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1. Introduction  

In numerous fields of engineering and research over the past ten years, the fractional calculus has been successfully 

applied [1],[2]. Discrete fractional calculus (DFC) was successfully developed using the fundamental ideas of this type 

of nonlocal calculus [3],[4]. This new direction, which was started more than 10 years ago, is in a state of steady 

evolution, and it has just recently started to be recognized as a potent instrument for uncovering hitherto unknown 

dynamics of intricate discrete dynamical systems. The discrete diffusion equation included in the discrete Reisz 

derivative was one of the most recent discoveries. The discrete diffusion equation is included inside the discrete Riesz 

derivative [5], [6]. Therefore, the discrete fractional calculus may be a natural development of conventional discrete 

ones. And Fabrizio, Caputo [7] On the basis of a nonsingular kernel, a different fractional derivative was presented. 

This operator's discrete variant was described in [8]. We think that the appearance of various forms of memory kernels 

improves the likelihood that various kinds of models will be appropriately developed when various types of memory 

emerge. Recent research has looked into discrete functions' discrete fractional operators to examine the monotonicity 

properties of such functions. While others looked into fractional difference operators of order 𝛼 > 1 [9],[10], some 

Abstract 
Nearly every theory in mathematics has a discrete equivalent that simplifies it theoretically and practically so that it 

may be used in modeling real-world issues. With discrete calculus, for instance, it is possible to find the "difference" 

of any function from the first order up to the n-th order. On the other hand, it is also feasible to expand this theory 

using discrete fractional calculus and make n any real number such that the 1⁄2-order difference is properly defined. 

This article is divided into five chapters, each of which develops the most straightforward discrete fractional 

variational theory while illustrating some fundamental concepts and features of discrete fractional calculus. It is also 

investigated how the idea may be applied to the development of tumors. The first section provides a succinct 

introduction to the discrete fractional calculus and several key mathematical concepts that are utilized often in the 

subject. We demonstrate in section 2 that if the Caputo-Fabrizio nabla fractional difference operator  ∇𝛼𝑦𝛼−1
𝐶𝐹𝑅  (𝑡) of 

order 0 < 𝛼 ≤ 1 and commencing at 𝛼 − 1 is positive for 𝑡 = 𝑎,𝑎 + 1, …  then 𝑦(𝑡) is -increasing. On the other 

hand, if 𝑦(𝑡)is rising and 𝑦(𝑎) ≥ 0, then  ∇𝛼𝑦𝛼−1
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as an application and contrast it to the traditional discrete fractional instance.
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writers addressed the monotonicity analysis of fractional difference operators of orders 0 < 𝛼 <  1, such as delta- or 

nabla-types [11]. These novel findings motivate us to compare the monotonicity results for this discrete fractional 

operator with a discrete exponential kernel to the discrete classical ones and discuss them in this thesis. We think that 

the fractional differences considered in this thesis result in novel kernels with new memories, which might be of 

diverse importance for applications. These kernels differ from the standard nabla fractional differences with kernels 

relying on the increasing factorial powers. 

2. Preliminaries 

Discrete fractional calculus's fundamental concepts and results are provided in the next chapter. The fractional sum and 

the fractional difference of a function f(x)  to a random order α, starting from a, will be denoted by ∇_a^(-α)  f(x) and 

∇_a^(-α)  f(x) respectively. Where α is a positive real number, and for a real number a, we demoted 

N_a={a,a+1,a+2,…}. Our recommendation for our readers is the reference [28] for further information on discrete 

fractional calculus concepts. Thenabla discrete exponential kernel may be expressed using the time scale notation as 

(1 − 𝛼)𝑡−𝜌(𝑠) where 𝜌 𝑠 = 𝑠 − 1 [29].  

2.1.  Caputo Fractional Difference 

Definition 2.1.[8] The Caputo-Fabrizio in the Caputo sense nabla difference of 𝑓 can be defined as follows for 

0 < 𝛼 < 1 and 𝑓 defined on ℕ𝑎 : 

(𝐶𝐹𝐶∇𝑎
𝛼𝑓) 𝑡 =

𝐵 𝛼 

1 − 𝛼
  ∇𝑠𝑓  𝑠  1 − 𝛼 𝑡−𝜌 𝑠 

𝑡

𝑠=𝑎+1

 

                                                        = 𝐵 𝛼   ∇𝑠𝑓  𝑠  1 − 𝛼 𝑡−𝑠

𝑡

𝑠=𝑎+1

                                           (1) 

where 𝐵(𝛼) is a normalizing positive constant which depends on α and sustaining 𝐵(0) = 𝐵(1)  = 1. 

2.2. Riemann Fractional Difference 
Definition 2.2. [8] For 0 < 𝛼 < 1 and 𝑓 defined on ℕ𝑎 , the Caputo-Fabrizio in the Riemann sensenabla difference of  

𝑓 can be defined by: 

(𝐶𝐹𝑅∇𝑎
𝛼𝑓) 𝑡 =

𝐵 𝛼 

1 − 𝛼
∇𝑡  𝑓 𝑠  1 − 𝛼 𝑡−𝜌 𝑠 

𝑡

𝑠=𝑎+1

 

= 𝐵 𝛼 ∇𝑡  𝑓 𝑠  1 − 𝛼 𝑡−𝑠

𝑡

𝑠=𝑎+1

                                                                        (2) 

wherever 𝐵(𝛼) is a normalizing positive constant depending on α and satisfying 𝐵(0) = 𝐵(1)  = 1. 

2.3. Fractional Sum 
Definition 2.3. [8] For 0 < 𝛼 < 1 and 𝑓 defined on ℕ𝑎 , the fractional sum of 𝑓 can be defined by: 

(𝐶𝐹∇𝑎
−𝛼𝑓) 𝑡 =

1 − 𝛼

𝐵 𝛼 
𝑓 𝑡 +

𝛼

𝐵 𝛼 
 𝑓 𝑠 𝑑𝑠

𝑡

𝑠=𝑎+1

                                                                       (3) 

It was shown that (𝐶𝐹∇𝑎
−𝛼 𝐶𝐹∇𝑎

𝛼𝑓) 𝑡 . Also, it was shown that (𝐶𝐹∇𝑎
𝛼 𝐶𝐹∇𝑎

−𝛼𝑓) 𝑡 . 

The following statement and lemma include several elements that are crucial to moving forward. 

Remark 2.4. [12] The association between Riemann and Caputo kind fractional difference is given by 

(𝐶𝐹𝐶∇𝑎
𝛼𝑓) 𝑡 = (𝐶𝐹𝑅∇𝑎

𝛼𝑓) 𝑡 −
𝐵 𝛼 

1 − 𝛼
𝑓(𝑎)(1 − 𝛼)𝑡−𝑎  

Lemma 2.5. For 𝛼 ∈ (0,1) and 𝑔 defined on ℕ𝑎 , there are. 

(i)(𝐶𝐹∇𝑎
−𝛼(1 − 𝛼)𝑡) 𝑡 =

(1−𝛼)𝑎+1

𝐵(𝛼)
 

(ii) ∇𝑠(1 − 𝛼)𝑡−𝑠 = 𝛼(1 − 𝛼)𝑡−𝑠 

(iii) (𝐶𝐹∇𝑎
−𝛼∇𝑔) 𝑡 = (∇𝐶𝐹∇𝑎

−𝛼𝑔) 𝑡 −
𝛼

𝐵 𝛼 
𝑔(𝑎) 

(iv) ∇(1 − 𝛼)𝑡 = −𝛼(1 − 𝛼)𝑡−1 

(v) (𝐶𝐹𝑅∇𝑎
𝛼(1 − 𝛼)𝑡) 𝑡 = 𝐵 𝛼  1 − 𝛼 𝑡−1[1 − 𝛼 𝑡 − 𝑎 ] 

Proof 
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The proof of (i): 

(𝐶𝐹∇𝑎
−𝛼(1 − 𝛼)𝑡) 𝑡 =

1 − 𝛼

𝐵 𝛼 
(1 − 𝛼)𝑡 +

𝛼

𝐵 𝛼 
 (1 − 𝛼)𝑠𝑑𝑠

𝑡

𝑠=𝑎+1

 

Since α ∈ (0,1)  we can apply geometric series, and we get 

 

=
1 − 𝛼

𝐵 𝛼 
(1 − 𝛼)𝑡 +

𝛼

𝐵 𝛼 
(1 − 𝛼)𝑎+1

1 − (1 − 𝛼)𝑡+1−(𝑎+1)

1 − (1 − 𝛼)
 

=
1 − 𝛼

𝐵 𝛼 
(1 − 𝛼)𝑡 +

𝛼

𝐵 𝛼 
(1 − 𝛼)𝑎+1

1 − (1 − 𝛼)𝑡−𝑎

𝛼
 

=
1

𝐵 𝛼 
[(1 − 𝛼)𝑡+1 + (1 − 𝛼)𝑎+1 −  1 − 𝛼 𝑡+1] 

=
(1 − 𝛼)𝑎+1

𝐵 𝛼 
 

The proof of (ii) 

∇𝑠(1 − 𝛼)𝑡−𝑠 = (1 − 𝛼)𝑡−𝑠 −  1 − 𝛼 𝑡−(𝑠−1) 

= (1 − 𝛼)𝑡−𝑠 −  1 − 𝛼 𝑡−𝑠+1 

=  1 − 𝛼 𝑡−𝑠+1[
1

 1 − 𝛼 
− 1] 

=  1 − 𝛼 𝑡−𝑠+1[
1 − 1 + 𝛼

 1 − 𝛼 
] 

= 𝛼 1 − 𝛼 𝑡−𝑠 . 
The proof of (iii) 

(𝐶𝐹∇𝑎
−𝛼∇𝑔) 𝑡 =

1 − 𝛼

𝐵 𝛼 
∇𝑔 𝑡 +

𝛼

𝐵 𝛼 
 ∇𝑔 𝑠 𝑑𝑠

𝑡

𝑠=𝑎+1

 

But note that  ∇𝑔 𝑠 𝑑𝑠𝑡
𝑠=𝑎+1 = 𝑔 𝑡 − 𝑔 𝑎 , and from ∇ 𝑔 𝑠 𝑑𝑠𝑡

𝑠=𝑎+1 = 𝑔(𝑡), we can write 

(𝐶𝐹∇𝑎
−𝛼∇𝑔) 𝑡 = [

1 − 𝛼

𝐵 𝛼 
∇𝑔 𝑡 +

𝛼

𝐵 𝛼 
∇  𝑔 𝑠 𝑑𝑠

𝑡

𝑠=𝑎+1

] −
𝛼

𝐵 𝛼 
𝑔 𝑎  

= ∇[
1 − 𝛼

𝐵 𝛼 
𝑔 𝑡 +

𝛼

𝐵 𝛼 
 𝑔 𝑠 𝑑𝑠

𝑡

𝑠=𝑎+1

] −
𝛼

𝐵 𝛼 
𝑔 𝑎  

= (∇𝐶𝐹∇𝑎
−𝛼𝑔) 𝑡 −

𝛼

𝐵 𝛼 
𝑔 𝑎  

The proof of (iv) 

∇(1 − 𝛼)𝑡 = (1 − 𝛼)𝑡 − (1 − 𝛼)𝑡−1 

= (1 − 𝛼)𝑡−1[(1 − 𝛼) − 1] 
= (1 − 𝛼)𝑡−1[(1 − 𝛼) − 1] 
= −𝛼 1 − 𝛼 𝑡−1 

 

The proof of (v) 

(𝐶𝐹𝑅∇𝑎
𝛼(1 − 𝛼)𝑡) 𝑡 = 𝐵 𝛼 ∇𝑡  (1 − 𝛼)𝑠 1 − 𝛼 𝑡−𝑠

𝑡

𝑠=𝑎+1

 

= 𝐵 𝛼 ∇𝑡 1 − 𝛼 𝑡  1

𝑡

𝑠=𝑎+1

 

= 𝐵 𝛼 ∇𝑡[ 1 − 𝛼 𝑡(𝑡 − 𝑎)] 
= 𝐵 𝛼 [ 1 − 𝛼 𝑡 𝑡 − 𝑎 −  1 − 𝛼 𝑡−1(𝑡 − 1 − 𝑎)] 
= 𝐵 𝛼  1 − 𝛼 𝑡−1[ 1 − 𝛼  𝑡 − 𝑎 − (𝑡 − 1 − 𝑎)] 
= 𝐵 𝛼  1 − 𝛼 𝑡−1[𝑡 − 𝑎 − 𝑡𝛼 + 𝑎𝛼 − 𝑡 + 𝑎 + 1] 
= 𝐵 𝛼  1 − 𝛼 𝑡−1[1 − 𝑡𝛼 + 𝑎𝛼] 
= 𝐵 𝛼  1 − 𝛼 𝑡−1 1 − 𝛼 𝑡 − 𝑎   
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2. The Monotonicity Results 

3.1. Increase 
Definition 3.1. [13] Let 𝑦 be a function defined on ℕ𝒂 so that satisfying 𝑦(𝑎) ≥ 0. Then 𝑦 is named an 𝛼-increasing 

function on ℕ𝒂if 

𝑦 𝑡 + 1 ≥ 𝛼𝑦 𝑡    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝒂 

Theorem 3.2. Let 𝑦 be a function defined on ℕ𝒂−𝟏, 𝛼 ∈ (0,1), and (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 ≥ 0, 𝑡 ∈ ℕ𝒂−𝟏. Then 𝑦(𝑡) is 𝛼-

increasing. 

Proof. 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 = 𝐵 𝛼 ∇𝑡  𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡

𝑠=𝑎

 

= 𝐵 𝛼 [ 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡

𝑠=𝑎

−  𝑦 𝑠  1 − 𝛼 𝑡−𝑠−1

𝑡−1

𝑠=𝑎

] 

= 𝐵 𝛼 [ 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

+ 𝑦(𝑡) −  𝑦 𝑠  1 − 𝛼 𝑡−𝑠−1

𝑡−1

𝑠=𝑎

] 

= 𝐵 𝛼 [𝑦 𝑡 +  𝑦 𝑠 ( 1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

−  1 − 𝛼 𝑡−𝑠−1)] 

= 𝐵 𝛼 [𝑦 𝑡 +  𝑦 𝑠  1 − 𝛼 𝑡−𝑠−1

𝑡−1

𝑠=𝑎

(1 − 𝛼 − 1)] 

= 𝐵 𝛼 [𝑦 𝑡 −
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

]                                                                                    (4) 

But (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 ≥ 0 , we have 

 

𝐵 𝛼  𝑦 𝑡 −
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

 ≥ 0 

 

Since (𝛼) ≥ 0 , we get 

𝑦 𝑡 −
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

≥ 0 

It follows 

𝑦 𝑡 ≥
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

.                                                                                                    (5) 

 

Putting 𝑡 = 𝑎 for (5) we get  𝑎 ≥ 0 , put 𝑡 = 𝑎 + 1 for into (5) , we get 

𝑦 𝑎 + 1 ≥
𝛼

1 − 𝛼
𝑦 𝑎  1 − 𝛼  

It follows 

𝑦 𝑎 + 1 ≥ 𝛼𝑦 𝑎 . 
And hence 𝑦 𝑎 + 1 ≥ 𝛼𝑦 𝑎 ≥ 0, we will proceed by induction, we get 𝑦 𝑎 + 𝑘 ≥ 0, for all 𝑘 ∈ ℕ𝟎 which is the 

same with 𝑦 𝑡 ≥ 0 for all 𝑡 ∈ ℕ𝒂. 

Now replacing 𝑡 with 𝑡 + 1 in (5) we get 

𝑦 𝑡 + 1 ≥
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠+1

𝑡

𝑠=𝑎

 

Also, we have  

𝑦 𝑡 + 1 ≥ 𝛼𝑦 𝑡 +
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠+1

𝑡−1

𝑠=𝑎

 

And since 𝛼 ∈ (0,1) and 𝑦 𝑡 ≥ 0for all ∈ ℕ𝒂, we can write 
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𝑦 𝑡 + 1 ≥ 𝛼𝑦 𝑡 +
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠+1

𝑡−1

𝑠=𝑎

≥ 𝛼𝑦 𝑡  

𝑦 𝑡 + 1 ≥ 𝛼𝑦 𝑡  

 

which completes the proof. 

Theorem 3.3. Let 𝑦 be a function defined on ℕ𝒂−𝟏, 𝛼 ∈ (0,1), and  

(𝐶𝐹𝐶∇𝑎−1
𝛼 𝑦) 𝑡 ≥ −

𝐵 𝛼 

1−𝛼
𝑦 𝑎 − 1  1 − 𝛼 𝑡−𝑎+1, 𝑡 ∈ ℕ𝒂−𝟏,then y(t) is α-increasing. 

Proof.  By assumption, we have  

(𝐶𝐹𝐶∇𝑎−1
𝛼 𝑦) 𝑡 +

𝐵 𝛼 

1 − 𝛼
𝑦(𝑎 − 1)(1 − 𝛼)𝑡−𝑎+1 ≥ 0 

and from Remark 2.4, we get 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 ≥ 0, 𝑡 ∈ ℕ𝒂−𝟏 

and from Theorem 3.2, we get 

𝑦(𝑡) is 𝛼-increasing, hence the proof is complete. 

Theorem 3.4. Let 𝑦 be a function defined on ℕ𝒂−𝟏 satisfying 𝑦 𝑎 ≥ 0 and increasing on ℕ𝒂. Then, for 𝛼 ∈ (0,1) 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 ≥ 0, 𝑡 ∈ ℕ𝒂−𝟏 

Proof.   From  4 , we have  

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 = 𝐵 𝛼 [𝑦 𝑡 −

𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

] 

and since 𝐵 𝛼 ≥ 0 so to show that (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 ≥ 0  we need to prove that.   

 

𝑦 𝑡 −
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

≥ 0 

𝑦 𝑡 −
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

 

= 𝑦 𝑡 − 𝛼𝑦(𝑡 − 1) −
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−2

𝑠=𝑎

 

= 𝑦 𝑡 − 𝛼𝑦(𝑡 − 1) 

−
𝛼

1 − 𝛼
 [𝑦 𝑠 − 𝑦 𝑡 − 1 + 𝑦(𝑡 − 1)] 1 − 𝛼 𝑡−𝑠

𝑡−2

𝑠=𝑎

 

= 𝑦 𝑡 − 𝛼𝑦(𝑡 − 1) 

−
𝛼

1 − 𝛼
   𝑦 𝑠 − 𝑦 𝑡 − 1   1 − 𝛼 𝑡−𝑠

𝑡−2

𝑠=𝑎

+  𝑦 𝑡 − 1  1 − 𝛼 𝑡−𝑠

𝑡−2

𝑠=𝑎

                                  (6) 

 

Since 𝑦 is increasing, it indicates that  𝑦 𝑡 ≥ 𝑦 𝑡 − 1 ≥ 

𝑦 𝑡 − 2 ≥ ⋯ ≥ 𝑦(𝑎) ≥ 0,so we get 

 

𝑦 𝑡 − 𝛼𝑦(𝑡 − 1) −
𝛼

1 − 𝛼
 𝑦 𝑡 − 1  1 − 𝛼 𝑡−𝑠

𝑡−2

𝑠=𝑎

 

= 𝑦 𝑡 −
𝛼

1 − 𝛼
 𝑦 𝑡 − 1  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

 

= 𝑦 𝑡 − 𝑦 𝑡 − 1 + 𝑦(𝑡 − 1) −
𝛼

1 − 𝛼
𝑦 𝑡 − 1   1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

 

≥ 𝑦(𝑡 − 1) −
𝛼

1 − 𝛼
𝑦 𝑡 − 1   1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎
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= 𝑦(𝑡 − 1)  1 −
𝛼

1 − 𝛼
  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

  

= 𝑦(𝑡 − 1)  1 −
𝛼

1 − 𝛼
  1 − 𝛼 𝑡−(𝑠+𝑎)

𝑡−1−𝑎

𝑠=0

  

= 𝑦(𝑡 − 1)  1 −
𝛼

1 − 𝛼
  1 − 𝛼 𝑡−𝑎−𝑠

(𝑡−𝑎)−1

𝑠=0

  

= 𝑦 𝑡 − 1  1 −
𝛼

1 − 𝛼
 1 − 𝛼 𝑡−𝑎   

1

1 − 𝛼
 
𝑠

 𝑡−𝑎 −1

𝑠=0

  

 

By using geometric series, we have  

= 𝑦(𝑡 − 1)  1 −
𝛼

1 − 𝛼
 1 − 𝛼 𝑡−𝑎(

1 − (
1

1−𝛼
)𝑡−𝑎

1 −
1

1−𝛼

)  

= 𝑦(𝑡 − 1)  1 −
𝛼

1 − 𝛼
 1 − 𝛼 𝑡−𝑎(

1 − (1 − 𝛼)𝑎−𝑡

−𝛼

1−𝛼

)  

= 𝑦(𝑡 − 1) 1 −  1 − 𝛼 𝑡−𝑎((1 − 𝛼)𝑎−𝑡 − 1)  
= 𝑦(𝑡 − 1) 1 − (1 −  1 − 𝛼 𝑡−𝑎)  
= 𝑦 𝑡 − 1  1 − 𝛼 𝑡−𝑎 ≥ 0,                                                                                                                (7) 

 

which completes the proof. 

Theorem 3.5. Let 𝑦 be a function defined on ℕ𝒂−𝟏 satisfy 𝑦 𝑎 ≥ 0 and be strictly increasing on ℕ𝒂. Then, for 

𝛼 ∈ (0,1) 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 > 0, 𝑡 ∈ ℕ𝒂−𝟏 

Proof.  Similar to the previous theorem, this one can be proven. 

3. 𝜶-Decrease    

Definition 4.1. [13] Let 𝑦 be a function defined on ℕ𝒂,so that satisfying 𝑦(𝑎) ≥ 0. Then 𝑦 is named an 𝛼-decreasing 

function on ℕ𝒂if 

𝑦 𝑡 + 1 ≤ 𝛼𝑦 𝑡    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝒂 

Theorem 4.2. Let 𝑦 be a function defined on ℕ𝒂−𝟏, 𝛼 ∈ (0,1), and 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 ≤ 0, 𝑡 ∈ ℕ𝒂−𝟏 

Then 𝑦(𝑡) is 𝛼-decreasing. 

Proof.   From (2.1) we have  

 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡   = 𝐵 𝛼  𝑦 𝑡 −

𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

  

But given that (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 ≤ 0 , so we have. 

𝐵 𝛼  𝑦 𝑡 −
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

 ≤ 0 

Since 𝐵(𝛼) ≥ 0 , we get. 

𝑦 𝑡 −
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

≤ 0 

It follows 

𝑦 𝑡 ≤
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

.                                                                                                    (8) 

Putting 𝑡 = 𝑎 for (8) we get 𝐵 𝑎 ≤ 0 , put 𝑡 = 𝑎 + 1 for into (8), we get 
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𝑦 𝑎 + 1 ≤
𝛼

1 − 𝛼
𝑦 𝑎  1 − 𝛼  

It follows 

𝑦 𝑎 + 1 ≤ 𝛼𝑦(𝑎) 

and hence 𝑦 𝑎 + 1 ≤ 𝛼𝑦 𝑎 ≤ 0,we will proceed by induction. We get 𝑦 𝑎 + 𝑘 ≤ 0, for all 𝑘 ∈ ℕ𝟎 which is the 

same with 𝑦 𝑡 ≤ 0 for all 𝑡 ∈ ℕ𝒂. 

Now replacing 𝑡 with 𝑡 + 1 in (8), we get 

𝑦 𝑡 + 1 ≤
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠+1

𝑡

𝑠=𝑎

 

Also, we have  

𝑦 𝑡 + 1 ≤ 𝛼𝑦 𝑡 +
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠+1

𝑡−1

𝑠=𝑎

 

And since 𝛼 ∈ (0,1) and 𝑦 𝑡 ≤ 0for all 𝑡 ∈ ℕ𝒂so we can write 

𝑦 𝑡 + 1 ≤ 𝛼𝑦 𝑡 +
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠+1

𝑡−1

𝑠=𝑎

≤ 𝛼𝑦 𝑡  

𝑦 𝑡 + 1 ≤ 𝛼𝑦 𝑡  

which completes the proof. 

Theorem 4.3. Let 𝑦 be a function defined on ℕ𝒂−𝟏 satisfy 𝑦 𝑎 ≥ 0 and be decreasing on ℕ𝒂. Then, for 𝛼 ∈ (0,1) 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 ≤ 0, 𝑡 ∈ ℕ𝒂−𝟏 

Proof.   From  4 , we have  

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 = 𝐵 𝛼 [𝑦 𝑡 −

𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

] 

and since 𝐵 𝛼 ≥ 0 so to show that (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦) 𝑡 ≤ 0  we need to prove that  𝑦 𝑡 −

𝛼

1−𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠𝑡−1

𝑠=𝑎 ≤ 0 , 

now from (6) we have 

𝑦 𝑡 −
𝛼

1 − 𝛼
 𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡−1

𝑠=𝑎

 

= 𝑦 𝑡 − 𝛼𝑦(𝑡 − 1) 

−
𝛼

1 − 𝛼
   𝑦 𝑠 − 𝑦 𝑡 − 1   1 − 𝛼 𝑡−𝑠

𝑡−2

𝑠=𝑎

+  𝑦 𝑡 − 1  1 − 𝛼 𝑡−𝑠

𝑡−2

𝑠=𝑎

 . 

Since 𝑦 is increasing, it indicates that    𝑦 𝑡 ≤ 𝑦 𝑡 − 1 ≤ 

 

𝑦 𝑡 − 2 ≤ ⋯ ≤ 𝑦(𝑎) ≤ 0, so we get  

From (7) we have 

𝑦 𝑡 − 𝛼𝑦 𝑡 − 1 −
𝛼

1 − 𝛼
 𝑦 𝑡 − 1  1 − 𝛼 𝑡−𝑠

𝑡−2

𝑠=𝑎

≤ 𝑦 𝑡 − 1  1 − 𝛼 𝑡−𝑎 ≤ 0 

which completes the proof. 

4. Application 

We know that (𝐶𝐹∇𝑎
−𝛼 𝐶𝐹𝑅∇𝑎

𝛼𝑦) 𝑡 = 𝑦(𝑡). Nevertheless, the following result, delivers an initial condition y(a), will 

be a instrument to prove our fractional difference mean value theorem. 

Theorem 5.1. For ∈ (0,1) , we have  

(𝐶𝐹∇𝑎
−𝛼 𝐶𝐹𝑅∇𝑎−1

𝛼 𝑦) 𝑡 = 𝑦 𝑡 − 𝛼𝑦 𝑎                                                                                        (9) 

 

Proof.  From definition, we have  

(𝐶𝐹∇𝑎
−𝛼 𝐶𝐹𝑅∇𝑎−1

𝛼 𝑦) 𝑡 = 𝐶𝐹∇𝑎
−𝛼  𝐵 𝛼 ∇𝑡  𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡

𝑠=𝑎

  

= 𝐵 𝛼 𝐶𝐹∇𝑎
−𝛼∇𝑡  𝑦 𝑎  1 − 𝛼 𝑡−𝑎 +  𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡

𝑠=𝑎+1
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=  𝐵 𝛼 𝐶𝐹∇𝑎
−𝛼∇𝑡𝑦 𝑎  1 − 𝛼 𝑡−𝑎 + 𝐶𝐹∇𝑎

−𝛼𝐵 𝛼 ∇𝑡  𝑦 𝑠  1 − 𝛼 𝑡−𝑠

𝑡

𝑠=𝑎+1

  

= 𝐵 𝛼 𝐶𝐹∇𝑎
−𝛼∇𝑡𝑦 𝑎  1 − 𝛼 𝑡−𝑎 + 𝐶𝐹∇𝑎

−𝛼 𝐶𝐹𝑅∇𝑎
𝛼𝑦) 𝑡  

= 𝐵 𝛼 𝑦 𝑎  1 − 𝛼 −𝑎𝐶𝐹
∇𝑎

−𝛼∇𝑡 1 − 𝛼 𝑡 + 𝑦 𝑡  
From part (iv)of lemma2.5 we have  

= −𝛼𝐵 𝛼 𝑦 𝑎  1 − 𝛼 −𝑎𝐶𝐹
∇𝑎

−𝛼 1 − 𝛼 𝑡−1 + 𝑦 𝑡  

and from part (i) of Lemma 2.5 also we get 

= −𝛼𝐵 𝛼 𝑦 𝑎  1 − 𝛼 −𝑎
 1 − 𝛼 𝑎

𝐵 𝛼 
+ 𝑦 𝑡 = 𝑦 𝑡 − 𝛼𝑦 𝑎  

 

The proof is complete. 

Theorem 5.2. Let 𝑓 and 𝑔 be functions defined on ℕ𝒂,𝒃 = {𝑎, 𝑎 + 1, … , 𝑏 − 1, 𝑏} where 𝑎 < 𝑏 with 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 1). 

Suppose that 𝑔 is strictly increasing and 𝛼 ∈ (0,1). Then, ∃ 𝑠1𝑠2 ∈ ℕ𝒂,𝒃 such that  

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑓) 𝑠1 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑔) 𝑠1 

≤
𝑓 𝑏 − 𝛼𝑓 𝑎 

𝑔 𝑏 − 𝛼𝑔 𝑎 
≤

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑓) 𝑠2 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑔) 𝑠2 

                                                             (10) 

Proof.   We employ contradiction, letting (10) be untrue either then. 

𝑓 𝑏 − 𝛼𝑓 𝑎 

𝑔 𝑏 − 𝛼𝑔 𝑎 
>

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑓) 𝑡 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑔) 𝑡 

 , 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ ℕ𝒂,𝒃                                                                 (11) 

Or 

𝑓 𝑏 − 𝛼𝑓 𝑎 

𝑔 𝑏 − 𝛼𝑔 𝑎 
<

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑓) 𝑡 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑔) 𝑡 

,𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ ℕ𝒂,𝒃      (12) 

Given that 𝑔 is strictly increasing, so by Theorem 3.5 we have (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑔) 𝑡 > 0, hence from (11) we get 

𝑓 𝑏 − 𝛼𝑓 𝑎 

𝑔 𝑏 − 𝛼𝑔 𝑎 
(𝐶𝐹𝑅∇𝑎−1

𝛼 𝑔) 𝑡 > (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑓) 𝑡 . 

Now take the fractional sum for both sides it becomes 
𝑓 𝑏 − 𝛼𝑓 𝑎 

𝑔 𝑏 − 𝛼𝑔 𝑎 
(𝐶𝐹∇𝑎

−𝛼 𝐶𝐹𝑅∇𝑎−1
𝛼 𝑔) 𝑡 > (𝐶𝐹∇𝑎

−𝛼 𝐶𝐹𝑅∇𝑎−1
𝛼 𝑓) 𝑡 . 

And from  9 , we have 

 
𝑓 𝑏 − 𝛼𝑓 𝑎 

𝑔 𝑏 − 𝛼𝑔 𝑎 
𝑔 𝑡 − 𝛼𝑔 𝑎 > 𝑓 𝑡 − 𝛼𝑓 𝑎  

By set t=b, we obtain  

 

𝑓 𝑏 − 𝛼𝑓 𝑎 > 𝑓 𝑏 − 𝛼𝑓 𝑎  

which is a contradiction, and we can show that (2.9) can also result by contradiction. The proof is complete. 

5. Conclusion 

This paper presents some new alpha-monotonicity analysis results for discrete Caputo-Fabrizio fractional differences in 

the sense of Riemann-Liouville and Caputo operators. The monotonicity of the function (increasing or decreasing) has 

been obtained from the positivity or negativity of the discrete Caputo-Fabrizio fractional operator. As a result, we 

provide the connection between the Riemann-Liouville and Caputo senses of the operators so that we may get the 

relevant conclusions using Caputo operators. In addition, a discrete mean value theorem is given to show the 

established results. 
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