪ 𝜇2  𝑥   

 

                           =   𝜈 ∪ 𝜇1 ∩  𝜈 ∪ 𝜇2  (𝑥). 

 

∴ 𝜈 ∪  𝜇1 ∩ 𝜇2 =  𝜐 ∪ 𝜇1 ∩  𝜐 ∪ 𝜇2 . 
 

(iii)  1 −  𝜇1 ∪ 𝜇2   𝑥 = 1 𝑥 −  𝜇1 ∪ 𝜇2  𝑥  

 

                          = 1 −∨ {𝜇1 𝑥 , 𝜇2 𝑥 } 

 

                                                     = ∧  1 − {𝜇1 𝑥 ,𝜇2 𝑥 }  

[By De Morgan’s law] 

 

                          =  1 − 𝜇1 𝑥  ∧  1 − 𝜇2 𝑥   

 

                                                           =  1 − 𝜇1  𝑥 ∧  1 − 𝜇2  𝑥  

 

                          =   1 − 𝜇1 ∩  1 − 𝜇2   𝑥    
 

∴ 1 −  𝜇1 ∪ 𝜇2 =  1 − 𝜇1 ∩  1 − 𝜇2 . 
 

(iv)  1 −  𝜇1 ∩ 𝜇2   𝑥 = 1 𝑥 −  𝜇1 ∩ 𝜇2  𝑥  

 

                           = 1 −∧  𝜇1 𝑥 ,𝜇2 𝑥   

 

                           = ∨  1 −  𝜇1 𝑥 , 𝜇2 𝑥       [By De Morgan’s    law] 

 

                           =  1 − 𝜇1 𝑥  ∨  1 − 𝜇2 𝑥   

 

                           =  1 − 𝜇1  𝑥 ∨  1 − 𝜇2  𝑥  
 

                           =   1 − 𝜇1 ∪  1 − 𝜇2   𝑥    
 

∴ 1 −  𝜇1 ∩ 𝜇2 =  1 − 𝜇1 ∪  1 − 𝜇2 . 
 

3.2. Theorem: For fuzzy sets  𝜇𝑖 𝑖 ∈ 𝐼 : 

(i) 𝜐 ∩ (   𝜇𝑖)𝑖∈𝐼 =   𝜐 ∩ 𝜇𝑖 𝑖∈𝐼 , 
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(ii) 𝜐 ∪   𝜇𝑖𝑖∈𝐼  =   𝜐 ∩ 𝜇𝑖 𝑖∈𝐼 , 
 

(iii) 1 − 𝜇𝑖𝑖∈𝐼 =   1 − 𝜇𝑖 𝑖∈𝐼 , 
 

(iv) 1 − 𝜇𝑖𝑖∈𝐼 =   1 − 𝜇𝑖 𝑖∈𝐼 . 

Proof: 

(i)  𝜐 ∩ ( 𝜇𝑖𝑖∈𝐼  ) 𝑥 =∧  𝜈 𝑥 , 𝜇𝑖 𝑥 𝑖∈𝐼   
 

             =  (𝜈 𝑥 ∧ 𝜇𝑖 𝑥 )𝑖∈𝐼  

 

              =  (𝜐 ∩ 𝜇𝑖) 𝑥  𝑖∈𝐼  

 

           ∴ 𝜐 ∩ ( 𝜇𝑖)𝑖∈𝐼 =   𝜐 ∩ 𝜇𝑖 𝑖∈𝐼  

 

(ii)  𝜐 ∪ (  𝜇𝑖)𝑖∈𝐼   𝑥 =∨  𝜈 𝑥 , 𝜇𝑖 𝑥 𝑖∈𝐼   
 

              =  (𝜈 𝑥 ∨ 𝜇𝑖 𝑥 𝑖∈𝐼 ) 

 

              =  (𝜐 ∪ 𝜇𝑖) 𝑥     𝑖∈𝐼  

                          ∴ 𝜐 ∪   𝜇𝑖𝑖∈𝐼  =   𝜐 ∪ 𝜇𝑖 𝑖∈𝐼 . 

(iii)     1 − 𝜇𝑖𝑖∈𝐼   𝑥 = 1 − 𝜇𝑖(𝑥)𝑖∈𝐼  

 

              =  (1 − 𝜇𝑖)(𝑥)𝑖∈𝐼  

 

                ∴ 1 − 𝜇𝑖𝑖∈𝐼 =   1 − 𝜇𝑖 𝑖∈𝐼 . 
 

 

(iv)  1 − 𝜇𝑖𝑖∈𝐼   𝑥 = 1 − 𝜇𝑖𝑖∈𝐼  𝑥  

 

            =  (1 − 𝜇𝑖)(𝑥)𝑖∈𝐼  

 

                ∴ 1 − 𝜇𝑖𝑖∈𝐼 =   1 − 𝜇𝑖 𝑖∈𝐼 . 

3.3. Theorem [06] [07]: Let 𝑓 be a function from 𝑋 to 𝑌. If 𝛼 and 𝛼𝑖 , 𝑖 ∈ 𝐼, are fuzzy sets in 𝑋 and if  𝛽  and 

 𝛽𝑗 , 𝑗 ∈ 𝐼, are fuzzy sets in  𝑌, then the following relations are valid: 

(i) 𝑓 𝑓−1 𝛽  = 𝛽 when 𝑓 is onto 𝑌. 

(ii) 𝑓 ∩ 𝛼𝑖 ⊆ ∩ 𝑓 𝛼𝑖 . 
(iii) 𝑓−1 ∩ 𝛽𝑖 = ∩ 𝑓−1 𝛽𝑖 . 
(iv) 𝑓 ∪ 𝛼𝑖 = ∪ 𝑓 𝛼𝑖 . 
(v) 𝑓−1 ∪ 𝛽𝑖 = ∪ 𝑓−1 𝛽𝑖 . 
(vi) 𝑓 𝑓−1 𝛽 ∩ 𝛼 =  𝛽 ∩ 𝑓 𝛼 . 

Proof:  These results are all consequences of the definition of 𝑓 𝛼  and 𝑓−1(𝛽). 

(i) 𝑓 𝑓−1 𝛽   𝑦 = ∨  𝑓−1 𝛽  𝑥 :𝑓 𝑥 = 𝑦  

                                                   = ∨  𝛽 𝑓 𝑥  :𝑓 𝑥 = 𝑦 = 𝛽 𝑦  

                            ∴ 𝑓 𝑓−1 𝛽  = 𝛽 . 

(ii) 𝑓 ∩ 𝛼𝑖  𝑦 =  ∨𝑥  ∩𝑖   𝛼𝑖 𝑥 :𝑓 𝑥 = 𝑦  
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        ≤ ∩𝑖  ∨𝑥  𝛼𝑖 𝑥 :𝑓 𝑥 = 𝑦  
 

        = ∩ 𝑓 𝛼𝑖  𝑦 . 
 

                             ∴ 𝑓 ∩ 𝛼𝑖 ⊆ ∩ 𝑓 𝛼𝑖 . 

 

(iii) 𝑓−1 ∩ 𝛽𝑖  𝑥 =  ∩ 𝛽𝑖 𝑓 𝑥  : 𝑥 ∈ 𝑋  
 

                                                = ∩  𝛽𝑖 𝑓 𝑥  : 𝑥 ∈ 𝑋  

                                                = ∩ 𝑓−1 𝛽𝑖  𝑥  

 

 ∴ 𝑓−1 ∩ 𝛽𝑖 = ∩ 𝑓−1 𝛽𝑖  . 
 

 

(iv) 𝑓 ∪ 𝛼𝑖  𝑦 = ∨𝑥  ∪𝑖   𝛼𝑖 𝑥 :𝑓 𝑥 = 𝑦  
 

        = ∪𝑖∨𝑥   𝛼𝑖 𝑥 :𝑓 𝑥 = 𝑦  
 

        = ∪ 𝑓 𝛼𝑖  𝑦 . 
 

   ∴ 𝑓 ∪ 𝛼𝑖 = ∪ 𝑓 𝛼𝑖 . 
 

 

(v)     𝑓−1 ∪ 𝛽𝑖  𝑥 =  ∪ 𝛽𝑖 𝑓 𝑥  : 𝑥 ∈ 𝑋  
 

 = ∪  𝛽𝑖 𝑓 𝑥  : 𝑥 ∈ 𝑋  
 

 = ∪ 𝑓−1 𝛽𝑖  𝑥   
 

                                ∴ 𝑓−1 ∪ 𝛽𝑖 = ∪ 𝑓−1 𝛽𝑖 . 

 

(vi)  𝑓 𝑓−1 𝛽 ∩ 𝛼  𝑦 = ∨   𝑓−1 𝛽 ∩ 𝛼  𝑥 :𝑓 𝑥 = 𝑦  
 

      = ∨  𝛽 𝑓 𝑥  ∩ 𝛼 𝑥 :𝑓 𝑥 = 𝑦  
 

      = 𝛽 𝑦 ∧  ∨  𝛼 𝑥 :𝑓 𝑥 = 𝑦   
 

      =  𝛽 ∩ 𝑓 𝛼   𝑦 . 
 

 ∴ 𝑓 𝑓−1 𝛽 ∩ 𝛼 =  𝛽 ∩ 𝑓 𝛼 . 

Conclusion 

Since its inception in 1965, as a generalization of classical set theory, fuzzy set has been applied to many 

mathematical areas such as algebra, graph theory, control theory, analysis, and operations research, topology and so 

on. In addition, it has been applied in practice in various disciplines such as control, data processing, engineering, 

management, stock market, medicine and so on. 
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