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Abstract

In this paper, we study the constant equations associated with the degenerate Cauchy poly-
nomials of the fourth kind using the generating function and Riordan array. By using the
generating function method and the Riordan array method, we establish some new constants
between the degenerate Cauchy polynomials of the fourth kind and two types of Stirling
numbers, Lab numbers, two types of generalized Bell numbers, Daehee numbers, Bernoulli
numbers and polynomials.
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1. Introduction

Recently, studying the degenerate forms of various special polynomials has become an active research field

and has yielded many new combinatorial results; see, for instance, [ , , , ]. We recall the generating
function of Cy, is 07 Cu(x)s = m(l +¢)”. In this paper, we discuss the generating function of the

degenerate Cauchy polynomial of the fourth kind C, x4(x). We refer to Pyo S S[ ] for this topic. The

definition of C), » 4(z) is

icn (@) = Al (1+ Aln(1+ 0), (1)
o n! In(1+ An(1+1¢))

n=0

From the generating function of Cy x 4(x), we know that C, x 4(0) = Cp a4 .Cp a4 are called degenerate
Cauchy numbers of the fourth kind.
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For convenience, let us recall some definitions. we give the definitions of the generating functions of
several combinatorial sequences used in this paper[ , , , , , , ,
The generating function of the Cauchy number of the second kmd is defined as follows:

=t —t
P ¥

n=0

The generating function of the degenerate Cauchy polynomial of the first kind is defined as follows:

%) £ lln(1+)\t) 1 )
;)Cm( o = r TG a3 R A0 )

The generating function of the degenerate Cauchy polynomial of the second kind is defined as follows:

t 1 .
ZCnAQ ' 1 (1 + 1 111(1 —l—)\t)) (1 + Xln(l +)‘t)) ’ (4)

The generating function of the degenerate Cauchy polynomial of the third kind is defined as follows:

NE]

2 Cn,)\,g(fﬂ)% _ )\((inw(Ll)inﬁnJ(rltzz;))— 1) (1+An(1+1)%, 5)

The generating function of Stirling numbers of the first kind is defined as follows:

Z s(n, k)nn M’ (6)

k!
n==k

The generating function of unsigned Stirling numbers of the first kind is defined as follows:

In 1 \k
Z| (n, k)] %7 (7)

The generating function of Stirling numbers of the second kind is defined as follows:

e n et — k
> sk = ®)

The generating function of degenerate Stirling numbers of the first kind is defined as follows:

o n 1 A k
Z SL)\(n,k)% _ (11 +]?' 1]) 7 )
n==k

The generating function of degenerate Stirling numbers of the second kind is defined as follows:

) n T _ 1)k
> S, = A= 7 (10)

The generating function of generalized Stirling numbers of the second kind is defined as follows:

ng L (1)
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The generating function of generalized Bell numbers of the first kind is defined as follows:
o t
tn (ee -1 _ l)k
> B(nk) =~ (12)
n=~k

The generating function of generalized Bell numbers of the second kind is defined as follows:

Zﬂ nnl t" (1n(1+(1:!(1+t))) | 13)

The generating function of Lah numbers is defined as follows:

ZL kS = S, (14)

The generating function of the classical Dachee polynomials is defined as follows:

> Daw)ty = B gy (15)

The generating function of A-Daehee numbers is defined as follows:

" Aln(l+1)

The generating function of degenerate Daehee numbers is defined as follows:

> " In(1
§ dn)\L' = n( +t)1 y (17>
e nt o In(14+ A)>

The generating function of completely degenerate Daehee numbers is defined as follows:

(140 -1
Zd Al T (1 + M) (18)

The generating function of degenerate Bernoulli numbers is defined as follows:

t
Z Bn, >\ ol W’ (19)

A Riordan array [ ] is a pair (g(t), h(t)) of formal power series with hg = h(0) = 0. It defines an infinite
lower triangular array(d,, i)n ken according to the rule

dn i = [t")g(8)(R(1))" .

Hence we write {d, 1} = (g(t), h(t)). Moreover, if (g(t),h(t)) is a Riordan array and f(t¢) is the generating
function of the sequence {fi}ren, ie., f(£) =D pop fit®, then we have

Zdnkfk [t"]g(8)f(h(2)) = [t"19(@)[f (y) | y = h(D)]; (20)
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Furthermore, we give the inverse form of the Stiring number. Let f, g be functions defined on the set of
positive integers, then

gn =Y s k) fe < fo=>_Sn kg, (21)
k=0 k=0
gn =D Si(n,ksr) fi <= fu= Sa(n,k;r)gs, (22)
k=0 k=0

2. The relationship between the degenerate Cauchy polynomials of
the fourth kind and some combination numbers and their polyno-
mials

First, the degenerate Cauchy polynomials of the fourth kind are represented by the generating function
method with some combinatorial numbers and a constant equation between the polynomials.

Theorem 1. Let n > 0 be integers. Then
Cral Z Z(rhl) Crx3(2)Bras(h, k)Cy (23)
r+h+1=0 k=0
Proof. By applying (5), (6) and (19), we get

t At
20”’*74(:”)5 ~ In(1+ An(l + 1))

(1+AIn(1+1¢)%

3 —1) In(1+¢) t
In(1+Aln(1+1¢)) (14 Aln(1+¢)> —1In(1+1)

(1+AIn(1+1)%

- (Tl ) (L) (o)
’ k=0 n=0
:( Coaa(z t|> (Zﬂk,\z nki) (cht77>
=0 n=0
( OnAB t|> (Zzﬂkksnk ) <chtn'>
n=0 k=0 n=0
= Z Z Z <r h,l> Crx3(2)Bras(h, k)Cy

n=0 r+h+1=0 k=0
Comparing the coefficients of % on both sides of the equation is easy to prove the theorem. O
Corollary 1. The following relations hold:
Ch, T h, k 24
S Z(rm) AsBias(i k)G 29
r+h+1=0 k=0

Proof. Setting x = 0 in (23), we get (24). O
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Theorem 2. Let n > 0 be integers. Then

n k 7 .
n J * T+ A AV -
Cora(z) = ZZ <k> <z> T () (1 T N sk, ) Co (25)
k=0 j=0 1=0
Proof. By applying (2), (6), we get

= t" At -

2 Cnaale) iy = i+ am g AR+
Aln(1+41¢) t FEDY

(I1+An(1+1¢) >

T (T An(1+6)In(l + Mn(1 + £)) In(1 + £)

— gc;(—x)f(ln(ljf’f))j) (é(xik)jm (ln(lj-!i- t))’ ) (gcng)
_ ég‘gg(g) G )n) (2)0”

SYYy (1) () e 0 sty

Comparing the coefficients of tn—n, on both sides of the equation is easy to prove the theorem. O

Corollary 2. The following relations hold:

Cora=Y. k i <Z> (‘;) (1) (—1 " W s(k, )Cla g (26)

Proof. Setting x = 0 in(25), we get (26). O

Theorem 3. Let n > 0 be integers. Then

n k
= ZZ( >’\k "I (A2);Cnk28(k, ) (27)

k=0 j=0
Proof. By applying (4), (6), we get
> Corala) Xt (1+11(1+t))’\‘”
nl4\T)— = —In

=TT ln(l + LIn(1+1t)) A

Cpapt" _i(In(1+ 1))
_Z )\27' )\x)]A ](n( T))

=0 J:
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=<Z Ai,) Z(Ax)j)\J;s(n,])i'

j=0

Il
3
g

PR ;,) S A sl )y

n=0 j=0
oo n k
AN N2
=SS (1N, nasth)
n=0 k=0 j=0
Comparing the coefficients of tn—T: on both sides of the equation is easy to prove the theorem. O

Theorem 4. Let n > 0 be integers. Then

n k J
n . .
Conalr 4 =333 (k) S1A0 DY 5(k, §)Cr_ora (). (28)
k=0 j3=0 =0
Proof. By applying (6), (9), we get

> " At oty
= 14 Aln(1 X

D Cunala+) ity L TARE+Y)

n=0
At
ln 1+ An(1 +1¢))

(1+AIn(1+4)3 (1 + An(1 +1)*

t > In(1 +¢t))’
_ (Zcm n) JZ_;@W( )
= <Z Cn,A,4($);'> Z(%)J/\J Z s(n, 5) 7:
n=0 : =0 n—y
= <Z C’n,,\,4(x)t7:> ZZ(%)Q)\ s(n,j)—
n=0 : n=0 j=0
co n k "
- Z ZZ (Z) (%)j)‘js(k,j)On—k,A,4($)%
n=0 k=0 j=0 .
2 < b n . tn

=> > 4 > (Z) SLA(JFl)yls(’ﬁj)cnfk,x,zi(m)%~

Comparing the coefficients of % on both sides of the equation is easy to prove the theorem. O

Corollary 3. The following relations hold:

n k J
Cpra(l) = Z Z Z (Z) S, D)s(k, 5)Cn—koxa- (29)
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Proof. Setting x =0, y =1 in (28), we get (29). O

Theorem 5. Let n > 0 be integers. Then

(=1)"Crrale ZZ() )TN, 05 (D) sk )] (30)

k=0 j=0
Proof. By applying (7), we get
o qyn tn Y .
2;“”(%*“mﬁf‘mu+Amu_ﬂﬁl+Am“_”V
Aln(1 — ¢) —t

= (1 + A1 — ) (1 — 7 1+ A1~ 1)

- (Seg ) (Se )
n=0
= [ S OENEDT Y Is)] ,) (Z(nncnn,)
j=0 n=j n=0
B oo n o T v . ; n ) e m
= | 22D GV D st | | Do (D) Cu s
n=0 j=0 n=0
co n k n m
n—k
=333 ()M DT sk 1
n=0 k=0 j=0
oo n ok n " m
= 1\ Ik g (F N
2D . (k)< D" N G5 ()sk. )
n=0 k=0 j=0
Comparing the coefficients of tn—: on both sides of the equation is easy to prove the theorem. O

Corollary 4. The following relations hold:

(~1)"Cura = ZZ<) "IN G ls(k ) (31)

k=0 j=0
Proof. Setting x = 0 in (30), we get (31). O
Theorem 6. Let n > 0 be integers. Then
n—1 k
plan x
Croaa(x) —Cppra= Z ( ) ] )\) i+1Ck—js(n — 1, k). (32)
k=0 5=0
Proof. By applying (6), we get
= tn Vi
C -C — = L+ AIn(1+1¢)x -1
n;( naa(®) = Cnna) O1 = T A ma gy (O T AR DN =)

Aln(1+ 1) t

In(1+ An(1 + ¢)) In(1 + ¢) (1+AIn(14+t)% —1)
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_, (i SRLILE: t))’“) (i(i)w (In(1 Z!t))k_1>
0o n o k+1 n k
(St (s, o)

k+1 T n k
()X

Jj+1 k!

Ak+1 T oo tn-‘rl

= 5 (F C k
—ZZ(J)]H(ALH SO
=222

k
k >\k+1 T tn+1

> () S (PGt

035=0

i(k,) )\k—i—l T tn

n=1k=0 j=0 ‘7

Comparing the coefficients of £; on both sides of the equation is easy to prove the theorem. O
p g ol

Theorem 7. Let n > 0 be integers. Then

n n n—k k
S Coura(@)si. >3 (3 )Nea s - b isthd) (33)
m=0 k=0 =0 j=0
Proof. By applying (6), (13), we get
> (In(141t)" Aln(1 +¢) 2
D Onaa@) = = pamn s ma gy (L AR I+ 0)
Aln(1l+In(1 +1¢)) In(1 +¢)

= ln(l (L (L4 0)) (1t ln(l ) (1+Xn(1 +1n(1 +1)>

_ ZC x )\’(ln(l +1In(1 +1¢)))¢ ZCj (In(1 .—|—t))j

7!

i=0 j=0 7!
=<Zci(§wzﬁ<n,z>”: (chzsm,j)f,)
7=0 n=j

Z Crra(z) (ln(lr;; " _ Z Crmaa(z) Z s(n, m)tn'
m=0 ’ m=0 n=m

143



Xiao-Qian Tian, Wuyungaowa

— Y3 Conal@)stnm)

n=0m=0
Comparing the coefficients of % on both sides of the equation is easy to prove the theorem. O

Corollary 5. The following relations hold:

n n—k

k
ZcmMsnm => Z( )xccg k,i)s(k,j). (34)
m=0 k

=0 t=0 5=0
Proof. Setting x = 0 in (33), we get (34). O

Corollary 6. The following relations hold:

n k h
Conae) = 1303 3 () St N C, B0~ st (35)
k=0 h=0 i=0 j=0
Proof. By applying(21), we get (35). O
Corollary 7. The following relations hold:
n k k=h b ‘
Cara =330 3 3 () S0 N, Cofl — st (30
k=0 h=0 ¢=0 j=0
Proof. Setting = = 0 in (35), we get (36). O
Theorem 8. Letn > 0 be integers. Then
)\ mS(h,m) = -

r4+h+1=0m=0 m=0 [=0

Proof. By applying (8),let t = e — 1 ,we get

et—1 et—1

e - M -1,
Cra(x) = e

n! t
A o (et)Tl)m . A 00 (e‘;l)mt
> —m(,t _ 1\m+1 > —-m t__ 1\m
_ 1 A (6 1) et _ 1(6t _ ) (6 ]') et
t = (m+1)! Lom+1 ml
1[Nt S " =t
(EE) (E A s semt) (£5)
n=1 m=0 n=m n=0
=1t = A8 (n,m) =t

S & L n A~™S(h,m) t"
= D (r, hJ)(r—I—l)(m—i-l)n!
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> Crnae T =S 0 @) 3 sm 2

- 207”’\4 mX:lS(m l)nz;ns(mm)/\m:;

n m

= Z > Counal@)S(m, 1)S(n, m))\_mg.

n=0m=0 =0
Comparing the coefficients of % on both sides of the equation is easy to prove the theorem. O
Corollary 8. The following relations hold:
A™™S(h,m) - i _
Z > BLAT LR A CrnxaS(m, 1)S(n, m)A"™. (38)
il e O(Th l) (r+1)(m+1) ==

Proof. Setting x =0 in (37), we get(38). O
Theorem 9. Let n > 0 be integers. Then
Z( > n— kACk,\4—ZZ( > CiAFT (K, J) B, 1- (39)
k=0 k=0 j=0

Proof. By applying (6), (16)and (19), we get

3-8 (D)pracindy = (S o) (S i)

n=0k
An(1 +t) Mt B Mt An(1 +¢)
T4t —1ln(1+)\ln(1—|—t)) N (1+t)A —1In(1+ Aln(1 +1))

Z ln 1 +t Zﬁnw\
( ;¥ Zs(n,j)g (Z m,;A"f;)
L\ = !

b

n=j

-|xX Vs, ) (ZOB,L,;A"Z)

n

EEE (e

Comparing the coefficients of % on both sides of the equation is easy to prove the theorem. O

Second, the identity between degenerate Cauchy polynomials of the fourth kind and degenerate Stiring
number, degenerate Daechee number, generalized Stiring number, Lah number, generalized Bell number and
their polynomials is studied by using the method of Riordan matrix.
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Theorem 10. Let n > 0 be integers. Then

> SaatnbCionae = 3 Y (1 JeEstrinta;
k=0 r+h+1=0 j=0

Proof. For {n,Sg A(n, k)} 1+ )\t)i — 1), by applying (20), we get
C
ZSZ)\nk)Ck/\AL —H'Z 52,\ k/;;()
k=0 nt
- Ay (1+ AIn(l+ )3 (y = (1+ A% — 1))
In(1+ Aln(1 +y))
A(1 4 At)> —1) .
= nl[t" 1+ 1In(1 B
P (1 ) LR AY)
iy In(1 + At) (I14+X)> =1 AIn(1 +1¢)

In(1+In(1+ X)) In(1+¢) In(l+At)

oo

dl7,\.

(1+1n(1 4+ Mt))x

= nl[t"] Cj(i)(lnu;m)j)( A A" ><de )
j=0 n=0

= nl[t"] ch(i)Zs(w)A”Z) (Z di A" — )(ZdM )

=nllt"] | > cj(g)s(n,jw% (Zd*)\” )(de )

B N [ee] n T n ‘ T ) e tn
=nllt"] Y > ‘ (T’h Z)CJ(/\)s(r,j))\ dj, 1 diy—

Corollary 9. The following relations hold:

ZSQ)\ n k)CkAzl = Z Z <7“ h, l)C S(T j))\r+hd 1dl)\.

k=0 r+hH1=0 j=0
Proof. Setting x = 0 in (40), we get(41).

Theorem 11. Let n > 0 be integers. Then

- n n Tz‘)\l T
k=0 I J

i3 +1=0

Proof. For { & Ss(n,k,r)} = (e, e! — 1), by applying (20), we get

146
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n n '
Sa(n, k,7)C x4z )—n!ZESQ(mk’r)M

n! k!
k=0 k=0
= n![t"]e" AY 1+ AIn(1+y)>(y=¢€" —1)
In(14+ An(1+y))
: Aef—1) »
— pl"emt 20—/
n![t"]e (1—|—/\t)(1+)\t)A

n o tnfl 0 T tn
an(£5) (£ (Eecper
" > n =1 > T, ,t"
(S5 (B
il x t"
Z z_; 0(2 g1 ) 1CI(X)E

n=0i+j5+I

0
- n PN x
pril (m,l)jHQ(A)'

tn

m
= 2
i+j+l

O
Corollary 10. The following relations hold:
is (n, k, 1) Chra = zn: n N (43)
2\, Iy k,)\,4_- : i,j,l j+1 l-
k=0 i+j+1=0
Proof. Setting x = 0 in (42), we get(43). O

Corollary 11. The following relations hold:

i l T

k=0 i+j+1=0

Proof. By applying (22), we get (44). O

Corollary 12. The following relations hold:

Craa = Z Z ( )Slnk‘r) rllol. (45)

k=0 i4j+1=0

Proof. Setting x = 0 in (44), we get(45). O

Theorem 12. Let n > 0 be integers. Then

Proof. For { £ L(n,k)}

n n k
ZL n, k) Croaa( Z ( > (=) N sk, §)C . (46)
=0j=

= (1, 1+t) by applying (20), we get
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kZ:OLnkOkM —n'z .L —

Ay

= 1[¢7
M  Ama +

—At

) (1= +y)>(y=-—)

= nl[t"]

—Aln(1+1)

(1+t)In(1 — An(1 +t)) (1=

t

= A T ama ¢

= nl[t"]

Corollary 13. The following relations hold:

ZLnka,\4—ZZ()

£) (1+¢)In(1

)" TIN5k, 5)Cr

k=0 j=0

Proof. Setting x = 0 in (46), we get(47).
Theorem 13. Let n > 0 be integers. Then

n k
> S, k)L(k,

k=0 j=0

Proof. By applying (46), we get
Z L(n,k)Cy xa(x) = nl[t"]
k=0

For {£S(n,k)} = (1,e —

n k

k=0 j=0

Ciral i() A%'

-\t
(14+¢)In(l — Xn(1 +¢))

1), by applying (20), we get

(1—An(1+1))>.

k
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n _Ay S0 — ot _ n _A(et 1) £
=nlft ](1—+—y)1n(1 —)\ln(l—i—y))(l —An(l+y)*(y=€e —1)=nllt ]m(l — At)
=l (1= (1 = A0 F = el (e — (1=

oo

oo x n n—1
= e (Z Cn(A)(—A)";!> (Z(—l)”“%) = nlft" (
n=0 n=1

) (S5)

2 N n z, (1"
3 2;0(7;) O :Z;@*kckw (_k:)+1
O
Corollary 14. The following relations hold:
n n
kZOJZOSnk M_kZO(’;)AkC cor (49)
Proof. Setting x = 0 in (48), we get(49). O
Corollary 15. The following relations hold:
; ShS (-1)*
;)L(n] nale ;;() Am( k). (50)
Proof. By applying (22), we get (50). O
Corollary 16. The following relations hold:
; 5 () gD
;L n, ;) JMfI;” 0<)/\Cl+15(n,k). (51)
Proof. Setting z = 0 in (50), we get(51). O
Theorem 14. Let n > 0 be integers. Then
" EL ) Ak x
ZB n,k)Cnoa(T) = Z (j)MCk_j()\)S(n7k). (52)
=04=0
Proof. For {%B(n,k)} = (1,e€t*1 — 1), by applying (20), we get
zn:B (1, k)Clixa Xn:]% 70’“2;*(”3)
k=0 k=0

= n![t"}ln(l n /\)ii(l ) (1+AIn(L+y))>(y =€
_ n![tn}lna(e: ;(6:_1)1)) (14+ A — 1))

149
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Corollary 17. The following relations hold:
n /\kf
> B(n,k) M4—ZZ(> £ CrS(n k). (53)
k=0 k=0 j=0
Proof. Setting x = 0 in (52), we get(53). O

Theorem 15. Let n > 0 be integers. Then

n l k 7
> (i ata) = - 5033 (M)NG Ik st st Rys(an ) (54)
— i—0 i=0

Proof. For {&B(n,k)} = (1,In(1 + In(1 + t))), by applying (20), we get

n

Zﬁ(nkck,\zx —n'z ﬁ Ck/\4()

k=0

= nl[t"]

Ay
In(14+ An(1 +y))
Aln(l+In(1 +1))
In(1 4+ An(1 + In(1 + In(1 +¢))))
Aln(1 +1n(1 +In(1 +¢))) In(1 4 In(1 +1¢))
In(1+ Aln(1 +In(1 +1In(1 +¢)))) In(1 + In(1 + In(1 + ¢)))

o (ZC (1 +In(1 —Zs-'ln(l—i—t )(ZC ln1+ln(1+t))) )

(1+AIn(14y))>(y =In(1 +1In(1 +1))

= n![t"] (1+An(1 +In(1 +1In(1 4+ 1)) *

= n![t"] (1+An(1 +1In(1 +In(141))))*
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— e (Zcxﬁ)st(k,z)“““““1” )(ch (nf1 + In(d + )" )

7 k=1 0
oo k o
= n![t"] <Z Z Ci(;)AZS(kJ) (In(1 + ln 1 ti ) <Z (In(1 + ln(l +1)))" )
k=0 i=0 =
oo k
=l (’;) CEN 50 )“n<1 & h;
= -

k=0 j=0 i=0 J

) 1 k J k T . 0 tn
Y (J) OSN3, )s0 k)Y stn )

1=0 k=0 j=0 i=0 n=l

n

oo n I k J k ] T ¢
= nl[t"] Z Z Z Z Z <j))\10i(>\)0kjs(j, i)s(l, k)s(n, l)ﬁ

O
Corollary 18. The following relations hold:
n n k J
zﬁnkcm_zzzz()wck 350, )s (L, ks, ). (55)
k=0 =0 k=0 j=0 =0
Proof. Setting x = 0 in (54), we get(55). O

Theorem 16. Let n > 0 be integers. Then

ZZBk] )Cjna = A"Cp 1 . (56)

k=0 53=0
Proof. By applying (53), we get

- e A=) t g
> BB Cnnale) =l 1A - 1)

For {Z—',ﬁ(n,k;)} = (1,In(1 + In(1 + t))), by applying (20), we get

n k n I?, B k7 . Cj
Z ZB(k,j)ﬂ(m k)Cjxa=n! Z %ﬂ(”’ k)zy—o (k' 7)Cjxa
k=0 j=0  nl |
Tl'[tn] )\(ee‘ -1_ 1) (y — ln(l —+ ln(]_ + t))) — n[[tn] At

In(T -+ X(ev 1)) (1 + An(1 + 1))

= nl[t"] Z/\”cnﬂ [ =\"Cota
n=0
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Corollary 19. The following relations hold:

n k
D> Bk, j)B(n,k)Cira = A"C 1 . (57)
k=0 j=0
Proof. Setting x = 0 in (56), we get(57). O
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