SCITECH
RESEARCH ORGANISATION|

Journal of Progressive Research in Mathematics www.scitecresearch.com/iournals
 Pseudo PQ-injective systems over monoids

M.S. Abbas ${ }^{1}$, Shaymaa Amer ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq.
${ }^{2}$ Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq.

Abstract

The purpose of this paper is to introduce a new kind of generalization of principally quasi injective Ssystems over monoids (PQ-injective), (and hence generalized quasi injective), namely pseudo principally quasi injective S-systems over monoids. Several properties of this kind of generalization are discussed. Some of these properties are analogous to that notion of pseudo principally quasi injective class of general modules. Sufficient conditions are given for pseudo principally quasi injective S-systems to be principally quasi-injective and pseudo quasi principally injective S-systems. Characterizations of pseudo principally quasi injective Ssystems are considered.

Keywords: Pseudo injective S-systems; Pseudo principally quasi injective S-systems over monoids; principally quasi injective S-systems; fully pseudo stable S-systems; fully stable S-systems.

1- Introduction and Preliminaries :

Throughout this paper, the basic S-system is a unitary right S-system with zero which is consists of a monoid with zero, a non-empty set M_{s} with a function $\mathrm{f}: \mathrm{M} \times \mathrm{S} \rightarrow \mathrm{M}$ such that $\mathrm{f}(\mathrm{m}, \mathrm{s}) \mapsto \mathrm{ms}$ and the following properties hold (1) $\mathrm{m} \bullet 1=\mathrm{m} .(2) \mathrm{m}(\mathrm{st})=(\mathrm{ms}) \mathrm{t}(3) \mathrm{m} 0=\Theta$ for all $\mathrm{m} \in \mathrm{M}$ and $\mathrm{s}, \mathrm{t} \in \mathrm{S}$, where 0,1 is the zero, identity element of S and Θ is the zero element of M. In case a non-empty subset N of an S-system M_{s} such that $x s \in N$ satisfies for all $x \in N$ and $s \in S$, then N is called a subsystem of M_{s}. Let A_{s} and B_{s} be two S-systems. A mapping g : $A_{s} \rightarrow B_{s}$, such that $g(a s)=g(a) s$ for all $a \in A_{s}$ and $s \in S$ is called an S-homomorphism [2]. An S-congruence ρ on a right S-system M_{s} is an equivalence relation on M_{s} such that whenever $(a, b) \in \rho$, then (as, bs) $\in \rho$ for all $s \in S$. The identity S-congruence on M_{s} will be denoted by I_{M} such that $(a, b) \in I_{M}$ if and only if $a=b[3]$. The congruence ψ_{M} is called singular on M_{s} and it is defined by a $\psi_{M} b$ if and only if $\mathrm{ax}=\mathrm{bx}$ for all x in some \cap-large right ideal of $\mathrm{S}[1]$. For S -system $\mathrm{M}_{\mathrm{s}}, \mathrm{H} \subset \mathrm{S}, \mathrm{K} \subset \mathrm{M} \times \mathrm{M}, \mathrm{T} \subset$ $M, J \subset S \times S:(1) \ell_{M}(H)=\{(m, n) \in M \times M \mid m x=n x$ for all $x \in H\}(2) \gamma_{s}(K)=\{s \in S \mid$ as $=$ bs , for all $(a, b) \in$ $K\}(3) \gamma_{s}(T)=\{(a, b) \in S \times S \mid t a=t b$ for all $t \in T\}(4) \ell_{M}(J)=\{a \in M \mid a m=a n$ for all $(m, n) \in J\}[4]$.

If an S-system A_{s} is generated by one element, then it is called principal system and it is denoted by $A_{s}=<u>$, where $u \in A$, then $A_{s}=u S([5], P .63)$.The authors defined that if for every $x \in M_{s}$, there is an S-homomorphism $f: M_{s} \rightarrow$ $x S$ such that $x=f\left(x_{1}\right)$ for $x_{1} \in M_{s}$, then an S-system M_{s} is called principal self-generator [6] . An S-system B_{s} is a retract of an S-system A_{s} if and only if there exists a subsystem W of A_{s} and epimorphism $f: A_{s} \rightarrow W$ such that $B_{s} \cong W$ and $f(w)=w$ for every $w \in W$ ([5],P.84). An S-homomorphism f which maps an S-system M_{s} into an S-system N_{s} is said to be split if there exists S-homomorphism g which maps N_{s} into M_{s} such that $f g=1_{N}[3]$.

Let M_{s}, N_{s} be a right S-systems. An S-system E is called injective if for every S-monomorphism $f: M_{s} \rightarrow N_{s}$ and every S-homomorphism $g: M_{s} \rightarrow E$, there is an S-homomorphism $h: N_{s} \rightarrow E$ such that $h f=g$ [10]. A right Ssystems N_{s} is called \mathbf{M}-injective if for each S -monomorphism from S -system B_{s} into S -system M_{s} and every homomorphism g: $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{N}_{\mathrm{s}}$, there is S-homomorphism
$h: M_{s} \rightarrow N_{s}$ such that $h f=g$. Thus N_{s} is injective if and only if N_{s} is M-injective for all S-system M_{s} [14] .
In [10], P.Berthiaume had studied injective S-systems. Then the concept of injectivity on S-systems is generalized to quasi injectivity by A.M.lopez, such that an S -system N_{s} is quasi injective if N_{s} is N -injective [1]. Also, in [13], T.Yan introduced the concept of pseudo injectivity as a generalization of quasi injectivity. An S-system M_{s} is called pseudo-injective if each S-monomorphism of a subsystem of M_{s} into M_{s} extends to an S-endomorphism of M_{s}. It is well
known from above that every quasi injective S-system is pseudo injective, but the converse is not true in general and we gave an example which illustrated this fact.

At the same time, for another generalization of injectivity, we have: An S-system M_{s} is called principal injective system (C-injective) if for any S-system B_{s}, any principal subsystem C of B_{s} and any homomorphism from C into M_{s} can be extended to S-homomorphism g from B_{s} into M_{s} [9]. As a proper generalization of quasi injective S system, we introduced principally quasi injective S-system and some definitions relevant to our work. An S-system M_{s} is called principally quasi injective system (this means PQ-injective) if M_{s} is PM-injective [6].

The present work consists of two sections. The first one is devoted to introduce and investigate a new kind of generalization of principally quasi injective S-systems, namely pseudo principally quasi injective S-systems over monoids. Certain class of subsystems which inherit the property of pseudo principally quasi injective have been considered. Also, characterizations of this new class of S-systems was investigated. Example is given to illustrate that pseudo PQ-injective S-systems are not PQ-injective. Some known results on pseudo PQ-injective for general modules were generalized to S -systems. In the second section, we try to put some light on relation of pseudo PQ-injective Ssystems with other classes of injectivity such as PQ-injective by using the concepts of fully stable, fully pseudo stable and pseudo M_{s}-projective and then we find conditions to versus pseudo PQ-injective S-systems with PQ-injective and pseudo QP-injective S-systems.

2-Pseudo Principally quasi Injective S-Systems:

(2-1)Definition: An S-system N_{s} is called pseudo principally M-injective(for short pseudo PM-injective) if for each S-monomorphism from a principal subsystem of an S-system M_{s} into N_{s} can be extended to S-homomorphism from M_{s} into N_{s}. An S-system M_{s} is called pseudo principally quasi injective if it is pseudo principally M-injective (if this is the case, we write M_{s} is pseudo PQ-injective).

(2-2) Remark and Example:

(1) Every PQ-injective (and hence quasi injective) S-system is pseudo PQ-injective. But the converse is not true in general, for example, let S be the monoid $\{1, a, b, 0\}$ with $a b=a^{2}=a$ and $b a=b^{2}=b$. Now, consider S as a right S system over itself, then the only non-trivial principal subsystems of S_{s} are $a S=\{a, 0\}$ and $b S=\{b, 0\}$. It is easy to check that S_{s} is pseudo PQ- injective. But, when we take $N=\{a, 0\}$ be principal subsystem of S_{s} and f be S-homomorphism defined by $f(x)=\left\{\begin{array}{ll}0 & \text { if } x=0 \\ b & \text { if } x=a\end{array}\right\}$, then this S-homomorphism cannot be extended to S-homomorphism $g: S_{s} \rightarrow S_{s}$. If not, that is there exists S-homomorphism $g: S_{s} \rightarrow S_{s}$ such that $g(x)=f(x), \forall x \in N$, which is the trivial S-homomorphism(or zero homomorphism), since other extension is not S-homomorphism. Then, $b=f(a)=g(a)=a(0)$ which implies that $b=$ $\mathrm{a}(0)$, and this is a contradiction .
(2) Retract of pseudo PQ-injective system is pseudo PM-injective.

Proof: Let M_{s} be pseudo PQ -injective S -system and N be a retract cyclic subsystem of M_{s}. Let A be principal subsystem of M_{s} and $f: A \rightarrow N$ be S-monomorphism. Define $\alpha\left(=j_{N} o f\right): A \rightarrow M_{s}$, where j_{N} is the injection map of N into M_{s}, so α is S-monomorphism. Since M_{s} is pseudo PQ-injective system, so there exists S-homomorphism $\beta: M_{s} \rightarrow M_{s}$ such that $\beta 0 i_{A}=\alpha$, where i_{A} be the inclusion map of A into M_{s}. Now, let π_{N} be the projection map of M_{s} onto N. Then, define $\sigma\left(=\pi_{N} \beta\right): M_{s} \rightarrow N$. Thus we have that $\sigma o i_{A}=\pi_{N} o \beta o i_{A}=\pi_{N} \mathrm{o} \alpha=\pi_{N} \mathrm{oj} j_{N} \mathrm{of}=\mathrm{f}$. Therefore, an S-homomophism σ is extends f and N is pseudo PM-injective S -system.
(2-3) Lemma: Every pseudo PM-injective subsystem of S-system M_{s} is a retract of M_{s}.
Proof: Let α be S-monomorphism from a principal subsystem N of S-system M_{s} into M_{s} and I_{N} be the identity map of N . Then, pseudo PM-injectivity of N implies that there exists S -homomorphism g: $\mathrm{M}_{\mathrm{s}} \rightarrow \mathrm{N}$ such that $\mathrm{I}_{\mathrm{N}}=$ go α, hence α is a retraction. Therefore $N \cong \alpha(N)$ is a retract of M_{s}.
(2-4)Proposition: Let M_{s} be S-system. If N_{s} is pseudo PM-injective, then N_{s} is pseudo PA-injective system for anyprincipal subsystem A of M_{s}.
Proof: Let X be principal subsystem of principal subsystem A of M_{s}, and let f be any S-monomorphism of X into Ssystem N_{s}. Let $i_{X}\left(i_{A}\right)$ be the inclusion map of $X(A)$ into $A\left(M_{s}\right)$ respectively. Since N_{s} is pseudo PM-injective, then there exists S-homomorphism $\mathrm{g}: \mathrm{M}_{\mathrm{s}} \rightarrow \mathrm{N}_{\mathrm{s}}$ such that $\mathrm{goi}_{\mathrm{A}} 0 \mathrm{oi}_{\mathrm{X}}=\mathrm{f}$. Define S -homomorphism h by h(=goi $\left.\mathrm{A}_{\mathrm{A}}\right): \mathrm{A} \rightarrow \mathrm{N}$, then, $\forall \mathrm{x} \in$ A we have $h(x)=h\left(i_{X}(x)\right)=\left(\operatorname{goi}_{A}\right)\left(\mathrm{i}_{\mathrm{X}}(\mathrm{x})\right)=\left(\operatorname{goi}_{\mathrm{A}} \mathrm{O} \mathrm{i}_{\mathrm{X}}\right)(\mathrm{x})=\mathrm{f}(\mathrm{x})$, which implies that h extends f and N_{s} is pseudo PAinjective system.
(2-5) Theorem: Let M_{1} and M_{2} be two S-systems. If $M_{1} \oplus M_{2}$ is pseudo PQ-injective .Then M_{i} isPM j^{-}injective (where $\mathrm{i}, \mathrm{j}=1,2$).

Proof: Let $M_{1} \oplus M_{2}$ be pseudo PQ-injective. Let A be principal subsystem of M_{2}, and f an S-homomorphism from A into M_{1}. let j_{1} and π_{1} be the injection (and projection) map of M_{1} into $M_{1} \oplus M_{2}\left(\right.$ and $M_{1} \oplus M_{2}$ onto $\left.M_{1}\right)$. Define $\alpha: A \rightarrow$ $M_{1} \oplus M_{2}$ by $\alpha(a)=(f(a), a), \forall a \in A$. It is clear that α is S-monomorphism. Since $M_{1} \oplus M_{2}$ is pseudo PQ-injective, so by proposition (2-4), $\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ is pseudo PM_{2}-injective. Hence, there exists S-homomorphism g from M_{2} into $\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ such that goi $=\alpha$. Now, put $h\left(=\pi_{1} \circ g\right): M_{2} \rightarrow M_{1}$. Thus $\forall a \in A$, we have hoi $(a)=\pi_{1} \operatorname{ogoi}(a)=\pi_{1} o \alpha(a)=\pi_{1}(\alpha(a))=$ $\pi_{1}(f(a), a)=f(a)$. This means M_{1} is PM_{2}-injectiveS-system.
(2-6) Corollary: Let $\left\{M_{i}\right\}_{i \in I}$ be a family of S-systems, where I is a finite index set. If $\oplus_{i \in I} M_{i}$ is pseudo PQ-injective , then M_{j} is pseudo $P M_{K}$-injective system for all $j, k \in I$.
(2-7) Lemma: Let $\left\{N_{i}\right\}_{i \in I}$ be a family of S-systems, where I is a finite index set. Then, the direct product $\Pi_{i \in I} N_{i}$ is PM-injective if and only if N_{i} is PM-injective for every $i \in I$.

Proof : \Rightarrow) Assume that $N_{s}=\Pi_{i \in I} N_{i}$ is PM-injective S-system. Let X be principal subsystem of M_{s}, f an Shomomorphism of X into N_{i}, and φ_{i}, π_{i} be the injection and projection map of N_{i} into N_{s} and N_{s} onto N_{i} respectively . Since N_{s} is PM-injective, so there exists S-homomorphism g: $\mathrm{M}_{\mathrm{s}} \rightarrow \mathrm{N}_{\mathrm{s}}$ such that goi $=\varphi_{\mathrm{i}}$ of , where i be the inclusion map of X into M_{s}. Then, define $h\left(=\pi_{i} o g\right): M_{s} \rightarrow N_{i}$ such that hoi $=\pi_{i} o g o i=\pi_{i} \circ \varphi_{i} o f=f$. Thus N_{i} is PM-injective Ssystem.
\Leftarrow) Assume that N_{i} is PM-injective for each $\mathrm{i} \in \mathrm{I}$. Let X be principal subsystem of $\mathrm{M}_{\mathrm{s}}, \mathrm{f}$ an S -homomorphism of X into N_{s} and φ_{i}, π_{i} be the injection and projection maps of N_{i} into N_{s} and N_{s} onto N_{i} respectively. Since N_{i} is PM-injective Ssystem, so there exists S-homomorphism $\beta_{i}: M_{s} \rightarrow N_{i}$ such that $\beta_{i} o i=\pi_{i}$ of, where i be the inclusion map of X into M_{s}. Now, define an S-homomorphism $\beta\left(=\varphi_{i} \circ \beta_{\mathrm{i}}\right): \mathrm{M}_{\mathrm{s}} \rightarrow \mathrm{N}_{\mathrm{s}}$, then $\beta \mathrm{oi}=\varphi_{\mathrm{i}} \mathrm{o} \beta_{\mathrm{i}} \mathrm{oi}=\varphi_{\mathrm{i}} \circ \pi_{\mathrm{i}} \circ \mathrm{of}=\mathrm{f}$. Therefore, N_{s} is PM-injective system.
(2-8) Corollary: For any integer $n \geq 2, M_{s}^{n}$ is pseudo PQ-injective if and only if M_{s} is PQ-injective system.
Let M_{s} be S-system. For all element $m \in M_{s}$, with $\alpha \in T=\operatorname{End}\left(M_{s}\right)$,define :
$A_{m}=\left\{n \in M_{s} \mid \gamma_{s}(n)=\gamma_{s}(m)\right\} ;$
$S_{(\alpha, \mathrm{m})}=\{\beta \in \mathrm{T} \mid \operatorname{ker} \beta \cap(\mathrm{mS} \times \mathrm{mS})=\operatorname{ker} \alpha \cap(\mathrm{mS} \times \mathrm{mS})\} ;$
$B_{\mathrm{m}}=\left\{\alpha \in \mathrm{T} \mid \operatorname{ker} \alpha \cap(\mathrm{mS} \times \mathrm{mS})=\mathrm{I}_{\mathrm{mS}}\right.$.
(2-9) Proposition: Let M_{s} be an S-system with $T=\operatorname{End}\left(M_{s}\right)$, the following conditions are equivalent for an element $\mathrm{m} \in \mathrm{M}_{\mathrm{s}}$:
(1) M_{s} is pseudo principally injective (pseudo PM-injective),
(2) $A_{m}=B_{m} \cdot m$,
(3) If $A_{m}=A_{n}$, then $B_{m} \cdot m=B_{n} \bullet n$,
(4) For every S-monomorphism $\alpha: \mathrm{mS} \rightarrow \mathrm{M}_{\mathrm{s}}$ and $\beta: \mathrm{mS} \rightarrow \mathrm{M}_{\mathrm{s}}$, there exists $\sigma \in \mathrm{T}$ such that $\alpha=\sigma o \beta$.

Proof: $(1 \rightarrow 2)$ Let $n \in A_{m}$, this implies $A_{m}=A_{n}$, hence $\alpha: m S \rightarrow M_{s}$ defined by $\alpha(m s)=n s, s \in S$. Let $\mathrm{ms}_{1}=\mathrm{ms}_{2}$, this implies $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right) \in \gamma_{\mathrm{s}}(\mathrm{m})=\gamma_{\mathrm{s}}(\mathrm{n})$, then $\mathrm{ns}_{1}=\mathrm{ns}_{2}$. Hence, $\alpha\left(\mathrm{ms}_{1}\right)=\alpha\left(\mathrm{ms}_{1}\right)$ and α is well-defined and for the reverse steps, we obtain that α is S-monomorphism, so by (1), there exists an S-homomorphism $\beta \in T$ extends α. Then, $\forall \mathrm{m} \in \mathrm{M}_{\mathrm{s}}$, we have $\beta(\mathrm{m})=\alpha(\mathrm{m})=\mathrm{n}=\beta \cdot \mathrm{m}$, so $\beta \in \mathrm{B}_{\mathrm{m}}$ [In fact, if (ms, mt) $\in \operatorname{ker} \beta \cap(\mathrm{mS} \times \mathrm{mS})$, then $\beta(\mathrm{ms})=\beta(\mathrm{mt})$ and ms $=\mathrm{mt}$. So, $\left.\operatorname{ker} \beta \cap(\mathrm{mS} \times \mathrm{mS})=\mathrm{I}_{\mathrm{mS}}\right]$. Conversely, if $\beta \bullet \mathrm{m} \in \mathrm{B}_{\mathrm{m}} \bullet \mathrm{m}$, then $\beta \in \mathrm{B}_{\mathrm{m}}$, that is $\operatorname{ker} \beta \cap$ $(\mathrm{mS} \times \mathrm{mS})=\mathrm{I}_{\mathrm{mS}}$. It is obvious that $\gamma_{\mathrm{s}}(\mathrm{m}) \subseteq \gamma_{\mathrm{s}}(\beta \mathrm{m})$, since for $(\mathrm{r}, \mathrm{s}) \in \gamma_{\mathrm{s}}(\mathrm{m})$, we have $\mathrm{mr}=\mathrm{ms}$, since β is welldefined, so $\beta(\mathrm{mr})=\beta(\mathrm{ms})$. Thus, $\beta(\mathrm{m}) \mathrm{r}=\beta(\mathrm{m}) \mathrm{s}$ which implies that $(\mathrm{r}, \mathrm{s}) \in \gamma_{\mathrm{s}}(\beta \mathrm{m})$. Now, if $\beta(\mathrm{mr})=\beta(\mathrm{ms})$ and (mr, ms$)$ $\in \operatorname{ker} \beta \cap(\mathrm{mS} \times \mathrm{mS})=\mathrm{I}_{\mathrm{mS}}$, then $\mathrm{mr}=\mathrm{ms}$ and $(\mathrm{r}, \mathrm{s}) \in \gamma_{\mathrm{s}}(\mathrm{m})$. Hence, $\gamma_{\mathrm{s}}(\beta \mathrm{m}) \subseteq \gamma_{\mathrm{s}}(\mathrm{m})$. Then, $\gamma_{\mathrm{s}}(\beta \mathrm{m})=\gamma_{\mathrm{s}}(\mathrm{m})$. Therefore, $\beta \mathrm{m} \in \mathrm{A}_{\mathrm{m}}$.
$(2 \rightarrow 3)$ Let $A_{m}=A_{n}$. Then, $A_{m}=B_{m} \cdot m, A_{n}=B_{n} \bullet n . S o, B_{m} \cdot m=B_{n} \cdot n$.
$(3 \rightarrow 4)$ Let $\alpha: m S \rightarrow M_{s}, \beta: m S \rightarrow M_{s}$ be S-monomorphisms. Then, $\gamma_{s}(\beta \mathrm{~m})=\gamma_{s}(\alpha \mathrm{~m})$. Since, for $(\mathrm{s}, \mathrm{t}) \in \gamma_{\mathrm{s}}(\beta \mathrm{m})$, then $\beta(\mathrm{ms})=\beta(\mathrm{mt})$. Since β is monomorphism, so $\mathrm{ms}=\mathrm{mt}$. Since α is well-defined, so $\alpha(\mathrm{ms})=\alpha(\mathrm{mt})$. This means $\gamma_{s}(\beta \mathrm{~m}) \subseteq \gamma_{\mathrm{s}}(\alpha \mathrm{m})$. In similar way, we can find $\gamma_{s}(\alpha \mathrm{~m}) \subseteq \gamma_{\mathrm{s}}(\beta \mathrm{m})$, thus $\gamma_{\mathrm{s}}(\beta \mathrm{m})=\gamma_{\mathrm{s}}(\alpha \mathrm{m})$, which implies $\mathrm{A}_{\alpha \mathrm{m}}=\mathrm{A}_{\beta \mathrm{m}}$,then by(3) $B_{\alpha m} \alpha m=B_{\beta m} \beta m$. Since $\operatorname{kerI}_{M} \cap(\alpha(m S) \times \alpha(m S))=I_{\alpha(m s)}$, so $1_{M} \in B_{\alpha m}$. Then $\alpha m \in B_{\beta m} \beta m$, so there exists $\sigma \in \mathrm{B}_{\beta \mathrm{m}}$ such that $\alpha=\sigma \beta$.
$(4 \rightarrow 1)$ Let $\beta=\mathrm{i}_{\mathrm{mS}}$ be the inclusion map of mS .
(2-10) Proposition : Let M_{s} be pseudo principally injective S-system with $T=\operatorname{End}\left(M_{s}\right)$. Then, for $\alpha \in T$, we have $: \mathrm{S}_{(\alpha, \mathrm{m})}=\mathrm{B}_{\alpha \mathrm{m}} \alpha \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS}), \forall \mathrm{m} \in \mathrm{M}_{\mathrm{s}}$.
Proof :Let $\beta \in \mathrm{S}_{(\alpha, \mathrm{m})}$, this means $\beta \in \mathrm{T}$ and $\operatorname{ker} \beta \cap(\mathrm{mS} \times \mathrm{mS})=\operatorname{ker} \alpha \cap(\mathrm{mS} \times \mathrm{mS})$. We claim that $\gamma_{\mathrm{s}}(\alpha \mathrm{m})=$ $\gamma_{\mathrm{s}}(\beta \mathrm{m})$. In fact, if $(\mathrm{s}, \mathrm{t}) \in \gamma_{\mathrm{s}}(\alpha \mathrm{m})$, then $\alpha(\mathrm{ms})=\alpha(\mathrm{mt})$ which implies $(\mathrm{ms}, \mathrm{mt}) \in \operatorname{ker} \alpha \cap(\mathrm{mS} \times \mathrm{mS})$ and sinceker $\beta \cap$ $(\mathrm{mS} \times \mathrm{mS})=\operatorname{ker} \alpha \cap(\mathrm{mS} \times \mathrm{mS})$ by the proof. So , $(\mathrm{ms}, \mathrm{mt}) \in \operatorname{ker} \beta \cap(\mathrm{mS} \times \mathrm{mS})$ which implies $\beta(\mathrm{ms})=\beta(\mathrm{mt})$ and then $\beta(\mathrm{m}) \mathrm{s}=\beta(\mathrm{m}) \mathrm{t}$. Thus $(\mathrm{s}, \mathrm{t}) \in \gamma_{\mathrm{s}}(\beta \mathrm{m})$.Hence, $\gamma_{\mathrm{s}}(\alpha \mathrm{m}) \subseteq \gamma_{\mathrm{s}}(\beta \mathrm{m})$, similarly we have $\gamma_{\mathrm{s}}(\beta \mathrm{m}) \subseteq \gamma_{\mathrm{s}}(\alpha \mathrm{m})$ and then we obtain $\gamma_{s}(\alpha m)=\gamma_{s}(\beta m)$. Then, we have $\beta \in A_{\alpha m}$. Since $A_{\alpha m}=B_{\alpha m} \alpha m$ (by proposition (2-9)), so $\beta \in B_{\alpha m} \alpha m$ and since $\beta(\mathrm{ms})=\beta(\mathrm{mt})$, where $\beta \in \mathrm{T}$, thus $\beta \in \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$ and then $\beta \in \mathrm{B}_{\alpha \mathrm{m}} \alpha \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$. This means $\mathrm{S}_{(\alpha, \mathrm{m})} \subseteq \mathrm{B}_{\alpha \mathrm{m}} \alpha \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS}) \ldots(1)$. Conversely, let $\beta \in \mathrm{B}_{\alpha \mathrm{m}} \alpha \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$, so $\beta \in \mathrm{B}_{\alpha \mathrm{m}} \alpha$ or $\beta \in \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$. If $\beta \in \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$, so $\beta \in$ Tand $\beta(\mathrm{ms})=\beta(\mathrm{mt})$. If $\beta \in \mathrm{B}_{\alpha} \alpha$, so there exists $\varphi \in \mathrm{B}_{\alpha}$ such that $\beta=\varphi \mathrm{o} \alpha$. Also , $\operatorname{ker} \varphi \cap(\alpha(\mathrm{mS}) \times \alpha(\mathrm{mS}))=$ and $\operatorname{ker} \beta \cap(\alpha(\mathrm{mS}) \times \alpha(\mathrm{mS}))=\mathrm{I}_{\alpha(\mathrm{mS})}$. Now, if(ms, mt) $\in \operatorname{ker} \varphi \alpha \cap(\mathrm{mS} \times \mathrm{mS})$, then $\varphi \alpha(\mathrm{ms})=\varphi \alpha(\mathrm{mt})$. Hence $(\alpha(\mathrm{ms}), \alpha(\mathrm{mt})) \in \operatorname{ker} \varphi \cap(\alpha(\mathrm{mS}) \times \alpha(\mathrm{mS}))=\mathrm{I}_{\alpha}$. This implies that (ms, mt) $\in \operatorname{ker} \alpha \cap$ $(\mathrm{mS} \times \mathrm{mS})$. Thus, $\operatorname{ker} \beta \cap(\mathrm{mS} \times \mathrm{mS}) \subseteq \operatorname{ker} \alpha \cap(\mathrm{mS} \times \mathrm{mS})(1)$. If $(\mathrm{ms}, \mathrm{mt}) \in \operatorname{ker} \alpha \cap(\mathrm{mS} \times \mathrm{mS})$, so $\alpha(\mathrm{ms})=\alpha(\mathrm{mt})$, since $\varphi \in \mathrm{T}$ and it is well-defined, so $\varphi \alpha(\mathrm{ms})=\varphi \alpha(\mathrm{mt})$ which implies $\beta(\mathrm{ms})=\beta(\mathrm{mt})$ and then (ms, mt$) \in \operatorname{ker} \beta \cap$ $(\mathrm{mS} \times \mathrm{mS})$.Thus, $\operatorname{ker} \alpha \cap(\mathrm{mS} \times \mathrm{mS}) \subseteq \operatorname{ker} \beta \cap(\mathrm{mS} \times \mathrm{mS}) \ldots(2)$. From (1) and (2), we have $\operatorname{ker} \alpha \cap(\mathrm{mS} \times \mathrm{mS})=$ $\operatorname{ker} \beta \cap(\mathrm{mS} \times \mathrm{mS})$ and then $\beta \in \mathrm{S}_{(\alpha, \mathrm{m})}$.
(2-11) Proposition: Let M_{s} be pseudo principally injective S-systemwith $T=\operatorname{End}\left(M_{s}\right)$ and $\alpha \in T, m \in M_{s}$. Then:
$\alpha \in B_{m}$ if and only if $B_{m}=B_{\alpha \mathrm{m}} \alpha \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$.
Proof : \Rightarrow) Let $\alpha \in B_{m}$ and $f \in S_{(\alpha, m)}$, so $\operatorname{kerf} \cap(m S \times m S)=\operatorname{ker} \alpha \cap(m S \times m S)$, but $\operatorname{ker} \alpha \cap(m S \times m S)=i_{m S}$, hence kerf $\cap(m S \times m S)=i_{m S}$, which implies $f \in B_{m}$.Thus, $S_{(\alpha, m)}=B_{m}$, so by proposition (2-10) $B_{m}=B_{\alpha m} \alpha \cup$ $\ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$
$\Leftarrow)$ Assume that $\mathrm{B}_{\mathrm{m}}=\mathrm{B}_{\alpha \mathrm{m}} \alpha \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$ and $\alpha \in \mathrm{T}, \alpha \notin \mathrm{B}_{\mathrm{m}}$. Then, we have ker $\alpha \cap(\mathrm{mS} \times \mathrm{mS}) \neq \mathrm{I}_{\mathrm{mS}}$, so there exists $(\mathrm{ms}, \mathrm{mt}) \in \operatorname{ker} \alpha \cap(\mathrm{mS} \times \mathrm{mS})$ withms $\neq \mathrm{mt}$, then $\alpha(\mathrm{ms})=\alpha(\mathrm{mt})$. Since $1_{\mathrm{M}} \in \mathrm{B}_{\mathrm{m}}$, so $\operatorname{kerI}_{\mathrm{M}} \cap(\mathrm{mS} \times \mathrm{mS})=\mathrm{I}_{\mathrm{mS}}$. But, since $S_{(\alpha, m)}=B_{m}=B_{\alpha m} \alpha \cup \ell_{T}(m S \times m S)$, hence $I_{M} \in S_{(\alpha, m)}$, and then $\operatorname{ker} \alpha \cap(m S \times m S)=\operatorname{kerI}_{M} \cap$ $(\mathrm{mS} \times \mathrm{mS})$. Thus, ker $\alpha \cap(\mathrm{mS} \times \mathrm{mS})=\mathrm{I}_{\mathrm{mS}}$ which implies $\mathrm{ms}=\mathrm{mt}$ and this is a contradiction with $\mathrm{ms} \neq \mathrm{mt}$. So $\alpha \in B_{m}$ implies a contradiction.

Recall that $\operatorname{Soc}_{\mathbf{N}}\left(\mathbf{M}_{\mathrm{s}}\right)$ represent homogeneous component of $\operatorname{Soc}\left(\mathrm{M}_{\mathrm{s}}\right)$ containing N . Thus, we denote $\operatorname{Soc}_{N}\left(M_{s}\right):=\cup\left\{X\right.$ be subsystem of $\left.M_{s} \mid X \cong N\right\}[6]$.
(2-12) Proposition: Let M_{s} be pseudo principally injective S-system with $T=\operatorname{End}\left(M_{s}\right)$. Then :
(1) If N is a simple subsystem of M_{s}, then $\operatorname{Soc}_{N}\left(M_{s}\right)=T N$.
(2) If $n S$ is a simple S-system, $n \in M_{s}$. Then, Tn is a simple T- system .
(3) $\operatorname{Soc}\left(M_{s}\right)=\operatorname{Soc}\left({ }_{T} M\right)$.

Proof :(1) Let $N_{1} \subseteq \operatorname{Soc}_{N}\left(M_{s}\right)$, and $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}_{1}$ be an isomorphism, where $\mathrm{N}_{1} \subseteq \mathrm{M}_{\mathrm{s}}$. If $\mathrm{N}=\mathrm{nS}$, then $\gamma_{\mathrm{s}}(\mathrm{n})=$ $\gamma_{s}(f(n))$. Since, if $(s, t) \in \gamma_{s}(n)$, then $n s=n t$, since f is well-defined, so $f(n s)=f(n t)$. This implies $f(n) s=f(n) t$ and $(\mathrm{s}, \mathrm{t}) \in \gamma_{\mathrm{s}}(\mathrm{f}(\mathrm{n}))$, so $\gamma_{\mathrm{s}}(\mathrm{n}) \subseteq \gamma_{\mathrm{s}}(\mathrm{f}(\mathrm{n}))$. Conversely, let $(\mathrm{s}, \mathrm{t}) \in \gamma_{\mathrm{s}}(\mathrm{f}(\mathrm{n}))$, so $\mathrm{f}(\mathrm{ns})=\mathrm{f}(\mathrm{nt})$. Since f is monomorphism, so $\mathrm{ns}=\mathrm{nt}$. This implies that $(\mathrm{s}, \mathrm{t}) \in \gamma_{\mathrm{s}}(\mathrm{n})$, so $\gamma_{\mathrm{s}}(\mathrm{f}(\mathrm{n})) \subseteq \gamma_{\mathrm{s}}(\mathrm{n})$. Thus $\gamma_{\mathrm{s}}(\mathrm{f}(\mathrm{n}))=\gamma_{s}(n)$, which implies $\mathrm{B}_{\mathrm{n}} \bullet \mathrm{n}=\mathrm{B}_{\mathrm{fn}} \bullet \mathrm{fn}$ by proposition(2-9). Thus $f n \in B_{n} \bullet n \subseteq T n \subseteq T N$. Hence, if g is an extension of f to T, we have $N_{1}=f(n S)=g(n S) \in T$. Thus $\operatorname{Soc}_{\mathrm{N}}\left(\mathrm{M}_{\mathrm{s}}\right) \subseteq \mathrm{TN}$. The other inclusion always holds, this means $\mathrm{TN} \subseteq \operatorname{Soc}_{\mathrm{N}}\left(\mathrm{M}_{\mathrm{s}}\right)$, since for $\alpha \in \mathrm{TN}, \alpha: \mathrm{N} \rightarrow \mathrm{N}$ be identity map and since $N \cong N$ and N be subsystem of M_{s}, so $\alpha(N)=N \subseteq \operatorname{Soc}_{N}\left(M_{s}\right)$ which implies $T N \subseteq$ $\operatorname{Soc}_{\mathrm{N}}\left(\mathrm{M}_{\mathrm{s}}\right)$.Therefore, $\operatorname{Soc}_{\mathrm{N}}\left(\mathrm{M}_{\mathrm{s}}\right)=\mathrm{TN}$.
(2) Let $\alpha \in T, \alpha: M_{s} \rightarrow M_{s}$, since M_{s} is pseudo principally injective, so $\alpha_{1}\left(=\left.\alpha\right|_{n S}\right): n S \rightarrow M_{s}$ is S-monomorphism . Since nS is simple subsystem of M_{s}, so $\alpha_{1}: \mathrm{nS} \rightarrow \alpha_{1}(\mathrm{nS})$ is an S -isomorphism. Thus, let $\sigma: \alpha_{1}(\mathrm{nS}) \rightarrow \mathrm{nS}$ be its inverse . For $\Theta \neq \alpha n \in \operatorname{Tn}$ and if $g \in T$ extends σ, then $g\left(\alpha_{1}(n)\right)=\sigma\left(\alpha_{1}(n)\right)=n \in T \alpha n$. Therefore, $T n \subseteq T \alpha n$. Then, $T n=T \alpha n$ whence $\mathrm{T} \alpha \mathrm{n} \subseteq \mathrm{Tn}$, such that if we take $\beta \alpha \mathrm{n} \in \mathrm{T} \alpha \mathrm{n}$, and $\beta \in \mathrm{T}$, then , since $\beta \in \mathrm{T}$ and $\alpha \in \mathrm{T}$, so $\beta \alpha \in \mathrm{T}$. Thus, $\beta \alpha \mathrm{n} \in \mathrm{Tn}$ and $\mathrm{T} \alpha \mathrm{n} \subseteq \mathrm{Tn}$.
(3) This follows by (2).
(2-13) Proposition :Let M_{s} be pseudo principally injective S-system with $T=\operatorname{End}\left(M_{s}\right)$. Then:
(1) If N and K are isomorphic principal subsystem of M_{s} and K is a retract of M_{s}, then N is also a retract of M_{s}.

(2) Every pseudo principally injective has C_{2}-condition

Proof: It is obvious that (1) implies (2), so it is enough to prove (1). Let N be a subsystem of M_{s} and i be the inclusion map of N into M_{s}. It is enough to prove that inclusion map split. Let $\alpha: N \rightarrow K$ be an S-isomorphism. Since K is a retract of M_{s}, so there exists S-homomorphims $\pi: M_{s} \rightarrow K$ and $j: K \rightarrow M_{s}$ projection and injection map respectively . Let i_{1} be the inclusion map of N into M_{s} and α^{-1} be the inverse map of α (since α is S-isomorphism). Since M_{s} is pseudo principally injective ,so there exists S-homomorphism $\bar{\alpha}: \mathrm{M}_{\mathrm{s}} \rightarrow \mathrm{M}_{\mathrm{s}}$ which is extension of α (this means $\bar{\alpha}$ oi= jo α).Now, define $\sigma\left(=\alpha^{-1} \pi \bar{\alpha}\right): M_{s} \rightarrow \mathrm{~N}$. If $\mathrm{n} \in \mathrm{N}$, write $\alpha(\mathrm{n})=\mathrm{k} \in \mathrm{K}$, hence $\sigma \mathrm{n}=\alpha^{-1}(\pi \bar{\alpha}(\mathrm{n})) \in \mathrm{N}$, then $\sigma \mathrm{n}=\alpha^{-1}(\pi \bar{\alpha}(\mathrm{n}))=\alpha^{-}$ ${ }^{1}(\pi \alpha(\mathrm{n}))=\alpha^{-1}(\pi(\mathrm{k}))=\alpha^{-1}(\mathrm{k})=\alpha^{-1}(\alpha(\mathrm{n}))=\mathrm{n}$. Thus, $\sigma \mathrm{n}=\mathrm{n}$ and inclusion split, since $\sigma 0 \mathrm{i}=\mathrm{I}_{\mathrm{N}}$.

Recall that an S-system M_{s} is called principally self-generator if every $x \in M_{s}$, there is an S-homomorphism f : $M_{s} \rightarrow x S$ such that $x=f\left(x_{1}\right)$ for $x_{1} \in M_{s}[6]$.
(2-14) Lemma: Let M_{s} be principally self-generator. Then, every principal subsystem is of the form mS, where $\gamma_{\mathrm{s}}\left(\mathrm{m}_{0}\right) \subseteq \gamma_{\mathrm{s}}(\mathrm{m})$ and $\mathrm{M}_{\mathrm{s}}=\mathrm{m}_{0} \mathrm{~S}$.
Proof: Let $M_{s}=m_{0} S$ be a principal S-system and $n S$ be a principal subsystem of M_{s}, since M_{s} is self -generator, then for $n \in M_{s}$, there is an S-homomorphism $\alpha: M_{s} \rightarrow n S$, so $n=\alpha\left(m_{1}\right)$ for some $m_{1} \in M_{s}$. Then, $n t=\alpha\left(m_{1}\right) t=\alpha\left(m_{1} t\right)=$ $\alpha\left(\mathrm{m}_{0} \mathrm{st}\right)$, which implies that α is onto. Thus, $\operatorname{Im} \alpha=\mathrm{nS}=\alpha\left(\mathrm{m}_{0}\right) \mathrm{S}=\mathrm{mS}$ where $\mathrm{m}=\alpha\left(\mathrm{m}_{0}\right)$. Now, $\forall(\mathrm{s}, \mathrm{t}) \in \gamma_{\mathrm{s}}\left(\mathrm{m}_{0}\right)$ implies $\mathrm{m}_{0} \mathrm{~s}=\mathrm{m}_{0} \mathrm{t}$ and then $\mathrm{ms}=\alpha\left(\mathrm{m}_{0}\right) \mathrm{s}=\alpha\left(\mathrm{m}_{0} \mathrm{~s}\right)=\alpha\left(\mathrm{m}_{0} \mathrm{t}\right)=\alpha\left(\mathrm{m}_{0}\right) \mathrm{t}=\mathrm{mt}$. This means that $\mathrm{m} \in \ell_{\mathrm{M}}\left(\gamma_{\mathrm{s}}\left(\mathrm{m}_{0}\right)\right)$ which implies that $\gamma_{\mathrm{s}}\left(\mathrm{m}_{0}\right)=\gamma_{\mathrm{s}}\left(\ell_{\mathrm{M}}\left(\gamma_{\mathrm{s}}\left(\mathrm{m}_{0}\right)\right)\right) \subseteq \gamma_{\mathrm{s}}(\mathrm{m})$.
(2-15) Proposition: Let M_{s} be a principal system which is a principal self-generator and let $T=E n d\left(M_{s}\right)$. The following conditions are equivalent:
(1) M_{s} is pseudo principally injective;
(2) $\mathrm{S}_{(\alpha, \mathrm{m})}=\mathrm{B}_{\alpha \mathrm{m}} \alpha \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$ for all $\alpha \in \mathrm{T}$ and all $\mathrm{m} \in \mathrm{M}_{\mathrm{s}}$;
(3) If $A_{\alpha m}=A_{\beta m}$, then $\beta \in B_{\alpha m} \alpha \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$.

Proof: $(1 \rightarrow 2)$ By proposition (2-10).
$(2 \rightarrow 3)$ Let $A_{\alpha m}=A_{\beta m}$, then $\gamma_{s}(\alpha m)=\gamma_{s}(\beta m)$. Let $(x, y) \in \operatorname{ker} \alpha$, so $\alpha(x)=\alpha(y)$ where $x, y \in M_{s}=m S$. Let $x=m s_{1}$, and $y=\mathrm{ms}_{2}$, then $\alpha(\mathrm{m}) \mathrm{s}_{1}=\alpha(\mathrm{m}) \mathrm{s}_{2}$, so $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right) \in \gamma_{\mathrm{s}}(\alpha(\mathrm{m}))=\gamma_{\mathrm{s}}(\beta(\mathrm{m}))$. This implies $\beta(\mathrm{m}) \mathrm{s}_{1}=\beta(\mathrm{m}) \mathrm{s}_{2}$ and then $\beta\left(\mathrm{ms}_{1}\right)$ $=\beta\left(\mathrm{ms}_{2}\right)$, this means $\beta(\mathrm{x})=\beta(\mathrm{y})$ and $(\mathrm{x}, \mathrm{y}) \in \operatorname{ker} \beta$. Thus $\operatorname{ker} \alpha \subseteq \operatorname{ker} \beta$. For the other direction, let $(\mathrm{x}, \mathrm{y}) \in \operatorname{ker} \beta$, so $\beta(\mathrm{x})$ $=\beta(y)$ since $x, y \in M_{s}=m S$. Let $x=m s_{1}$, and $y=m s_{2}$. Thus $\beta(m) s_{1}=\beta(m) s_{2}$ and then $\left(s_{1}, s_{2}\right) \in \gamma_{s}(\beta(m))=\gamma_{s}(\alpha(m))$. This implies $\alpha(\mathrm{m}) \mathrm{s}_{1}=\alpha(\mathrm{m}) \mathrm{s}_{2}$, then $\alpha\left(\mathrm{ms}_{1}\right)=\alpha\left(\mathrm{ms}_{2}\right)$, so $\alpha(\mathrm{x})=\alpha(\mathrm{y})$ which implies ($\left.\mathrm{x}, \mathrm{y}\right) \in \operatorname{ker} \alpha$, thus $\operatorname{ker} \alpha=\operatorname{ker} \beta$. So , $\operatorname{ker} \beta \cap(\mathrm{mS} \times \mathrm{mS})=\operatorname{ker} \alpha \cap(\mathrm{mS} \times \mathrm{mS})$ which implies $\mathrm{S}_{(\alpha, \mathrm{m})}=\mathrm{S}_{(\beta, \mathrm{m})}$, so by (2), we have $\mathrm{B}_{\alpha \mathrm{m}} \alpha \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})=$ $B_{\beta m} \beta \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$. Since $1_{\mathrm{M}} \in \mathrm{B}_{\beta(\mathrm{m})}$. This means $\beta=1_{\mathrm{M}} \cdot \beta \in \mathrm{B}_{\beta \mathrm{m}} \beta$, so $\beta \in \mathrm{B}_{\beta \mathrm{m}} \beta \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})=\mathrm{B}_{\alpha \mathrm{m}} \alpha \cup$ $\ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$, this implies $\beta \in \mathrm{B}_{\alpha \mathrm{m}} \alpha \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$. Also , $\alpha \in \mathrm{B}_{\beta \mathrm{m}} \beta \cup \ell_{\mathrm{T}}(\mathrm{mS} \times \mathrm{mS})$.
$(3 \rightarrow 1)$ Assume that $\mathrm{f}: \mathrm{mS} \rightarrow \mathrm{M}_{\mathrm{s}}$ be an S-homomorphism. Since M_{s} is principal, so there exists $\mathrm{m}_{0} \in \mathrm{M}_{\mathrm{s}}$ such that $\mathrm{M}_{\mathrm{s}}=$ $m_{0} S$ and $\alpha: M_{s} \rightarrow m S$ with $\alpha\left(m_{0}\right)=m$, where $\gamma_{s}\left(m_{0}\right) \subseteq \gamma_{s}(m)$. Again since M_{s} is principal self-generator, so there exists $\quad \beta \quad \mathrm{M}_{\mathrm{s}} \rightarrow \mathrm{f}(\mathrm{m}) \mathrm{S}$ such that $: \mathrm{f}(\mathrm{m})=\beta\left(\mathrm{m}_{0}\right)$, where $\mathrm{M}_{\mathrm{s}}=\mathrm{m}_{0} \mathrm{~S}$...(1) .
Since f is S -monomorphism, so $\gamma_{s}(\mathrm{f}(\mathrm{m}))=\gamma_{\mathrm{s}}(\mathrm{m})$. In fact, since, if $(\mathrm{s}, \mathrm{t}) \in \gamma_{\mathrm{s}}(\mathrm{f}(\mathrm{m}))$, so $\mathrm{f}(\mathrm{ms})=\mathrm{f}(\mathrm{mt})$, since f is monomorphism, so $\mathrm{ms}=\mathrm{mt}$ which implies $(\mathrm{s}, \mathrm{t}) \in \gamma_{\mathrm{s}}(\mathrm{m})$ and then $\gamma_{\mathrm{s}}(\mathrm{f}(\mathrm{m})) \subseteq \gamma_{\mathrm{s}}(\mathrm{m})$. For the other direction, let $(s, t) \in \gamma_{s}(m)$, so $m s=m t$. Since f is well-defined, so $f(m s)=f(m t)$. Thus $f(m) s=f(m) t$ which implies $(s, t) \in$ $\gamma_{s}(f(m))$ and then $\gamma_{s}(m) \subseteq \gamma_{s}(f(m))$. Thus, $\gamma_{s}(f(m))=\gamma_{s}(m)$. This implies $\gamma_{s}\left(\beta\left(m_{0}\right)\right)=\gamma_{s}\left(\alpha\left(m_{0}\right)\right)$. This means $\operatorname{ker} \alpha=\operatorname{ker} \beta$. In fact, for $(x, y) \in \operatorname{ker} \alpha$, this implies $\alpha(x)=\alpha(y)$ where where $x, y \in M_{s}=m_{0} S$. Let $x=m_{0} s_{1}$, and $y=m_{0} s_{2}$, then $\alpha\left(m_{0} s_{1}\right)=\alpha\left(m_{0} s_{2}\right)$ which implies $\alpha\left(m_{0}\right) s_{1}=\alpha\left(m_{0}\right) s_{2}$, so $\left(s_{1}, s_{2}\right) \in \gamma_{s}\left(\alpha\left(m_{0}\right)\right)=\gamma_{s}\left(\beta\left(m_{0}\right)\right)$ by the proof. This implies $\beta\left(m_{0}\right) s_{1}=\beta\left(m_{0}\right) s_{2}$ and then $\beta\left(m_{0} s_{1}\right)=\beta\left(m_{0} s_{2}\right)$, this means $\beta(x)=\beta(y)$ and $(x, y) \in \operatorname{ker} \beta$. Thus ker $\alpha \subseteq \operatorname{ker} \beta$. Similarly for other direction, thus $\operatorname{ker} \alpha=\operatorname{ker} \beta . \operatorname{So}, \operatorname{ker} \alpha \cap\left(m_{0} S \times m_{0} S\right)=\operatorname{ker} \beta \cap\left(m_{0} S \times m_{0} S\right)$ which implies $S_{\left(\alpha, \mathrm{m}_{0}\right)}=\mathrm{S}_{\left(\beta, \mathrm{m}_{0}\right)}$ and $\mathrm{A}_{\alpha \mathrm{m}_{0}}=\mathrm{A}_{\beta \mathrm{m}_{0}}$, so by (3) we have $\beta \in \mathrm{B}_{\alpha \mathrm{m}_{0}} \alpha \cup \ell_{\mathrm{T}}\left(\mathrm{m}_{0} \mathrm{~S} \times \mathrm{m}_{0} \mathrm{~S}\right)$. Thus, either $\beta \in \mathrm{B}_{\alpha \mathrm{m}_{0}} \alpha$ or $\beta \in \ell_{\mathrm{T}}\left(\mathrm{m}_{0} \mathrm{~S} \times \mathrm{m}_{0} \mathrm{~S}\right)$. If $\beta \in \mathrm{B}_{\alpha \mathrm{m}_{0}} \alpha$, then there exists S -homomorphism $\varphi \in \mathrm{B}_{\alpha \mathrm{m}_{0}}$ which implies $\varphi \in \mathrm{T}$ and $\beta=\varphi \alpha$. Thus, $\varphi(\mathrm{m})=\varphi\left(\alpha\left(\mathrm{m}_{0}\right)\right)=\beta\left(\mathrm{m}_{0}\right)$ and by (1) $\beta\left(\mathrm{m}_{0}\right)=\mathrm{f}(\mathrm{m})$, so $\left.\varphi\right|_{\mathrm{mS}}=\mathrm{f}$, so M_{s} is pseudo principally injective system. If $\beta \in \ell_{\mathrm{T}}\left(\mathrm{m}_{0} \mathrm{~S} \times \mathrm{m}_{0} \mathrm{~S}\right)$, so $\beta \in \ell_{\mathrm{T}}\left(\mathrm{M}_{\mathrm{s}} \times \mathrm{M}_{\mathrm{s}}\right.$) which implies $\beta \in \operatorname{Tand} \forall(\mathrm{x}, \mathrm{y}) \in \mathrm{M}_{\mathrm{s}} \times \mathrm{M}_{\mathrm{s}}$, we have $\beta(\mathrm{x})=\beta(\mathrm{y}) \forall(\mathrm{x}, \mathrm{y}) \in$ M_{s}. This implies $\operatorname{ker} \beta=M_{s} \times M_{s}$ and then $\beta=0$ which implies
$\mathrm{f}=0$ and this is a contradiction.

3- Relation Between Pseudo PQ-Injective S-Systems With Other Classes of Injectivity:

It is well known that each PQ-injective system is pseudo PQ-injective. To show under which conditions the converse is true, we need the following concepts and some propositions and lemmas.

Recall that a subsystem N of an S-system M_{s} is called (pseudo)stable if $f(N) \subseteq N$ for each S-homomorphism (Smonomorphism) $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{M}_{\mathrm{s}}$. An S-system M_{s} is called fully (pseudo) stable if each subsystem of M_{s} is (pseudo) stable [12], [8]. It is clear that every stable subsystem is pseudo stable and hence every fully stable S-system is fully pseudo stable. It was proved that
every fully pseudo stable S-system is pseudo $P Q$-injective.
Recall that an S-system M_{s} is multiplication if each subsystem of M_{s} is of the form MI, for some right ideal I of S . This is equivalent to saying that every principal subsystem is of this form [11] .
(3-1) Proposition :Let M_{s} be multiplication S-system. Then, M_{s} is fully pseudo stable if and only if M_{s} is pseudo PQinjective S-system.

Proof: Let mS be principal subsystem of an S-system M_{s} and $\alpha: \mathrm{mS} \rightarrow \mathrm{M}_{\mathrm{s}}$ be an S-monomorphism, where $m \in \mathrm{M}_{\mathrm{s}}$. Then, since M_{s} is pseudo PQ-injective, so α extends to an S-homomorphism $\beta: M_{s} \rightarrow M_{s}$. Since M_{s} is multiplication system, so there is an ideal I of S such that $\mathrm{mS}=\mathrm{MI}$. Hence, $\alpha(\mathrm{mS})=\beta(\mathrm{mS})=\beta(\mathrm{MI})=\beta(\mathrm{M}) \mathrm{I} \subseteq \mathrm{MI}=\mathrm{mS}$. ThusM T_{s} is fully pseudo stable.

Now, we give under which conditions on pseudo PQ-injective systems to be PQ-injective. But, before this we need the following propositions :
(3-2) Proposition[8]: An S-system M_{s} is fully stable if and only if M_{s} is fully pseudo-stable and $\mathrm{xS} \cong \operatorname{Hom}\left(\mathrm{xS}, \mathrm{M}_{\mathrm{s}}\right)$ for each x in M_{s}.
(3-3) Proposition[6] : Let S be a commutative monoid and M_{s} be a multiplication S-system. Then M_{s} is fully stable if and only ifM ${ }_{s}$ is PQ-injective S-system .
(3-4) Proposition :Let M_{s} be multiplication S-system, where S is a commutative monoid and $x S \cong H o m\left(x S, M_{s}\right)$ for each x in M_{s}. If M_{s} is pseudo PQ-injective system, then M_{s} is PQ-injective .
Proof: Assume that M_{s} is pseudo PQ-injective system. Since M_{s} is multiplication system, so M_{s} is fully pseudo stable by proposition (3-1). Since $\mathrm{xS} \cong \operatorname{Hom}\left(x S, M_{s}\right)$, so by proposition (3-2), M_{s} is fully stable system. Again since M_{s} is multiplication system, so by proposition(3-3) M_{s} is PQ-injective system .

It is clear that every quasi injective system is pseudo PQ-injective system (and hence PQ-injective), but the converse is not true in general. For the converse, we need the following proposition :
(3-5)Proposition[6]: Let M_{s} be multiplication S-system. If M_{s} is PQ-injective, then M_{s} is quasi injective .
(3-6) Proposition :Let M_{s} be multiplication S-system, where S is a commutativemonoid and $x S \cong \operatorname{Hom}\left(x S, M_{s}\right)$ for each x in M_{s}. If M_{s} is pseudo PQ-injective S-system, then M_{s} is quasi injective .
Proof: By proposition (3-4) and proposition (3-5) .
At the same time, we can give another conditions to versus pseudo PQ-injective S-systems with $P Q$-injective , but we need the following concept:
(3-7) Proposition :Let M_{s} be a cog-reversible nonsingular S-system with $\ell_{M}(s)=\Theta, \forall \mathrm{s} \in \mathrm{S}$.IfM I_{s} is pseudo PQinjective, then M_{s} is PQ-injective.
Proof : Let N be principal subsystem of S-system M_{s} and f be S-homomorphism from N into M_{s}. If f is Smonomorphism, then there is nothing to prove. So assume f is not S-monomorphism. Then, by using the proof of theorem(3.2.17), we get the required. This means thatM M_{s} is PQ -injective S -system .

The following proposition explain under which conditions on pseudo PQ-injective system to beingpseudo QPinjective and the proof is similar to proposition(2-22) in [7] by replacing S-homomorphisms by S-monomorphism.
(3-8) Proposition :Let M_{s} be an S-system which is principal and principal self-generator. Then,M_{s} is pseudo PQinjective S-system if and only ifM $_{s}$ is pseudo QP-injective.
Proof : $\Leftarrow)$ Let N be cyclic subsystem of M_{s} and f be S-monomorphism from N into M_{s}. Since M_{s} is principal selfgenerator, so there exists some $\alpha: M_{s} \rightarrow m S$, such that $m=\alpha\left(m_{1}\right), \forall m \in M_{s}$. This means α is S-epimorphism, thus N is M_{s}-cyclic subsystem of M_{s}. Since M_{s} is pseudo QP-injective system, so f can be extended to S-homomorphism $g: M_{s}$ $\rightarrow M_{s}$, such that goi $=f$, where i be the inclusion map of N into M_{s}, therefore M_{s} is pseudo PQ-injective system .
$\Rightarrow)$ Let N be M_{s}-cyclic subsystem of an S -system M_{s}, so there exists an S-epimorphism $\alpha: \mathrm{M}_{\mathrm{s}} \rightarrow \mathrm{N}$. Since M_{s} is principal, so N is principal . Let f be S-monomorphism from N into M_{s}. Since M_{s} is pseudo PQ-injective system, so f can be extended to S-homomorphism g from M_{s} into M_{s} such that goi $=f$, where i be the inclusion map of N into M_{s}. Thus M_{s} is pseudo QP-injective system .

REFERENCES

[1] A. M .Lopez , Jr. and J. K. Luedeman, (1979) , Quasi-injective S-systems and their S-endomorphism semi group, CzechoslovakMath .J., 29(1), pp.97-104.
[2] A.M.Lopez, Jr. and J.K.Luedeman , (1976) , The Bicommutator of the injective hull of a non- singular semigroup, Semigroup Forum, 12, pp.71-77.
[3] C.V. Hinkle and Jr. , (1974) ,The extended centralizer of an S-set, Pacific journal of mathematics , Vol.53, No.1, pp 163-170.
[4] K.Jupil, (2008), PI-S-systems, J. of Chungcheong Math. Soc., 21, no.4,pp.591-599.
[5] M. Kilp , U . Knauer and A.V . Mikhalev , (2000) , Monoids acts and categories . Walter de Gruyter , Berlin , New York.
[6] M.S. Abbas and A.Shaymaa ,(2015), principally quasi injective system over monoid, journal of advances in mathematics ,Vol .(10),No.(1), pp.3152-3162.
[7] M.S.Abbas and A.Shaymaa, (2015), quasi principally injective systems over monoids, journal of advances in mathematics, Vol .(10),No.(5) , pp.3493-3502.
[8] M.S. Abbas and A. A.Mustafa , (2015), fully pseudo stable systems, journal of advances in mathematics , Vol (10),No.(3) , pp. 3356-3361.
[9] M.Ershad, M.Roueentan and M.A.Naghipoor, (2012), On C-injectivity of acts over monoids, $22^{\text {nd }}$ Iranian Algebra seminar , pp. 94-97.
[10]P . Berthiaume , (1967), The injective envelope of S-sets ,Canad. Math. Bull., 10, pp. 261 - 273.
[11][11] R.Mohammad and E.Majid , (2014) ,Strongly duo and duo right S-acts, Italian journal of pure and applied mathematics,32, pp.143-154.
[12]R.B.Hiba , (2014) , On fully stable acts . MSC thesis, College of Science, Univ. of Al-Mustansiriyah.
[13]T.Yan , (2011), Generalized injective S-acts on a monoid, Advances in mathematics, Vol.40,No.4,pp. 421-432.
[14] T.Yan , A.Javed, X.FEI and G.XIAO,(2007), Monoids characterized by their injectivity and projectivity classes, Advances in mathematics , Vol.36,No.3 ,pp. 321-326 .

