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Abstract

This paper deals with some problems in numerical simulation for convex quadratic program-
ming with nonnegative constraints. For systems of ordinary differential equations which de-
rived from the above mentioned problem, we construct a kind of new numerical method: the
modified implicit Euler method. Under some restrictions for step-size, we obtained the nu-
merical solution which satisfied with the termination condition. Compared with the classical
Matlab command ODE23, the new method has ideal computation cost.
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1. Introduction

In the past few years, quadratic programming problems play an important role in all kinds of research.
Generally speaking, there are three types of quadratic programming in according to the limits on constraint
conditions. That is, nonnegativity constrains, box constraints and equality constraints are included. In
particular, nonnegativity constrains quadratic programming problems always appears in science, engineering
and business, and they may fall into nonnegativity constrained least-squares problems. Moreover, in support
vector machines, computing the maximum margin hyperplane also produces a nonnegativity constrained
quadratic programming [1].

Usually, solving a quadratic programming problem can be converted into solving a system of ordinary
differential equation (ODE). There are many numerical methods for solving the system of ODE. Such as one
step methods [2, 3], Runge-Kutta methods [4, 5], pseudo-spectral method [6], waveform relaxation methods
[7, 8], finite transfer method [9], general linear methods [10, 11]. The interested readers can see the most
recent articles [12, 13, 14]. Different from the above mentioned papers, in this paper we introduce a easy-
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to-use and effective method to solve the system of ODE which corresponding to a quadratic programming
problem with nonnegativity constrains. The experimental results show that the new method is a simple and
efficient method for solving the system of ODE.

Consider the following nonnegativity constrained quadratic programming

min q(x) = 1
2x

TQx+ cTx,
s.t. x ≥ 0,

(1)

where x, c ∈ Rn and Q = (qij) ∈ Rn×n. The superscript ”T” means the transpose. Throughout this paper,
we always assume that Q is symmetric and positive semi-definite.

For convex quadratic programming problem, a kind of continuous method [15] often be applied. The
main idea in this approach is to formulate an ODE for each optimization problem such that the limiting
equilibrium point of the ODE corresponds to an optimal solution of the corresponding optimization problem.
Usually, this ODE is an equation with high dimension, it will result in some difficulty when using Matlab
ODE solver ODE23 in numerical treatment. Thus, seeking a type of efficient and fast numerical method is
very urgent and meaningful. In this paper, we construct a new method: the modified implicit Euler method
which can be seen as a effective method to simulate the systems of ODE.

The rest of this paper is organized as follows. In Section 2, some corresponding theoretical results for
original problem will be presented. In Section 3, the modified implicit Euler method will be constructed for
systems of ODE corresponding to the above mentioned nonnegativity constrained quadratic programming.
From the view point of nonnegativity and monotonicity, we find the scope of step-size. Some examples are
given in Section 4. Finally, conclusions are drawn in Section 5.

2. Preliminaries

The following ODE for Problem (1) can be constructed

dx(t)
dt = −X(Qx+ c),

x(0) = x0,
(2)

where X = diag(x) ∈ Rn×n, Q and c are defined in (1), x0 ≥ 0 is an initial vector.

Lemma 1. [16] Let x(t) be a solution of (2), then x(t) is unique, well defined and x(t) > 0 for all t ≥ 0.

Lemma 2. (Weak Convergence)[16] Let x(t) be the solution of (2), then lim
t→+∞

X(Qx+ c) = 0.

Denote
Rn

+ = {x ∈ Rn|x ≥ 0} ,

and
Ω1(x

0) =
{
y ∈ Rn

+|y is a cluster point of the solution x(t) of (2)
}
,

thus

Lemma 3. [16] Any point x ∈ Ω1(x
0) is an optimal solution of (1).

Lemma 4. (Strong Convergence)[16] x ∈ Ω1(x
0) only contains a single point.

Lemmas 3 and 4 guarantee the limit point is an optimal solution for Problem (1).

3. The modified implicit Euler method

In this section, we construct a new method: the modified implicit Euler method to solve (2). Furthermore,
proper restrictions on step-size are established.

3.1. Construction a numerical method
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Firstly, we apply the explicit Euler method and the implicit Euler method to (2) gives

xk+1 = xk − hXk(Qxk + c), (3)

and
xk+1 = xk − hXk+1(Qxk+1 + c), (4)

respectively, where h is step-size, xk ∈ Rn×1 is an approximation to x(t) at tk.
Through practical test we find that the explicit Euler method is slow when n is large. Meanwhile, the

implicit Euler method is also infeasible because we have to handle high-dimensional and non-linear systems
of algebra equation (4) which will occupy too much of time. How to cope with this difficulty? Noticing the
structure of (3) and (4), we separate the terms X and Qx + c (one for implicit and the other for explicit)
gives the following new difference form

xk+1 = xk − hXk+1(Qxk + c), (5)

we call Formula (5) as the modified implicit Euler method.
For simplicity, we take [xk]i as i-th component, so from (5) we have

[xk+1]i =
[xk]i

1 + h[Qxk + c]i
, (6)

where i = 1, 2, · · · , n.

3.2. Selection of step-size

In original quadratic programming problem, the nonnegativity for x and the monotonicity for the objective
function must be satisfied. In other words, x ≥ 0 and q(xj+1) < q(xj). Naturally, we must require xk ≥ 0
and q(xk+1) < q(xk) for numerical case.

Theorem 1. (Preserve the nonnegativity) The step-size can be selected as

hn+1 =

 2hn, whenmin(Qxk + c) ≥ 0,
r, when− 1 < min(Qxk + c) < 0,
−1/min(Qxk + c), whenmin(Qxk + c) ≤ −1,

(7)

where 0 < r < 1.

Proof. According to the above analysis, in this case, we require xk ≥ 0 for all k ≥ 1. Thus, from (6) we have
1 + h[Qxk + c]i > 0, that is hmin[Qxk + c]i > −1. The results can be obtained by simple derivation.

Theorem 2. (Preserve the monotonicity) The step-size can be selected as{
no bound, when λ− γ ≤ 0,
h < 2/((λ− γ)max[xk]i), when λ− γ > 0,

(8)

where λ is the maximum eigenvalue of Q and γ = min(2[Qxk + c]i/[xk]i).

Proof. In view of q(x) = 1/2× xTQx+ cTx and (5), we have

q(xk+1) = 1
2x

T
k+1Qxk+1 + cTxk+1

= 1
2 (xk − hXk+1(Qxk + c))

T
Q (xk − hXk+1(Qxk + c))

+cT (xk − hXk+1(Qxk + c))
= q(xk)− hxT

kQXk+1(Qxk + c)− hcTXk+1(Qxk + c)

+h2

2 (Qxk + c)TXk+1QXk+1(Qxk + c)
= q(xk)− h(Qxk + c)TXk+1(Qxk + c)

+h2

2 (Qxk + c)TXk+1QXk+1(Qxk + c)
= q(xk)− h

2 (Qxk + c)TXk+1(2X
−1
k+1 − hQ)Xk+1(Qxk + c).

(9)
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To satisfy q(xk+1) < q(xk) we only require 2X−1
k+1 − hQ is positive definite. So we have

min
2

h[xk+1]i
> λ,

by (6) we obtain

min
2(1 + h[Qxk + c]i)

h[xk]i
> λ,

further

min
2

h[xk]i
+min

2[Qxk + c]i
[xk]i

> λ,

that is

min
2

h[xk]i
> λ− γ.

The proof is complete.

Corollary 1. The step-size can be selected as{
no bound, when γi − λ ≥ 0,
h < 2/max{(λ− γi)[xk]i}, when γi − λ < 0,

(10)

where λ is the maximum eigenvalue of Q and γi = 2[Qxk + c]i/[xk]i.

Combine Theorem 1 with Theorem 2 or Corollary 1, we can get the range of h which is helpful to obtain
the desired numerical solution.

4. Numerical experiments

In this section, some numerical examples are addressed to test the effectiveness of the new method. Moreover,
this method is compared with ODE23 in [16].

The initial point for the randomly generated (Q, c) is set to x0 = (1, 1, · · · , 1)T . Let r = 0.1 and the
initial step-size h0 = 0.1. The termination condition is |dx/dt|∞ ≤ 10−4.

In Table 1, we compare the Cpu-time consumed by Matlab command ODE23 and the modified implicit
Euler method (MIE). From this table we can see that our method need less time than ODE23. In Table
2, we list the termination condition (Error) and the absolute error (AE) which is the difference between
exact solution and numerical solution for the objective function. Together with Figures 1-4 we can see
that the numerical solution is approximate to the exact solution and the objective function also decreases
monotonically. In Table 3, we give the steps of iteration and the source of step-size h. The symbols C1 and
C2 stand for h comes form Theorem 1 and Theorem 2, respectively. From Table 3 and Figures 5-8 we easily
see that the choice of h is largely depend on criterion q(xk+1) < q(xk).

5. Conclusions

In this paper we give a new method: the modified implicit Euler method in numerical simulation for convex
quadratic programming with nonnegative constraints. To satisfy theoretical requirements, we present two
kinds of selection criterion for step-size. Numerical experiments illustrate that the modified implicit Euler
method with these selection criterions for step-size is effective. We will consider the convex quadratic
programming with equality constraints in our future work.
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n ODE23 MIE
200 2.4919e-01 2.3274e-02
400 4.7448e-01 4.9198e-02
600 7.8367e-01 9.6974e-02
800 1.2884e+00 1.3462e-01
1000 2.7535e+00 1.9811e-01
1200 3.3639e+00 6.1610e-01
1400 4.0642e+00 1.6912e+00
1600 6.0213e+00 2.1896e+00
1800 6.5972e+00 3.6472e+00
2000 1.0262e+01 4.0912e+00
4000 3.1919e+01 2.1877e+01

Table 1: Comparison Cpu-time between ODE23 and MIE

n Error AE
200 9.9685e-05 9.3917e-05
400 9.9798e-05 7.7618e-05
600 9.9781e-05 2.0374e-04
800 9.9984e-05 2.2021e-04
1000 9.9968e-05 3.4164e-04
1200 9.9949e-05 3.7970e-04
1400 9.9846e-05 5.3768e-04
1600 9.9743e-05 3.8696e-04
1800 9.9751e-05 5.8864e-04
2000 9.9891e-05 5.6978e-04
4000 9.9808e-05 8.9196e-04

Table 2: Error and AE

n steps C1 C2

200 367 9 358
400 401 9 392
600 484 12 472
800 507 10 497
1000 522 10 512
1200 544 10 534
1400 571 11 560
1600 500 10 490
1800 705 12 693
2000 484 10 474
4000 764 12 752

Table 3: The source of step-size

43



Qi Wang

0 50 100 150 200 250 300 350 400
−50

0

50

100

150

200

250

300

q
(x

)

Figure 1: The curve of q(x) with n = 200.
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Figure 2: The curve of q(x) with n = 1000.
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Figure 3: The curve of q(x) with n = 2000.
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Figure 4: The curve of q(x) with n = 4000.
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Figure 5: The curve of h with n = 200.
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Figure 6: The curve of h with n = 1000.
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Figure 7: The curve of h with n = 2000.
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Figure 8: The curve of h with n = 4000.
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