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Abstract  

In this paper the term, left(lateral, right and two sided) PO-ternary ideal, maximal left(lateral, right and two 

sided)  PO-ternary ideal, left (lateral, right and two sided)  PO-ternary ideal of T generated by a set A, principal left 

(lateral, right and two sided) PO-ternary ideal generated by an element a left (lateral, right and two sided) simple 

PO-ternary semiring are introduced.   It is proved that (1) the non-empty intersection of any two left (lateral, right 

and two sided) PO-ternary ideals of a PO-ternary semiring T is a left (lateral, right and two sided) PO-ternary ideal 

of T.   (2) non-empty intersection of any family of left (lateral, right and two sided) PO-ternary ideals of a PO-

ternary semiring T is a left(lateral, right and two sided)  PO-ternary ideal of T.  (3) the union of any left PO-ternary 

ideals of a PO-ternary semiring T is a left PO-ternary ideal of T.  (4) the union of any family of left(lateral, right and 

two sided) PO-ternary ideals of a PO-ternary semiring T is a left(lateral, right and two sided) PO-ternary ideal of T.   

(5) The left (lateral, right and two sided) PO-ternary ideal of a PO-ternary semiring T generated by a non-empty 

subset A is the intersection of all left(lateral, right and two sided) PO-ternary ideals of T containing A.  (6) If T is a 

PO-ternary semiring and aT then L(a) = (
e eT T a na ] = (

e eT T a na ] (M(a) = 

(
e e e e e eT aT T T aT T na  ] = (

e e e e e eT aT T T aT T na  ], R(a) = (a
e eT T + na] = (a

e eT T ∪na] and T(a) 

=(
e e e e e e e eT T a aT T T T aT T na   ] = (

e e e e e e e eT T a aT T T T aT T na   ]). (7) A PO-ternary semiring 

T is a left(lateral, right) simple PO-ternary semiring if and only if (TTa] = T ((TaT ∪ TTaTT] = T, (aTT] = T) for 

all aT.  

Keywords: PO-ternary Semiring; left PO-ternary ideal; lateral PO-ternary ideal; right PO-ternary ideal; two 

sided PO-ternary ideal; left simple; lateral simple; right simple. 

 

1. Introduction 

Algebraic structures play a prominent role in mathematics with wide ranging applications in many disciplines such 

as theoretical physics, computer sciences, control engineering, information sciences, coding theory, topological 

spaces and the like.  This provides sufficient motivation to researchers to review various concepts and results. 

The theory of ternary algebraic systems was studied by LEHMER [9] in 1932, but earlier such structures 

were investigated and studied by PRUFER in 1924, BAER in 1929. 

Generalizing the notion of ternary ring introduced by Lister [10], Dutta and Kar [6] introduced the notion 

of ternary semiring.  Ternary semiring arises naturally as follows, consider the ring of integers Z which plays a vital 

role in the theory of ring. The subset Z+ of all positive integers of Z is an additive semigroup which is closed under 

the ring product,i.e. Z+ is a semiring.  Madhusudhana Rao and Srinivasa Rao[10] studied about ternary semirings.  

Sivapasad, Madhusudhana Rao and Srinivasa Rao [11] introduced the concept of PO-ternary Semiring. 
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2. Preliminaries 

In this section, the required preliminaries (concepts, examples and results) are presented. 

Definition 2.1 : A nonempty set T together with a binary operation called addition and a ternary multiplication 

denoted by [ ] is said to be a ternary semiring if T is an additive commutative semigroup satisfying the following 

conditions : 

i) [[abc]de] = [a[bcd]e] = [ab[cde]], 

ii) [(a + b)cd] = [acd] + [bcd], 

iii) [a(b + c)d] = [abd] + [acd], 

iv) [ab(c + d)] = [abc] + [abd] for all a; b; c; d; e ∈ T. 

Note 2.2 : For the convenience we write 1 2 3x x x  instead of  1 2 3x x x
 

Note 2.3 : Let T be a ternary semiring. If A, B and C are three subsets of T , we shall denote the set ABC = 

 : , ,abc a A b B c C    . 

Note 2.4 : Let T be a ternary semiring. If A, B are two subsets of T , we shall denote the set  

A + B =  : ,a b a A b B    and 2A = { a + a : a ∈ A}. 

Note 2.5 : Any semiring can be reduced to a ternary semiring. 

Example 2.6 : Let T be an semigroup of all m × n matrices over the set of all non negative rational numbers.  Then 

T is a ternary semiring with matrix multiplication as the ternary operation. 

Definition 2.7: A ternary semiring T is said to be a partially ordered ternary semiring or simply PO Ternary 

Semiring or Ordered Ternary Semiring provided T is partially ordered set such that a ≤ b then   

(1) a + c ≤ b + c and c + a ≤ c + b,  

(2) acd ≤ bcd, cad ≤ cbd and cda ≤ cdb for all a, b, c, d ∈ T. 

Throughout T will denote as PO-ternary semiring unless otherwise stated. 

Note 2.8 : Some times we write a ≥ b for a ≤ b.  That is “ ≥” is the dual relation of “≤”. 

Example 2.9: Consider the set T = {0,1,2,3,….} with m + n = max (m, n) or min(m, n), mn = m + n. where the 

addition in the ternary multiplication is the usual addition, for all m, n in S and the order being the usual order 

relation . Then (T, +, [ ], ≤) is a PO-ternary semiring. 

Definition 2.10 : A PO-ternary semiring T is said to be commutative PO-ternary semiring provided abc = bca = 

cab = bac = cba = acb for all a,b,c  T. 

Definition 2.11 : A PO-ternary semiring T is said to be quasi commutative PO-ternary semiring provided T is a 

quasi commutative ternary semiring. 

Note 2.12 : A PO-ternary semiring T is quasi commutative provided for each a, b, c ∈ T, there exists an odd natural 

number n such that abc = 
nb ac = bca = 

nc ba = cab =
na cb. 

Definition 2.13 : PO- ternary semiring T is said to be normal PO- ternary semiring provided T is normal ternary 

semiring. 

3. Main Results  

Definition 3.1 : A nonempty subset A of a PO-ternary semiring T is said to be left (lateral, right and two sided) 

PO-ternary ideal of T if  

(1) a, b ∈ A implies a + b ∈ A. 

(2) b, c   T, a   A implies bca   A (bac   A, abc   A and bca ∈ A, abc ∈ A) . 

(3) ,t T a A  , t ≤ a ⇒ t ∈ A. 
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Note 3.2 : A  nonempty subset A of a PO-ternary semiring T is a left (lateral, right and two sided) PO-ternary ideal 

of T if and only if A is additive subsemigroup of T, TTA   A (TAT   A, ATT   A and left as well as right) and 

(A] ⊆ A. 

Note 3.3: Let T be a PO-ternary semiring. Then the set (TTa] = {t ∈ T / t ≤ 

1

n

i i

i

x y a


 for some xi, yi ∈ T and n ∈ 

N}. 

Example 3.4 : In the PO-ternary semiring Z
0
 , nZ

0
 is a left PO-ternary ideal for any n ∈ N. 

Theorem 3.5: Let T be a PO-ternary semiring.  Then (TTa] is a left PO-ternary ideal of T for all a ∈ T. 

Proof : Suppose that s, t ∈ (TTa], then there exist xi, yi, xj, yj ∈ T such that 

1

n

i i

i

s x y a


  and 

1

n

j j

j

t x y a


 .  

Since T is a PO-ternary semiring and TTa is a left PO-ternary ideal of T.   

We have s + t ≤  

1

n

i i

i

x y a


  + 

1

n

j j

j

x y a


  ∈ TTa and hence s + t ∈ (TTa].   

Therefore (TTa] is the additive subsemigroup of T.   

Let t ∈ (TTa], r, s ∈ T.  t ∈ (TTa] ⇒ t ≤ 

1

n

i i

i

x y a


  where xi, yi ∈ T and n ∈ N. 

Now rst ≤ rs(

1

n

i i

i

x y a


 ) = (rs

1

n

i i

i

x y


 )a ∈ (TTa]  

Therefore t ∈ (TTa], r, s ∈ T ⇒ rst ∈ (TTa] and hence (TTa] is a PO- left ternary ideal of T. 

Now s ∈ (TTa] and t ∈ T such that t ≤ s.   

s ∈ (TTa] then there exist xi, yi ∈ T such that 

1

n

i i

i

s x y a


 . 

Now t ≤ s, 

1

n

i i

i

s x y a


  ⇒ t 

1

n

i i

i

x y a


 .   

Therefore s ∈ (TTa] and t ∈ T such that t ≤ s ⇒ t ∈ (TTa] and hence (TTa] is a left  PO-ternary ideal of T.  

Theorem 3.6: Let T be a PO-ternary semiring.  Then (TaT] is a lateral PO-ternary ideal of T for all a ∈ T. 

Theorem 3.7: Let T be a PO-ternary semiring.  Then (TTaTT] is a lateral PO-ternary ideal of T for all a ∈ T. 

Theorem 3.8: Let T be a PO-ternary semiring.  Then (TaT∪TTaTT] is a lateral PO-ternary ideal of T for all 

a ∈ T. 

Theorem 3.9: Let T be a PO-ternary semiring.  Then (aTT] is a right PO-ternary ideal of T for all a ∈ T. 

Theorem 3.10 : The nonempty intersection of any two left (lateral, right and two sided) PO-ternary ideals of 

a PO-ternary semiring T is a left PO-ternary ideal of T. 

Proof : Let A , B be two left PO-ternary ideals of T.  Let a, b   A B and c, d T 

a, b   A  B    a, b   A and a, b   B.  a, b   A ; c, d   T , A is a left PO-ternary ideal of T  

   a + b ∈ A, cda   A and c ≤ a ⇒ c ∈ A. 

a, b   B ; c, d   T , B is a left ideal of T   a + b ∈ B and cda   B and c ≤ a ⇒ c ∈ B. 

a + b ∈ A and cda   A, a + b ∈ B and cda   B   a + b ∈ A   B and cda   A   B. 

Now c ≤ a ⇒ c ∈ A ∩ B.  Therefore A B is a left PO-ternary ideal of T. 

Similarly we can prove the remaining parts. 
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Theorem 3.11 : The nonempty intersection of any family of left (right, lateral and two sided) PO-ternary 

ideals of a PO-ternary semiring T is a left PO-ternary ideal of T. 

proof : Let  A 
 be a family of left PO-ternary ideals of T and let A =  A



  

Let a, b   A ; c, d   T.  Now a, b   A,  a, b   A



   a, b  A for each   . 

a, b  A , c, d T, A  is a left PO-ternary ideal of T   a + b ∈ Aα and cda   A  

a + b ∈ Aα and cda   A for all    a + b ∈ A



 and cda  A



   a + b ∈ A and cda   A.  

Therefore A is a left ternary ideal of T.   Now suppose that t ∈ T, a ∈ A and t ≤ a.  a ∈ A ⇒ a ∈  A




 

⇒ a ∈ A for each  .   t ∈ T, a ∈ A and t ≤ a, A  is a left PO-ternary ideal of T ⇒ t ∈ A  for each 

  ⇒ t ∈ A



 ⇒ t ∈ A.  Therefore t ∈ T, a ∈ A and t ≤ a ⇒ t ∈ A and hence A is a left PO-ternary ideal of 

a PO-ternary semiring T.   Similarly we can prove the remaining parts. 

Theorem 3.12 : The union of any two left (lateral, right and two sided) PO-ternary ideals of a PO-ternary 

semiring T is a left(lateral, right, two sided) PO-ternary ideal of T. 

Proof : Let 1 2,  A A  be two left PO-ternary ideals of a PO-ternary semiring T. 

Let A = 1 2A A  . Clearly A is a nonempty subset of T. 

Let a, b   A ; c, d   T.  Now a, b   A   a, b  1 2A A    a, b  1A  or a, b  2A . 

Suppose a, b  1A .  So a, b  1A   ; c, d   T; 1A  is a left PO-ternary ideal of T  

  a + b ∈ A1 and cda   A1    1 2A A = A   a + b ∈ A and cda   A.  

Suppose a, b  2A .  So a, b  2A   ; c, d   T; 2A  is a left PO-ternary ideal of T  

  a + b ∈ A2 and cda   A2    1 2A A = A   a + b ∈ A and cda   A.  

Therefore a, b   A ; c, d   T   a + b ∈ A and cda   A and hence A is a left ternary ideal of T. 

Suppose t ∈ T, a ∈ A and t ≤ a.  a ∈ A ⇒ a ∈ 1 2A A  ⇒ a ∈ A1 and a ∈ A2. 

t ∈ T, a ∈ A1, t ≤ a and A1 is a left PO-ternary ideal of T ⇒ t ∈ A1  

Now t ∈ T, a ∈ A2, t ≤ a and A2 is a left PO-ternary ideal of T ⇒ t ∈ A2 

Therefore t ∈ A1 ∪ A2 = A.  Hence t ∈ T, a ∈ A, t ≤ a ⇒ t ∈ A.   

Therefore A is left PO-ternary ideal of T.  Similarly we can prove the remaining parts. 

Theorem 3.13 : The union of any family of left (lateral, right and two sided) PO-ternary ideals of a PO-

ternary semiring T is a left (lateral, right, two sided) PO-ternary ideal of T. 

Proof : Let   A 
 be a family of left PO-ternary ideals of a PO-ternary semiring T. 

Let A = A



  . Clearly A is a non-empty subset of T.   Let a, b   A ; c, d   T.  a, b   A  
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  a, b  A



   a, b  A  for some   .  a, b  A   , c, d T, A  is a left PO-ternary ideal of T  

  a + b ∈ Aα and cda   A    A



 = A.  Now suppose that t ∈ T, a   A and t ≤ a.   a   A  

⇒ a ∈  A



 ⇒ a ∈ A  for some  ;  ⇒ a ∈ A  t ∈ T, a   A and t ≤ a, A is a left PO-ternary ideals of T 

⇒ t ∈ A  for some ⇒ t ∈ A.  Therefore c, d   T   a + b ∈ A and cda   A and t ∈ T, a   A and t ≤ a 

⇒ t ∈ A.  Therefore A is a left PO-ternary ideal of T.  Similarly we can prove the remaining parts. 

We now introduce a maximal left (lateral, right and two sided) PO-ternary ideal and left (lateral, right and 

two sided) PO-ternary ideal generated by a subset of a PO-ternary semiring. 

Definition 3.14 : A left (lateral, right and two sided) PO-ternary ideal A of a PO-ternary semiring T is said to be a 

maximal left (lateral, right and two sided) PO-ternary ideal or simply maximal left (lateral, right and two sided) 

PO-ideal  provided A is a proper left (lateral, right and two sided) PO-ternary ideal of T and is not properly 

contained in any proper left (lateral, right and two sided) PO-ternary ideal of T.  

Definition 3.15 : Let T be a PO-ternary semiring and A be a non-empty subset of T. The smallest left(lateral, right, 

two sided) PO-ternary ideal of T containing A is called left(lateral, right, two sided) PO-ternary ideal of T 

generated by A. 

Theorem 3.16 : The left(lateral, right, two sided) PO-ternary ideal of a PO-ternary semiring T generated by a 

non-empty subset A is the intersection of all left (lateral, right, two sided) PO-ideals of T containing A. 

Proof : Let   be the set of all left PO-ternary ideals of T containing A . Since T itself is a left PO-ternary ideal of T 

containing A,  T  . So   .  Let S 
 = 

S

S


 .  Since A  S for all S  , A   S 
.  By theorem 3,11, 

S 
 is a left PO-ternary ideal of T.  Let K be a left PO-ternary ideal of T containing A, K is a left PO-ternary ideal 

of T.  Clearly A ⊆ K.  Therefore K  S     K and hence S 
is the left PO-ternary ideal of T generated by A.  

Similarly we can show the remaining parts. 

Theorem 3.17: Let A be a left (lateral, right, two sided) PO-ternary ideal of T. Then (A] is a left (lateral, 

right, two sided) partially ordered ternary ideal of T generated by A. 

Proof: Clearly (A] is nonempty since A ⊆ (A].  Suppose that t ∈ T and a, b ∈ (A].  Then there exist x, y ∈ A such 

that a ≤ x and b ≤ y by the definition of (A].  Since T is an ordered ternary semiring and A is a left ternary ideal of 

T, we have rsa ≤ rsx ∈ A and a + b ≤ x + y ∈ A.  It follows that rsa ∈ (A] and a+b ∈ (A].  As for ((A]] ⊆ (A], it is 

clear. Hence (A] is a left ordered ternary ideal of T containing A. Moreover, if L is an arbitrary left ordered ideal of 

T containing A, then (A] ⊆ (L] ⊆ L.  Thus (A] is the least left ordered ideal of T containing A. That is to say, (A] is 

a left ordered ideal of T generated by A, as required.   Similarly we can prove the remaining parts. 

We now introduce a principal left(lateral, right, two sided) PO-ternary ideal of a PO-ternary semiring and 

characterize principal left(lateral, right, two sided) PO-ternary ideal. 

Definition 3.18 : A left(lateral, right, two sided) PO-ternary ideal A of a PO-ternary semiring T is said to be the 

principal left(lateral, right, two sided) PO-ternary ideal generated by a if A is a left(lateral, right, two sided) PO-

ternary ideal generated by  a  for some a   T. It is denoted by L (a) or < a >l 
( < a >m, < a >r and < a >t). 

Theorem 3.19 : If T is a PO-ternary semiring and a T then  

L(a) = (A] where A= 0

1

: , ,  
n

i i i i

i

rt a na r t T n z 



 
   

 
 , and  denotes a finite sum and 

0z 
 is the set of 

all positive integer with zero. 

Proof : Given that A = 0

1

: , ,  
n

i i i i

i

rt a na r t T n z 



 
   

 
 .  Let a, b ∈ A.   
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a, b ∈ A .  Then a = i irt a na  and b = j jr t a na  for ri, ti, rj, tj ∈ T, n ∈ 
0z 

. 

Now a + b = i irt a na  + j jr t a na  ⇒ a + b is a finite sum. 

Therefore a + b ∈ A and hence A is a additive subsemigroup of T. 

For t1,  t2 ∈ T and a ∈ A.   

Then t1t2a = t1t2( i irt a na ) = 1 2 1 2( ) ( )i irt t t a n t t a ∈ A 

Therefore t1t2a  ∈ A and hence A is a left ternary ideal of T.   By theorem 3.17, we have (A] is a left ordered ternary 

ideal of T containing a.  Thus L(a) ⊆ (A].  On the other hand, L(a) is also a left ordered ideal of T containing a, so 

we have A ⊆ L(a). Thus (A] ⊆ L(a) since (A] is a left ordered ternary ideal of T generated by A. Therefore L(a) = 

(A], as required. 

Note 3.20 : if T is ternary semiring and a T then L(a) = (
e eT T a na ] = (

e eT T a na ]. 

Theorem 3.21 : If T is a PO-ternary semiring and a T then  

M(a) = (A], where A = 0

1 1

 : , , ,  
n n

i i j j j j i i j j j j

i j

rat u v ap q na r t u v p q T n z 

 

 
    

 
  , and  denotes a 

finite sum and 
0z 

 is the set of all positive integer with zero. 

Proof: Similar to theorem 3.19. 

NOTE 3.22 : if T is PO-ternary semiring and a T then M(a) = (
e e e e e eT aT T T aT T na  ] = 

(
e e e e e eT aT T T aT T na  ]. 

Theorem 3.23 : If T is a ternary semiring and a T then  

R(a) = (A], where A = 0

1

 : , ,  
n

i i i i

i

art na r t T n z 



 
   

 
 ,  denotes a finite sum and 

0z 
 is the set of all 

positive integer with zero. 

Proof: Similar to theorem 3.19. 

Note 3.24: If T is a ternary semiring and a T then R (a) = (a
e eT T + na] = (a

e eT T ∪na]. 

Theorem 3.25: If T is a PO-ternary semiring and a T then T(a) =  (A], where  

A = 0

1 1 1

 : , , , , , ,  and 
n n n

i i j j k k k k i i j j k k k k

i j k

r s a at u l m ap q na r s t u l m p q T n Z 

  

 
     

 
    and  denotes 

a finite sum and 
0z 

 is the set of all positive integer with zero. 

Note 3.26 : if T is ternary semiring and a T then  

T(a) = (
e e e e e e e eT T a aT T T T aT T na   ] = (

e e e e e e e eT T a aT T T T aT T na   ]. 

We now introduce a left(lateral, right) simple PO-ternary semiring and characterize left(lateral, right) 

simple PO-ternary semiring. 

Definition 3.27 : A PO-ternary semiring T is said to be left(lateral, right) simple PO-ternary semiring if T is its 

only left(lateral, right) PO-ternary ideal. 

Theorem 3.28 : A PO-ternary semiring T is a left simple PO-ternary semiring if and only if (TTa]= T for all 

aT. 

Proof : Suppose that T is a left simple PO-ternary semiring and a T.  By theorem 3.5, (TTa] is a left PO-ternary 

ideal of T.  Since T is a left simple PO-ternary semiring, (TTa] = T.  Therefore (TTa] = T for all a T. 

Conversely suppose that (TTa] = T for all a T. 

Let L be a left PO-ternary ideal of T.  Let l L. Then l T. By assumption (TTl] = T. 
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Let t T.  Then t   (TTl]  t ≤ 

1

n

i i

i

u v l


 for some ui, vi T. 

l L; ui, vi T and L is a left PO-ternary ideal of T 
1

n

i i

i

u v l


  L  t L. 

Therefore T   L. Clearly L T and hence L = T. 

Therefore T is the only left PO-ternary ideal of T. Hence T is left simple PO-ternary semiring. 

Theorem 3.29 : A PO-ternary semiring T is a lateral simple PO-ternary semiring if and only if (TaT ∪ 

TTaTT] = T for all aT. 

Theorem 3.30 : A PO-ternary semiring T is a right simple PO-ternary semiring if and only if (aTT] = T for 

all aT. 

Definition 3.31 : A PO-ternary semiring T is said to be a left duo PO-ternary semiring provided every left PO-

ternary ideal of T is a two sided PO-ternary ideal of T. 

Definition 3.32 : A PO-ternary semiring T is said to be a right duo PO-ternary semiring provided every right ideal 

of T is a two sided PO-ternary ideal of T. 

Definition 3.33 : A PO-ternary semiring T is said to be a duo PO-ternary semiring provided it is both a left duo 

PO-ternary semiring and a right duo PO-ternary semiring. 

Theorem 3.34 : A PO-ternary semiring T is a duo PO-ternary semiring if and only if (xT
e
T

e
] = (T

e
T

e
x]  for all 

x ∈ T. 

Proof : Suppose that T is a duo PO-ternary semiring and x ∈ T. 

Let t ∈ (xT
e
T

e
].  Then t ≤ 

1

n

i i

i

xu v


  for some ui , vi ∈ T
e
. 

Since T
e
T

e
x is a left PO-ternary ideal of T, (T

e
T

e
x] is a PO-ternary ideal of T. 

So x ∈ (T
e
T

e
x], ui , vi ∈ T, (T

e
T

e
x] is a PO-ternary ideal of T ⇒ 

1

n

i i

i

xu v


 ∈ (T
e
T

e
x] 

 ⇒ t ∈ (T
e
T

e
x].  Therefore (xT

e
T

e
]

 ⊆ (T
e
T

e
x].  Similarly we can prove that (T

e
T

e
x] ⊆ (xT

e
T

e
].   

Therefore(xT
e
T

e
] = (T

e
T

e
x]  for all x ∈ T.  

Conversely suppose that (xT
e
T

e
] = (T

e
T

e
x]  for all x ∈ T.  Let A be a left PO-ternary ideal of T.  Let x ∈ A, ui , vi ∈ 

T.  Then 

1

n

i i

i

xu v


 ∈ (xT
e
T

e
] = (T

e
T

e
x] ⇒ 

1

n

i i

i

xu v


 ≤ 

1

n

i i

i

s t x


  for some si, ti ∈ T
e
.  Let x ∈ A, si, ti ∈ T, A is a left 

PO-twenary ideal of T ⇒ 

1

n

i i

i

s t x


  ∈ A ⇒ 

1

n

i i

i

xu v


 ∈ A. 

Therefore A is a right PO-ternary ideal of T and hence A is a PO-ternary ideal of T. 

Therefore T is left duo PO-ternary semiring.  Similarly we can prove that T is a right duo PO-ternary semiring.  

Hence T is duo PO-ternary semiring. 

Theorem 3.35 : Every commutative PO-ternary semiring is a duo PO-ternary semiring. 

Proof : Suppose that T is a commutative PO-ternary semiring.  Therefore xT
e
T

e
 = T

e
T

e
x  for all x ∈ T implies that 

(xT
e
T

e
] = (T

e
T

e
x].  By theorem 3.34, T is a duo ternary semiring. 

Theorem 3.36 : Every normal PO-ternary semiring is a duo ternary semiring. 

Proof : Suppose that T is normal PO-ternary semiring.  Then xyT = Txy for all x, y ∈ T  

⇒ (xTT] = (TTx] for all x ∈ T ⇒ (xT
e
T

e
] = (T

e
T

e
x]  for all x ∈ T.   

Therefore by theorem 3.34, T is a duo PO-ternary semiring. 
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Theorem 3.37 : Every quasi commutative PO-ternary semiring is a duo PO-ternary semiring. 

Proof : Suppose that T is a quasi commutative PO-ternary semiring.  Then for each a, b, c ∈ T, there exists a odd 

natural number n such that  abc = 
nb ac = bca = 

nc ba = cab =
na cb.   Let A be a left PO-ternary ideal of T.  

Therefore (TTA] ⊆ (A].   Let a ∈ A and s, t ∈ T.  Since T is a quasi commutative PO-ternary semiring, there exist a 

odd natural number n such that ast = t
n
sa ∈ (TTA] ⊆ (A].  Therefore ast ∈ (A] for all a ∈ A and s, t ∈ T and hence 

(ATT] ⊆ (A].  Thus A is right PO-ternary ideal of T.  Therefore T is a left duo  

PO-ternary semiring.  Similarly we can prove that T is a right duo POO-ternary semiring.  Therefore every quasi 

commutative PO-ternary semiring is a duo PO-ternary semiring. 

Conclusion : In this paper mainly we studied about left, lateral, right and two sided PO-ternary ideal in PO-

ternary semiring.  
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