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Abstract  

This study  

 

 

 

1. Introduction and Preliminaries 

1.1. Introduction 
Numerous scholars from various disciplines, including mathematics, biology, physics, chemistry, engineering, even 

economics and social sciences, have been concentrating on the discrete fractional calculus field in recent years [1], [2], 

[3], [4]. A crucial effort has been made, particularly in the field of viscoelasticity, to use fractional mathematical 

models to accurately describe the behavior of materials. 

In mathematics, the idea of monotonicity is crucial. Unfortunately, there are no monotonicity findings for fractional 

operators in the theory or applications of fractional calculus. The discrete fractional operators underwent a 

monotonicity study that was started by Dahal and Goodrich in [5] and Goodrich in [6]. For fractional orders between 0 

and 1, however, monotonicity concerns are not taken into consideration. Since non-integer orders are the main focus of 

the first section of this paper, we are able to announce new definitions of monotonicity perceptions. Indicators of the 

mechanical properties of biomaterials are frequently linear differential equations created from physical spring and 

dashpot models. However, it has been shown that biological tissues exhibit more complicated performance, such as 

hysteresis, fatigue, and memory, which cannot be explained by combining perfect spring and dashpot combinations [2]. 

Since the tissues in the human body are naturally viscoelastic, it is important to incorporate correct viscoelastic when 

studying the mechanics of deformation [7]. The mechanical properties of living soft tissues create a unique 

combination of testing and modeling problems. To construct stress-strain correlations for viscoelastic materials, 

fractional calculus is employed. 

It is acknowledged that the description of the characteristics of viscoelastic materials has long relied heavily on 
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rheological constitutive equations with fractional derivatives [4]. First-order derivatives in the rheological constitutive 

equations must be replaced by fractional order derivatives. They are ideal for describing things with memory, such 

polymers or tissues, as the fractional derivative of a function depends on its whole history rather than on its 

instantaneous behavior [8]. We created discrete fractional rheological models for the reasons listed above. A material is 

described by a finite number of springs and dashpots in discrete models. 

Although, there are now many different approaches to show a fractional sum and difference, they all have the 

important trait of being non-local. For instance, Riemann-Liouville definition, one of the most prominent fractional 

differences, states that the following approach is presented in the case of a backward or nabla difference: 

 

 𝛻𝑎
𝑣𝑓  𝑡 =  𝐻−𝑣−1

𝑡

𝑠=𝑎+1

 𝑡, 𝜌 𝑠  𝑓 𝑠  1.1  

 

for each 𝑡 ∈ 𝑁𝑎+𝑁 ,where 

 

𝐻𝜇  𝑡, 𝑎 =
𝛤 𝑡 − 𝑎 + 𝜇 

𝛤 𝑡 − 𝑎 𝛤 𝜇 + 1 
∧ 𝜌 𝑠 = 𝑠 − 1. 

 

The properties that we consider in this paper are given in two cases. Non-sequential which is single fractional 

difference operation for instance: 

 

 𝛻𝑎
𝑣𝑓  𝑡 ≥ 0. 

 

Sequentially, that is a composition of fractional difference operators such as: 

 

 𝛻𝑎+1
𝑣 𝛻𝑎

𝜇
𝑓  𝑡 . 

 

This paper has been broadening this research to discrete fractional operators with exponential kernels. We do not need 

to impose these kinds of limitations on the parameters' locations based on the findings of this paper. Our qualitative 

findings, in particular, do not significantly differ from one regime to the next. Instead, they are valid over the complete 

range of allowed (μ,ν) parameters. This shows that, somewhat surprisingly, the results we may get for a discrete 

fractional operator with an exponential kernel are different from those for a discrete fractional operator with a 

Riemann-Liouville kernel. 

We discuss the general structure of the remaining theses before we finish. First, we quickly go through the 

prerequisites for the remaining theses. The link between the sign of a suitable Caputo-Fabrizio fractional difference in 

the Caputo sense and, respectively, the positivity, monotonicity, and convexity of the function on which the difference 

works, is then discussed. 

 

1.2. Preliminaries  
It will be most important to our conclusions in the next sections to start by recalling a few basic results from the 

difference calculus. It is noted that in every part of this paper standard convention is followed for instance that 

 𝑎𝑘
𝑛
𝑘=𝑚 = 0  whenever 𝑛 < 𝑚 [9]. Moreover, we denote 𝑁𝑎 =  𝑎, 𝑎 + 1, 𝑎 + 2,…   for each ∈ 𝑅. The readers 

are advised to consult the sources [9],[10] for further details on both the discrete fractional calculus and the nabla 

difference calculus. 

 

1.2.1. Backward Difference 
Let 𝑢:𝑁𝑎 → 𝑅 be the first order backward (nabla) difference of u is defined as follows [9]: 

 

 𝛻𝑢  𝑡 = 𝑢 𝑡 − 𝑢 𝑡 − 1 , 𝑡 ∈ 𝑁𝑎+1 , 
 

and by using the following notation, we defined the 𝑁𝑡ℎ -order nabla difference of u: 

 

 𝛻𝑁𝑦  𝑡 =  𝛻 𝛻𝑁−1𝑢   𝑡 , 𝑡 ∈ 𝑁𝑎+𝑁 , 
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where 𝑁 ∈ 𝑁1 . 

 

1.2.1.1. Caputo Fractional Difference 
For the function 𝑢 define on  𝑁𝑎  and 𝛼 be between 0 and 1, the 𝛼𝑡ℎ -order Caputo-Fabrizio in the Caputo sensenabla 

difference of u is introduced by [11]:  

 

 𝐶𝐹𝐶𝛻𝑎
𝛼𝑢  𝑡 = 𝐵 𝛼   𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠

𝑡

𝑠=𝑎+1

, 𝑡 ∈ 𝑁𝑎+1 , 

 

and the function 𝛼 → 𝐵 𝛼  is a normalization constant with  𝐵 0 = 𝐵 1 = 1 and 𝐵 𝛼 > 0. 

 

1.2.1.2. Higher Order Fractional Difference 

Let  𝑛 ≤ 𝛼 ≤ 𝑛 + 1 and 𝑢 define on  𝑁𝑎−𝑛  . The 𝛼-order Caputo-Fabrizio in the Caputo sense of 𝑢 is given by [12]: 

 

 𝐶𝐹𝐶𝛻𝑎
𝛼𝑢  𝑡 =  𝐶𝐹𝐶𝛻𝑎

𝛼−𝑛𝛻𝑛𝑢  𝑡 , 𝑡 ∈ 𝑁𝑎+1 . 

 

2. Monotonicity and Convexity  

2.1. 𝜶-Monotonicity 
 

In this section several results have been proved, which establish a linking between the sign of suitable Caputo-Fabrizio 

operator in the Caputo sense fractional nabla difference and the function's positivity on which it performs. Moreover, 

there are also deduced some results regarding what it is termed, a perception which is given in an article that Goodrich 

and Lizama recently published [13]. It starts out by defining  𝛼-monotone increasing concept. 

 

2.1.1. 𝜶-Monotone Increasing 
 

Let 𝛼 be between 0 and 1. Then, the function 𝑢 defined on  𝑁𝑎  is called 𝛼-monotone increasing if 

 

𝑢 𝑡 ≥ 𝛼𝑢 𝑡 − 1 , 𝑡 ∈ 𝑁𝑎+1 . 
 

Note that in the above definition if 𝛼 = 1, then it is obtained  𝑢 𝑡 ≥ 𝑢 𝑡 − 1  for 𝑡 ∈ 𝑁𝑎+1, which is 1-monotone 

increasing and represents monotonicity in the usual sense. And if 𝛼 = 0, then it is acquired 𝑢 𝑡 ≥ 0, for 𝑡 ∈ 𝑁𝑎+1. 

So, it shows that 0-monotone increasing merely indicate that 𝑢 is non-negative on 𝑁𝑎 . 

 

Lemma 2.1. Let the function 𝑢 be defined on  𝑁𝑎  and 𝛼 ∈  0,1 . If 

 

 𝐶𝐹𝐶𝛻𝑎
𝛼𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1 , 

and 𝑢 𝑎 ≥ 0, then 𝑢 is positive and 𝛼-monotone increasing on 𝑁𝑎 . 
 

Proof. 

 

 𝐶𝐹𝐶𝛻𝑎
𝛼𝑢  𝑡  
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𝐵 𝛼   𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠
𝑡

𝑠=𝑎+1

 

𝐵 𝛼    𝑢 𝑠 − 𝑢 𝑠 − 1   1 − 𝛼 𝑡−𝑠
𝑡

𝑠=𝑎+1

  

𝐵 𝛼   𝑢 𝑠  1 − 𝛼 𝑡−𝑠 −  𝑢 𝑠 − 1  1 − 𝛼 𝑡−𝑠
𝑡

𝑠=𝑎+1

𝑡

𝑠=𝑎+1

  

𝐵 𝛼   𝑢 𝑠  1 − 𝛼 𝑡−𝑠 − 𝑢 𝑠  1 − 𝛼 𝑡−𝑠−1
𝑡−1

𝑠=𝑎

𝑡

𝑠=𝑎+1

  

𝐵 𝛼   𝑢 𝑠  1 − 𝛼 𝑡−𝑠 + 𝑢 𝑡  1 − 𝛼 𝑡−𝑡 −  𝑢 𝑠  1 − 𝛼 𝑡−𝑠−1
𝑡−1

𝑠=𝑎+1

− 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−1
𝑡−1

𝑠=𝑎+1

  

𝐵 𝛼   𝑢 𝑠  1 − 𝛼 𝑡−𝑠 + 𝑢 𝑡  1 − 𝛼 0 −  𝑢 𝑠  1 − 𝛼 𝑡−𝑠−1
𝑡−1

𝑠=𝑎+1

− 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−1
𝑡−1

𝑠=𝑎+1

  

𝐵 𝛼  𝑢 𝑡 − 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−1 +  𝑢 𝑠  1 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+1

−  
𝑢 𝑠  1 − 𝛼 𝑡−𝑠

 1 − 𝛼 

𝑡−1

𝑠=𝑎+1

  

𝐵 𝛼  𝑢 𝑡 − 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−1 +  𝑢 𝑠  1 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+1

 1 −
1

1 − 𝛼
   

𝐵 𝛼  𝑢 𝑡 − 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−1 −
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+1

  2.1  

 

But 𝐶𝐹𝐶𝛻𝑎
𝛼𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1, so we can write: 

 

𝐵 𝛼  𝑢 𝑡 − 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−1 −
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+1

 ≥ 0, 

 

𝑡 ∈ 𝑁𝑎+1 

 

It is shown that: 

 

𝑢 𝑡 ≥ 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−1 +
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠 ,

𝑡−1

𝑠=𝑎+1

 

 

𝑡 ∈ 𝑁𝑎+1.                                                                                        2.2  
 

Now, to show that 𝑢 is positive, it is enough to show that 𝑢 𝑎 + 𝑘 ≥ 0𝑓𝑜𝑟𝑎𝑛𝑦𝑘 ∈ 𝑁0 , so we can use induction on 

k. 

 

Taking 𝑘 = 1,  which is 𝑡 = 𝑎 + 1  in   2.2 , and by setting 𝑢 𝑎 ≥ 0,  we get: 

 

𝑢 𝑎 + 1 ≥ 𝑢 𝑎 ≥ 0. 
 

Taking𝑘 = 2,which is𝑡 = 𝑎 + 2 in (3.2) ,we have: 
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𝑢 𝑎 + 2 ≥ 𝑢 𝑎  1 − 𝛼 𝑎+2−𝑎−1 +
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑎+2−𝑠 .

𝑎+2−1

𝑠=𝑎+1

 

 

If we make it simpler: 

𝑢 𝑎 + 2 ≥ 𝑢 𝑎  1 − 𝛼 +
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑎+2−𝑠 ,

𝑎+1

𝑠=𝑎+1

 

 

and by setting𝑢 𝑎 ≥ 0, 𝑢 𝑎 + 1 ≥ 0and0 < 𝛼 < 1,we get 

 

𝑢 𝑎 + 2 ≥ 𝑢 𝑎  1 − 𝛼 + 𝛼𝑢 𝑎 + 1 ≥ 0. 
 

From induction it is acquired 𝑢 𝑡 ≥ 0,  ∀𝑡 ∈ 𝑁𝑎 . 

Now, to demonstrate 𝑢 is 𝛼-monotone increasing on 𝑁𝑎 .  Arranging differently the terms in (2.2), we get 

 

𝑢 𝑡 ≥ 𝛼𝑢 𝑡 − 1 + 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−1 +
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠 ,

𝑡−2

𝑠=𝑎+1

 

 

𝑡 ∈ 𝑁𝑎+1 .  2.3  

 

since 𝑢 𝑡 ≥ 0, for all 𝑡 ∈ 𝑁𝑎+1, from  2.3  we get 

 

𝑢 𝑡 ≥ 𝛼𝑢 𝑡 − 1 , 𝑡 ∈ 𝑁𝑎+1 . 
 

By getting that 𝑢 is 𝛼 -monotone increasing on 𝑁𝑎 . The proof is complete. 

 

Theorem 2.1. Let the function 𝒖 be defined on𝑵𝒂and𝜶,𝜷 ∈  𝟎, 𝟏 ,such that𝟎 < 𝜶 + 𝜷 ≤ 𝟏.If 
 

 𝐶𝐹𝐶𝛻𝑎+1
𝛽 𝐶𝐹𝐶𝛻𝑎

𝛼𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2, 

 

and 𝑢 𝑎 + 1 ≥ 𝑢 𝑎 ≥ 0, then u is positive and 𝛼 + 𝛽-monotone increasing on 𝑁𝑎 . 
 

Proof.      Let  

 𝐶𝐹𝐶𝛻𝑎
𝛼𝑢  𝑡 = 𝑓 𝑡 , 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1 . 

 

 

So we can write  

 

 𝐶𝐹𝐶𝛻𝑎+1
𝛽 𝐶𝐹𝐶𝛻𝑎

𝛼𝑢  𝑡 =  𝐶𝐹𝐶𝛻𝑎+1
𝛽

𝑓  𝑡 . 

 

Distinctly, by assumption,  𝐶𝐹𝐶𝛻𝑎+1
𝛽

𝑓  𝑡 , 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2 .  By definition of Caputo fractional difference we 

possess: 

 

𝑓 𝑎 + 1 =  𝐶𝐹𝐶𝛻𝑎
𝛼𝑢  𝑎 + 1 = 𝐵 𝛼   𝛻𝑢  𝑠  1 − 𝛼 𝑎+1−𝑠

𝑎+1

𝑠=𝑎+1

= 𝐵 𝛼  𝛻𝑢  𝑎 + 1  1 − 𝛼 𝑎+1− 𝑎+1 = 𝐵 𝛼  𝛻𝑢  𝑎 + 1 ≥ 0. 
 

According to Lemma 2.1, 𝑓 is positive and 𝛽-monotone increasing on 𝑁𝑎+1 . 
So 
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𝑓 𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1, 
 

𝑓 𝑡 ≥ 𝛽𝑓 𝑡 − 1 , 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2 ,  2.4  

 

since  

 

𝑓 𝑡 =  𝐶𝐹𝐶𝛻𝑎
𝛼𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1 , 

 

and 𝑢 𝑎 ≥ 0, again from Lemma 2.1, 𝑢 is positive and 𝛼-monotone increasing on 𝑁𝑎 . That is, 

 

𝑢 𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎  

 

and  

 

𝑢 𝑡 ≥ 𝛼𝑢 𝑡 − 1 , 𝑡 ∈ 𝑁𝑎+1.  2.5  
 

Now, from  2.4  it holds 

 

𝑓 𝑡 ≥ 𝛽𝑓 𝑡 − 1 , 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2 . 
 

It is shown that 

 

0 ≤ 𝑓 𝑡 − 𝛽𝑓 𝑡 − 1 =  𝐶𝐹𝐶𝛻𝑎
𝛼𝑢  𝑡 − 𝛽 𝐶𝐹𝐶𝛻𝑎

𝛼𝑢  𝑡 − 1  
 

and by applying  2.1  we get: 

 

𝐵 𝛼  𝑢 𝑡 − 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−1 −
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+1

 

− 𝐵 𝛼 𝛽  𝑢 𝑡 − 1 − 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−2 −
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠−1
𝑡−2

𝑠=𝑎+1

  

𝐵 𝛼  𝑢 𝑡 − 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−1 −
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠
𝑡−2

𝑠=𝑎+1

− 𝛼𝑢 𝑡 − 1 − 𝛽𝑢 𝑡 − 1 

+ 𝛽𝑢 𝑎  1 − 𝛼 𝑡−𝑎−2 + 𝛽
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠−1
𝑡−2

𝑠=𝑎+1

  

𝐵 𝛼  𝑢 𝑡 − 𝛽𝑢 𝑡 − 1 − 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−1 + 𝛽𝑢 𝑎  1 − 𝛼 𝑡−𝑎−2 −
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠
𝑡−2

𝑠=𝑎+1

− 𝛼𝑢 𝑡 − 1 + 𝛽
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠−1
𝑡−2

𝑠=𝑎+1

  

𝐵 𝛼  𝑢 𝑡 − 𝛽𝑢 𝑡 − 1 − 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−2 1 − 𝛼 − 𝛽 

−
𝛼

1 − 𝛼
 𝑢 𝑠   1 − 𝛼 𝑡−𝑠 − 𝛽 1 − 𝛼 𝑡−𝑠−1 

𝑡−2

𝑠=𝑎+1

− 𝛼𝑢 𝑡 − 1   
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𝐵 𝛼  𝑢 𝑡 − 𝛽𝑢 𝑡 − 1 − 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−2 1 − 𝛼 − 𝛽 −
𝛼

1 − 𝛼
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠−1 1 − 𝛼 − 𝛽 

𝑡−2

𝑠=𝑎+1

− 𝛼𝑢 𝑡 − 1   

𝐵 𝛼  𝑢 𝑡 − 𝛽𝑢 𝑡 − 1 − 𝛼𝑢 𝑡 − 1 − 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−2 1 − 𝛼 − 𝛽 

−
𝛼 1 − 𝛼 − 𝛽 

 1 − 𝛼 2
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠
𝑡−2

𝑠=𝑎+1

 ,  2.6  

 

Since 𝐵 𝛼 > 0, from  2.6  it is gained: 

 

𝑢 𝑡 − 𝛽𝑢 𝑡 − 1 − 𝛼𝑢 𝑡 − 1 − 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−2 1 − 𝛼 − 𝛽 −
𝛼 1 − 𝛼 − 𝛽 

 1 − 𝛼 2
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠
𝑡−2

𝑠=𝑎+1

≥ 0, 𝑡 ∈ 𝑁𝑎+2 . 
 

The following is also considered 

 

𝑢 𝑡 − 𝛽𝑢 𝑡 − 1 − 𝛼𝑢 𝑡 − 1 ≥ 𝑢 𝑎  1 − 𝛼 𝑡−𝑎−2 1 − 𝛼 − 𝛽 +
𝛼 1 − 𝛼 − 𝛽 

 1 − 𝛼 2
 𝑢 𝑠  1 − 𝛼 𝑡−𝑠
𝑡−2

𝑠=𝑎+1

, 𝑡

∈ 𝑁𝑎+2.  2.7  

 

Since 0 < 𝛼 ≤ 1,0 < 𝛼 + 𝛽 ≤ 1, and  𝑡 ≥ 0 , from  2.7  we can write: 

𝑢 𝑡 − 𝛽𝑢 𝑡 − 1 − 𝛼𝑢 𝑡 − 1 ≥ 0, 𝑡 ∈ 𝑁𝑎+2 . 
 

Also we get: 

𝑢 𝑡 ≥  𝛽 + 𝛼 𝑢 𝑡 − 1 , 𝑡 ∈ 𝑁𝑎+2. 
 

Hence the proof is completed. 

 

Theorem 2.2.  Let the function 𝒖 is defined on  𝑵𝒂 and 𝜶,𝜷 ∈  𝟎, 𝟏 , such that  𝟎 < 𝜶 + 𝜷 ≤ 𝟏.  If 
 

 𝐶𝐹𝐶𝛻𝑎+1
𝛽 𝐶𝐹𝐶𝛻𝑎

𝛼𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2. 

 

and 𝑢 𝑎 + 1 ≥ 𝑢 𝑎 ≥ 0, then u is positive and 𝛼-monotone increasing on 𝑁𝑎 . 
 

Proof. It is demonstrated by the theorem mentioned above. 

 

2.2. Monotonicity and 𝜶-Convexity 

Once more, it was during a conference of monotonicity-type results. For both non-sequential and sequential Caputo-

Fabrizio, fractional differences are found in the Caputo sense. It begins with two fundamental lemmas. 

 

Lemma  2.2.Let the function 𝑢 be defined on  𝑁𝑎  and 𝛼 ∈  0,1 . If 
 

𝛻 𝐶𝐹𝐶𝛻𝑎
𝛼𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2 , 

 

and  𝛻𝑢  𝑎 + 1 ≥ 0, then  

 

 𝛻𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1 . 
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Proof.First, by definition ofCaputo fractional difference, for all𝑡 ∈ 𝑁𝑎+2 we have 

 

𝛻 𝐶𝐹𝐶𝛻𝑎
𝛼𝑢  𝑡 = 𝛻  𝐵 𝛼   𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠

𝑡

𝑠=𝑎+1

  

𝐵 𝛼    𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠
𝑡

𝑠=𝑎+1

−   𝛻𝑢  𝑠  1 − 𝛼 𝑡−1−𝑠
𝑡−1

𝑠=𝑎+1

  

𝐵 𝛼    𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠 +  𝛻𝑢  𝑡 

𝑡−1

𝑠=𝑎+1

−   𝛻𝑢  𝑠  1 − 𝛼 𝑡−1−𝑠
𝑡−1

𝑠=𝑎+1

  

𝐵 𝛼   𝛻𝑢  𝑡 +   𝛻𝑢  𝑠   1 − 𝛼 𝑡−𝑠 −  1 − 𝛼 𝑡−1−𝑠 

𝑡−1

𝑠=𝑎+1

  

𝐵 𝛼   𝛻𝑢  𝑡 −
𝛼

𝛼 − 1
  𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+1

 ,  2.8  

 

Since 𝛻 𝐶𝐹𝐶𝛻𝑎
𝛼𝑢  𝑡 ≥ 0, we have 

 

𝐵 𝛼   𝛻𝑢  𝑡 −
𝛼

𝛼 − 1
  𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+1

 ≥ 0 

 

and since 𝐵 𝛼 ≥ 0, it is written: 

 

 𝛻𝑢  𝑡 −
𝛼

𝛼 − 1
  𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+1

≥ 0. 

 

Also it has the  same meaning with this: 

 

 𝛻𝑢  𝑡 ≥
𝛼

𝛼 − 1
  𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+1

.  2.9  

 

Now, to show that  𝛻𝑢  𝑡 ≥ 0 for all 𝑡 ∈ 𝑁𝑎+1, it is enough to show that  𝛻𝑢  𝑎 + 𝑘 ≥ 0, ∀𝑘 ∈ 𝑁1. We use  

induction on 𝑘.  𝛻𝑢  𝑎 + 1 ≥ 0 is given. Taking  𝑡 = 𝑎 + 2 in  2.9  , we have: 

 𝛻𝑢  𝑎 + 2 ≥
𝛼

𝛼 − 1
  𝛻𝑢  𝑠  1 − 𝛼 𝑎+2−𝑠
𝑎+1

𝑠=𝑎+1

 

 

By simplifying it, we get: 

 

 𝛻𝑢  𝑎 + 2 ≥ 𝛼 𝛻𝑢  𝑎 + 1 ≥ 0. 
 

Taking  𝑡 = 𝑎 + 3 in  2.9 , it becomes  

 

 𝛻𝑢  𝑎 + 3 ≥ 𝛼 𝛻𝑢  𝑎 + 2 +  𝛻𝑢  𝑎 + 1  1 − 𝛼 ≥ 0. 

 

Following the same procedure, it is obtained   𝛻𝑢  𝑡 ≥ 0, for all 𝑡 ∈ 𝑁𝑎+1. Hence the proof has been established. 

 

Lemma 2.3. Let the function 𝑢 be defined on  𝑁𝑎  and 𝛼 ∈  0,1 . If 
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 𝐶𝐹𝐶𝛻𝑎+1
𝛼 𝛻𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2 , 

 

and  𝛻𝑢  𝑎 + 1 ≥ 0, then  

 

 𝛻𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1 . 
 

Proof.By definition ofCaputo fractional difference, for all𝑡 ∈ 𝑁𝑎+2 , we have 

 

 𝐶𝐹𝐶𝛻𝑎+1
𝛼 𝛻𝑢  𝑡 = 𝐵 𝛼   𝛻2𝑢  𝑠  1 − 𝛼 𝑡−𝑠

𝑡

𝑠=𝑎+2

 

𝐵 𝛼    𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠
𝑡

𝑠=𝑎+2

−   𝛻𝑢  𝑠 − 1  1 − 𝛼 𝑡−𝑠
𝑡

𝑠=𝑎+2

  

𝐵 𝛼    𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠
𝑡

𝑠=𝑎+2

−   𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠−1
𝑡−1

𝑠=𝑎+1

  

𝐵 𝛼    𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+2

+  𝛻𝑢  𝑡 −   𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠−1
𝑡−1

𝑠=𝑎+2

−  𝛻𝑢  𝑎 + 1  1 − 𝛼 𝑡−𝑎−2  

𝐵 𝛼   𝛻𝑢  𝑡 +   𝛻𝑢  𝑠   1 − 𝛼 𝑡−𝑠 −  1 − 𝛼 𝑡−𝑠−1 

𝑡−1

𝑠=𝑎+2

−  𝛻𝑢  𝑎 + 1  1 − 𝛼 𝑡−𝑎−2  

𝐵 𝛼   𝛻𝑢  𝑡 −
𝛼

1 − 𝛼
  𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+2

−  𝛻𝑢  𝑎 + 1  1 − 𝛼 𝑡−𝑎−2 ,  2.10  

 

nevertheless, because 𝐵 𝛼 ≥ 0, and  𝐶𝐹𝐶𝛻𝑎+1
𝛼 𝛻𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2 , so from (2.10), we get 

 

 𝛻𝑢  𝑡 ≥
𝛼

1 − 𝛼
  𝛻𝑢  𝑠  1 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+2

+  𝛻𝑢  𝑎 + 1  1 − 𝛼 𝑡−𝑎−2 .  2.11  

 

Now, to show that  𝛻𝑢  𝑡 ≥ 0 for all 𝑡 ∈ 𝑁𝑎+1, it is enough to show that  𝛻𝑢  𝑎 + 𝑘 ≥ 0, for each 𝑘 ∈ 𝑁1. We 

apply induction on 𝑘. Given that  𝛻𝑢  𝑎 + 1 ≥ 0 . Using 𝑡 = 𝑎 + 2 in  2.11  , it has got: 

 

 𝛻𝑢  𝑎 + 2 ≥  𝛻𝑢  𝑎 + 1 ≥ 0 

 

Taking  𝑡 = 𝑎 + 3 in  2.9 , there we get 

 

 𝛻𝑢  𝑎 + 3 ≥ 𝛼 𝛻𝑢  𝑎 + 2 +  𝛻𝑢  𝑎 + 1  1 − 𝛼 ≥ 0. 

 

Continuing in this way, we arrive at  𝛻𝑢  𝑡 ≥ 0, for all 𝑡 ∈ 𝑁𝑎+1. The proof is completed.  

 

Lemma 2.4.Let the function 𝑢 be defined on  𝑁𝑎  , 𝜇 ∈  0,1  and 𝜈𝜖 1,2 . If 

 

 𝐶𝐹𝐶𝛻𝑎+2
𝜈 𝐶𝐹𝐶𝛻𝑎

𝜇
𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+3 , 

 

and  𝛻𝑢  𝑎 + 2 ≥  𝛻𝑢  𝑎 + 1 ≥ 0, then  

 

 𝛻𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1 . 
 

Proof. Let 
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 𝐶𝐹𝐶𝛻𝑎
𝜇
𝑢  𝑡 = 𝑣 𝑡 , 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1 . 

 

Consider 

 

 𝐶𝐹𝐶𝛻𝑎+2
𝜈 𝑣  𝑡 =  𝐶𝐹𝐶𝛻𝑎+2

𝜈−1𝛻𝑣  𝑡  

 

and given that 𝐶𝐹𝐶𝛻𝑎+2
𝜈−1𝛻𝑣  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+3 , from  2.8  we have: 

 

𝛻𝑣 𝑎 + 2 =  𝛻  𝐶𝐹𝐶𝛻𝑎
𝜇
𝑢  𝑎 + 2 = 𝐵 𝜇   𝛻𝑢  𝑎 + 2   

 −𝜇

1 − 𝜇
  𝛻𝑢  𝑠  1 − 𝜇 𝑎+2−𝑠
𝑎+1

𝑠=𝑎+1

  

𝐵 𝜇   𝛻𝑢  𝑎 + 2 − 𝜇 𝛻𝑢  𝑎 + 1   
𝐵 𝜇   𝛻𝑢  𝑎 + 2 −  𝛻𝑢  𝑎 + 1  ≥ 0 

 

Then, from Lemma 2.3, we have: 

 

𝛻 𝑣  𝑡 =  𝛻  𝐶𝐹𝐶𝛻𝑎+1
𝜇

𝑢  𝑡 ≥ 0,  2.12  
 

and since  𝛻𝑢  𝑎 + 1 ≥ 0, from Lemma 2.2, we get 

 

𝛻 𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1 . 
So the proof is finished. 

 

Lemma 2.5.Let the function 𝑢 be defined on  𝑁𝑎  , 𝜇 ∈  1,2  and 𝜈𝜖 0,1 . If 

 

 𝐶𝐹𝐶𝛻𝑎+2
𝜈 𝐶𝐹𝐶𝛻𝑎+1

𝜇
𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+3 , 

 

and  𝛻𝑢  𝑎 + 2 ≥  𝛻𝑢  𝑎 + 1 ≥ 0, then  

 

 𝛻𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1 . 
 

Proof. Let 

 

 𝐶𝐹𝐶𝛻𝑎+1
𝜇

𝑢  𝑡 = 𝑣 𝑡 , 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1 . 
 

Consider 

 

 𝐶𝐹𝐶𝛻𝑎+2
𝜈 𝑣  𝑡 =  𝐶𝐹𝐶𝛻𝑎+2

𝜈−1𝑣  𝑡  

 

and given that 𝐶𝐹𝐶𝛻𝑎+2
𝜈 𝑣  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+3 , from  2.10  we have: 

 

𝑣 𝑎 + 2 =  𝐶𝐹𝐶𝛻𝑎+1
𝜇

𝑢  𝑎 + 2 =  𝐶𝐹𝐶𝛻𝑎+1
𝜇−1

𝛻𝑢  𝑎 + 2 = 𝐵 𝜇 − 1   𝛻𝑢  𝑎 + 2   

 −𝜇 − 1

2 − 𝜇
  𝛻𝑢  𝑠  2 − 𝜇 𝑎+2−𝑠
𝑎+1

𝑠=𝑎+1

−  𝛻𝑢  𝑎 + 1  2 − 𝜇 𝑎+2−𝑎−2  

𝐵 𝜇 − 1   𝛻𝑢  𝑎 + 2 − 𝜇 𝛻𝑢  𝑎 + 1   
𝐵 𝜇 − 1   𝛻𝑢  𝑎 + 2 −  𝛻𝑢  𝑎 + 1  ≥ 0. 

 

Then, from Lemma 2.2 we have  

 

𝑣 𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2 , 
 

which is the same with 
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 𝐶𝐹𝐶𝛻𝑎+1
𝜇

𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2 ,  2.13  
 

Thus, we obtain 

 

0 ≤  𝐶𝐹𝐶𝛻𝑎+1
𝜇

𝑢  𝑡 =  𝐶𝐹𝐶𝛻𝑎+1
𝜇−1

𝛻𝑢  𝑡 , 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2, 
 

and since  𝛻𝑢  𝑎 + 1 ≥ 0 , from Lemma 2.3, we get 

 

𝛻 𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1 . 
So the proof is completed. 

 

2.2.1. 𝜶- Convex 
Let𝛼 ∈  1,2 .It is mentioned that a function 𝑢 is defineed on𝑁𝑎 is called 𝛼-convex if 

 

𝑢 𝑡 − 𝛼𝑢 𝑡 − 1 +  𝛼 − 1 𝑢 𝑡 − 2 ≥ 0, 𝑡 ∈ 𝑁𝑎+2 

 

 

 Lemma 2.6.Let the function 𝑢 is defined on  𝑁𝑎  and 𝛼 ∈  1,2 . If 

 

 𝐶𝐹𝐶𝛻𝑎+1
𝛼 𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2 , 

 

and  

 

𝑢 𝑎 + 1 ≥ 𝑢 𝑎 ≥ 0. 
 

Then  𝑢  is monotone increasing and positive on  𝑁𝑎 . Furthermore, u  is𝛼-convex on  𝑁𝑎 . 

 

Proof.  From the properties we can say  

 

0 ≤  𝐶𝐹𝐶𝛻𝑎+1
𝛼 𝑢  𝑡 =  𝐶𝐹𝐶𝛻𝑎+1

𝛼−1𝛻𝑢  𝑡 , 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2 . 
and since 𝛻𝑢 𝑎 + 1 = 𝑢 𝑎 + 1 − 𝑢 𝑎 ≥ 0 , from Lemma 2.3  it follows that  

 𝛻𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1, 
 

which means that u is monotone increasing and positive on 𝑁𝑎 . 

 

The next demonstration is that u is 𝛼-convex. From   2.11  
 

 𝛻𝑢  𝑡 ≥
𝛼 − 1

2 − 𝛼
  𝛻𝑢  𝑠  2 − 𝛼 𝑡−𝑠
𝑡−1

𝑠=𝑎+2

+  𝛻𝑢  𝑎 + 1  2 − 𝛼 𝑡−𝑎−2 

 𝛼 − 1  𝛻𝑢  𝑡 − 1 +
𝛼 − 1

2 − 𝛼
  𝛻𝑢  𝑠  2 − 𝛼 𝑡−𝑠
𝑡−2

𝑠=𝑎+2

+  𝛻𝑢  𝑎 + 1  2 − 𝛼 𝑡−𝑎−2 ,  2.14  

 

Since 𝛼 ∈  1,2  and  𝛻𝑢  𝑡 ≥ 0,for all𝑡 ∈ 𝑁𝑎+1, from  2.14  it is written 

 

 𝛻𝑢  𝑡 ≥  𝛼 − 1  𝛻𝑢  𝑡 − 1 . 
If it is simplified, it will result the following : 

 

𝑢 𝑡 − 𝑢 𝑡 − 1 ≥  𝛼 − 1  𝑢 𝑡 − 1 − 𝑢 𝑡 − 2  . 
 

Alsoit results in: 
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𝑢 𝑡 − 𝛼𝑢 𝑡 − 1 +  𝛼 − 1 𝑢 𝑡 − 2 ≥ 0. 
 

It is indicated that 𝑢 is 𝛼-convex, hence the proof is completed.  

 

2.3. Convexity 
Some convexity-type results are reported in this section. The conclusion is that there is a link between the sign of the 

non-sequential difference  𝐶𝐹𝐶𝛻𝑎+2
𝛼 𝑢  𝑡 ≥ 0, and the following lemma, and the convexity of 𝑢. This is basically 

the type of result assumed in Goodrich [6] as well as Jia, Erbe, and Peterson [14]. 

 

Lemma 2.7. Let 𝛼 ∈  2,3  and the function 𝑢 be defined on  𝑁𝑎 . If 

 

 𝐶𝐹𝐶𝛻𝑎+2
𝛼 𝑢  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+3 

 

and  

 

 𝛻2𝑢  𝑎 + 2 ≥ 0 

 

Then, 𝑢 is convex on  𝑁𝑎+2.  

 

Proof.  We start with the following substitution 

 

 𝛻𝑢  𝑡 = 𝑣 𝑡 , 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+1 . 
 

Consider 

 

 𝐶𝐹𝐶𝛻𝑎+2
𝛼 𝑢  𝑡 =  𝐶𝐹𝐶𝛻𝑎+2

𝛼−2𝛻2𝑢  𝑡 =  𝐶𝐹𝐶𝛻𝑎+2
𝛼 𝛻𝑣  𝑡  

 

Given that 𝐶𝐹𝐶𝛻𝑎+2
𝛼 𝛻𝑣  𝑡 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+3. Since  

 

 𝛻𝑣  𝑎 + 2 =  𝛻2𝑢  𝑎 + 2 ≥ 0. 
 

from Lemma 2.3., it follows that 

 

 𝛻𝑣  𝑡 =  𝛻2𝑢  𝑡 ≥ 0. 
 

which is  

 

𝛻 𝑢 𝑡 − 𝑢 𝑡 − 1  ≥ 0. 
 

Also, there we have 

 

 𝑢 𝑡 − 𝑢 𝑡 − 1  −  𝑢 𝑡 − 1 − 𝑢 𝑡 − 2  ≥ 0. 
 

Now, we get 

 

𝑢 𝑡 − 2𝑢 𝑡 − 1 + 𝑢 𝑡 − 2 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ∈ 𝑁𝑎+2. 
 

The proof is completed. 

3. Conclusion 
In this paper, it is investigated some positivity, monotonicity, and convexity results for discrete Caputo-Fabrizio 

fractional operators in the context of discrete fractional calculus. Also, it is considered the connections of these results 

to the non-negativity of both non-sequential and sequential Caputo-Fabrizio fractional differences of Caputo type. 

Finally, it is found that there are some significant dissimilarities between this type of fractional difference and, for 

instance, the more well-known Riemann-Liouville type. 
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