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Abstract

In this paper, we introduce and investigate the generalized Pierre sequences and we deal
with, in detail, two special cases, namely, Pierre and Pierre-Lucas sequences. We present Bi-
net’s formulas, generating functions, Simson formulas, and the summation formulas for these
sequences. Moreover, we give some identities and matrices related with these sequences. Fur-
thermore, we show that there are close relations between Pierre, Pierre-Lucas and Tribonacci,

Tribonacci-Lucas numbers.
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1. Introduction

Tribonacci sequence {T,,},>o (OEIS: A000073, [15]) and Tribonacci-Lucas sequence {K,, },,>0
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(OEIS: A001644, [15]) are defined by the third-order recurrence relations
Th=Th1 +Tn72+Tn737 Ty :07T1 =1,T=1, (11)
and
Ky,=K, 1+ K, 2+ K,_3, Ky=3,K1=1,Ky =3, (12)

respectively. These sequences has been studied by many authors and more detail can be found
in the extensive literature dedicated to these sequences.
Basic properties of these sequences are given in [1,2,3,4,5,8,11,12,13,16,19,25,26,27].

The sequences {T},},>0, and {K,},>0 can be extended to negative subscripts by defining

T, = _Tf(nfl) — T,(nfz) + T,(n73)7
K_,

—K_(n_l) - K—(n—2) + K—(n—3)7

for n =1,2,3,... respectively. Therefore, recurrences (1.1)-(1.2) hold for all integer n.
Now, we define two sequences related to Tribonacci and Tribonacci-Lucas numbers. Pierre

and Pierre-Lucas numbers are defined as
Pn:Pn71+Pnf2+Pn73+17 with P0:07P1:1,P2=2 71237

and

Ch,=Ch_1+C,_o+C,_3—2, with Cy=4,C1=2,Co =4 n >3,
respectively. The first few values of Pierre and Pierre-Lucas numbers are
0,1,2,4,8,15,28,52,96,177,326...

and

4,2,4,8,12,22, 40,72, 132,242, 444, ...

respectively. The sequences {P,} and {C,,} satisfy the following fourth order linear recurrences:

P,

2Pn,1—Pn,4, P():O,Plzl,PQZQ, P3:4, TL24,

Cn = 2On—1 — Cn_4, CO = 4,01 = 2,02 = 4,03 = 8, n Z 4.

There are close relations between Pierre, Pierre-Lucas and Tribonacci, Tribonacci-Lucas num-

bers. For example, they satisfy the following interrelations:

9P, = Thyo+Th—1,
22P, = 4Kn+2 + 2Kn+1 - K, — 11,
Cn = — n+2 + 4T’n—i-l =T, +1,

C, = K, +1,
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and
Tn+1 = PnJrl = Py,
29T, = 5Cnis —3Cui1 —A4C, +2,
K, = 4Py, —6P, — 1,
2Kn = C1n+3 - C(n+2 - C(n,+1 + Cn,-

The purpose of this article is to generalize and investigate these interesting sequence of num-
bers (i.e., Pierre, Pierre-Lucas numbers). First, we recall some properties of the generalized
Tetranacci numbers.

The generalized (r, s,t,u) sequence (or generalized Tetranacci sequence or generalized 4-step

Fibonacci sequence) {W,,(Wy, W1, Wy, Ws;r,s,t,u) }n>0 (or shortly {W,},>0) is defined as follows:
Wn =1Wh1 + sWy_o +tWy_g + ulWy_y, Wo=rco, W1 =c1,Wa=co, Wy =c¢3, n>4 (1.3)

where Wy, Wy, Wy, W3 are arbitrary complex (or real) numbers and r, s, ¢, u are real numbers.
This sequence has been studied by many authors and more detail can be found in the
extensive literature dedicated to these sequences, see for example [6,9,10,14,20,22,23,28,29].

The sequence {W,,},>o can be extended to negative subscripts by defining
t s T 1
W_op=—W_t1y— —W_(noy— —W_(_ —W_(n—
2 =0 = o Wen-2) = oW m-3) T o Wo(n-a)

for n=1,2,3,... when u # 0. Therefore, recurrence (1.3) holds for all integers n.
As {IW,} is a fourth-order recurrence sequence (difference equation), its characteristic equa-
tion is
2 -5tz —u=0 (1.4)

whose roots are «, 3,v,d. Note that we have the following identities

at+B+vy+d = 1,
af+ay+ad+pBy+po+v = —s,

aBy+afd+ayd +By5 = t,
aBys = —u.

Using these roots and the recurrence relation, Binet’s formula can be given as follows:

Theorem 1. (Four Distinct Roots Case: « # 8 # v # §) Binet’s formula of generalized Tetranacci numbers
18
pra” p2B" 3" pad”

@ Bla—Na—0 B-a)B-E-0 (-a0-B0O-9 (5—04)(5—&)(5—(71)5)

W, =
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where

po= Ws—(B+7+0)Wa+ (By+B6+~6)Wr — By,
pr = Ws—(a+7+0)Wa+ (ay+ ad +v0) W1 — aydWy,
p3s = Wiz—(a+B8+0)Wse+ (af + ad + BI)W; — afdWy,
pr = Wi—(a+B+7)Wa+t (af +ay+ py)Wi1 — afyWo.

Usually, it is customary to choose «, 3,7, so that the Equ. (1.4) has at least one real (say
«) solutions. Note that the Binet form of a sequence satisfying (1.4) for non-negative integers
is valid for all integers n (see [7]).

Next, we consider two special cases of the generalized (r, s,t,u) sequence {IV,,} which we call
them (r,s,t,u)-Fibonacci and (r,s,t,u)-Lucas sequences. (r,s,t,u)-Fibonacci sequence {G),},>0
and (r, s, t, u)-Lucas sequence {H, },>o are defined, respectively, by the fourth-order recurrence

relations

Gpya = 1rGuis+ sGrio+1Ghy1 +uGy, (1.6)
Gy = 0,Gi=1,Gy=7,G3=1%+3s,

Hy,ry = rHpys+sHuio+tHp1 +uHy, (1.7)
Hy = 47H1:r,H2=2s+r27H3:r3+38r+3t.

The sequences {G,},>0 and {H,},>¢ can be extended to negative subscripts by defining

t s r 1
Gon = ——G_ (1) — ~G_(no2y = ~G_(n_3) + ~G_(n_a),
n -1 T G eme2) T G () T G (g
t s T 1
H—n = ——H_ n— ——H_ n— ——H_ n— —H_ n—4),
y =) = () = () T (na)

for n =1,2,3, ... respectively. Therefore, recurrences (1.6) and (1.7) hold for all integers n.
For all integers n, (r,s,t,u)-Fibonacci and (r, s,t,u)-Lucas numbers (using initial conditions

in (1.6) or (1.7)) can be expressed using Binet’s formulas as in the following corollary.

Corollary 2. (Four Distinct Roots Case: o # 8 # v # §) Binet’s formula of (r,s,t,u)-Fibonacci and

(r, s,t,u)-Lucas numbers are

G a7z+2 6n+2 7n+2 5n+2
" e Aa-Na-10) B-aB-NF-9) - -Hr-0  G-a)0-B0—)
and
Hn :an+6n +,yn+5n7
respectively.
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Proof. Take W,, = G,, and W,, = H,, in Theorem 1, respectively. [J

o0
Next, we give the ordinary generating function ) W,z" of the sequence W,.
n=0

o0
Lemma 3. Suppose that fw, (z) = > Wy,z" is the ordinary generating function of the generalized (r, s, t,u)
n=0
(o]
sequence {Wyn>0. Then, > Wpz" is given by

n=0

i W~ Wot (W —rWo)z + (Wy — Wy — sWy)22 + (Ws — rWy — sWp — tWp)23
n - 4 .

1.8
— 1—rz—s522 —t2% —uz (18)
Proof. For a proof, see Soykan [20, Lemma 1]. O

The following theorem presents Simson’s formula of generalized (r,s,t,u) sequence (gener-

alized Tetranacci sequence) {W,}.

Theorem 4 (Simson’s Formula of Generalized (r, s,t,u) Numbers). For all integers n, we have

Wnis Whpa Wppa o Wy Ws Wy Wi W
Wivz Wi Wo o Wai | (= 1) Wy Wi Wo Woy . (19)
Wn+1 Wn an 1 Wn72 Wl WO w_ 1 W72

Wn Wiy Whoo Wiz Wo W_1 W_p W_3

Proof. (1.9) is given in Soykan [18]. O
The following theorem shows that the generalized Tetranacci sequence W, at negative

indices can be expressed by the sequence itself at positive indices.

Theorem 5. Forn € Z, for the generalized Tetranacci sequence (or generalized (r, s,t,u)-sequence or 4-step

Fibonacci sequence) we have the following:
1
W_, = 6(—u)_"(—6Wgn + 6H,,Wa,, — 3H>W,, + 3Ho,W,, + WoH3 + 2WyHs,, — 3WoH,, Hy,)
1 1
= (=) T (Way, — HyWo, + 5(1{3 — Hyp )W, — 6(Hg + 2H3,, — 3Ho, H,,)Wp).

Proof. For the proof, see Soykan [21, Theorem 1.]. O

Using Theorem 5, we have the following corollary, see Soykan [21, Corollary 4].

Corollary 6. Forn € Z, we have

(a) 2(—u)"™G_, = —(3ru2 +13 — 3stu)2G3 — (2su — t2)2G2 3Gy — (—rt? —tu+ 2rsu)?G2 Gy — (—st* +
2s?u+4u? + rtu)?G2 1 G, + 2(3ru? + 13 — 3stu) ((—2su+ )Gz + (—rt? — tu+ 2rsu) G0 + (—st? +
252U+ 4u? + rtu) G 1)G? + 2(2su — t2)(—1rt? — tu + 2rsu) Gy 3G Gy + 2(25u — t2)(—st? + 25%u +
du? + 1tu) Gy 3Gni1Grn — 2(—st? + 25%u + 4u? + rtu)(—rt? — tu + 2rsu)Gpi2Gri1Gn — 2G3u* +
u?(—2su + t2)Gapi3Gpn + u(—1rt? — tu + 2rsu)Gap12Gp + u?(—st? + 25%u + 4u? + rtu)Gap1Gpn —
202 (2su — t2)GonGrys + 2u?(—1rt? — tu + 2rsu)GonGpio + 2u?(—st? + 25%u + 4u? + rtu)GopGry1 —
3u?(3ru? + 2 — 3stu)Ga, Gy
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(b) H_,, = % (—u) " (H2 + 2Hs,, — 3H2,H,) .
Note that G_,, and H_,, can be given as follows by using Gy =0 and Hy = 4 in Theorem 5,

G_, = =(—u)""(-6Gs, +6H,Ga, — 3H>G, + 3H2,G)), (1.10)

| = =

H_, = —(—u) " (H2+2H;s, —3H,H,), (1.11)

respectively.

If we define the square matrix A of order 4 as

r s t u

1 0 0 O
A= Arstu =

01 0 O

0 0 1 0

and also define

Gny1  sGp+tGh_1 +uG,_2 tG, +uGn_1 uG,
G, $Gpn_1+tGp_os+uG,_3 tGh_1+uG,_o uG,_1

B, =
Gn—l 5Gn—2 + th—S + UGn—4 th—Q + UGn—S UGn—Q
Gn72 SGn73 + th74 + UGn75 th—?, + UGn74 UGn73
and
Wper  sWyp +tWo_1 +uW, o tW,, + uW,_1 uW,,
U Wn SWn—l + th—Q + uWn—3 th—l + UWn—Q UWn—l
n =

Wn—l 5Wn—2 + th—3 + UWn—4 th—2 + UWn—S UWn—Z
Wn72 SanfS + th74 + UanE) th73 + uWn74 uanfS

then we get the following Theorem.

Theorem 7. For all integers m,n, we have

(a) B, =A", ie.,

r s t wu Gny1  sGp+1tGp_1 +uGp_o tG,, + uGp—_1 uG,

1 0 0 0 B G, sG,_1+tGh_oa+uG,_3 tGh_1+uGh_2 uG,_1
001 00| | Gut $GuottGus+uGn s tGno+uGn s uGn s
0 01 0 Gn_o 8Gp_3+tGp_g+uG,_5 tGh_3+uGn_s uG,_3

(b) U A" = AU;.
(€) Ungm = UnBum = BpUn.

Proof. For the proof, see Soykan [20, Theorem 19]. [
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Theorem 8. For all integers m,n, we have
Witm = WnGerl + anl(SGm + tGop—1 + qu,Q) + Wn,Q(tGm + ’U,Gmfl) + uW,_3G,,.- (112)

Proof. For the proof, see Soykan [20, Theorem 20]. O

In the next sections, we present new results.

2 (Generalized Pierre Sequence

In this paper, we consider the case r = 2,s = 0,t = 0,u = —1. A generalized Pierre sequence

{Watn>0 = {W,(Wo, Wi, Wa, W) }n>0 is defined by the fourth-order recurrence relation
W, =2Wph_1 — Wy_a4 (2.1)

with the initial values Wy = ¢y, W; = ¢1, Wy = ¢35, W3 = ¢3 not all being zero. The sequence

{W,}n>0 can be extended to negative subscripts by defining
W_, = 2W—(n—3) - W—(n—4)

for n =1,2,3,.... Therefore, recurrence (2.1) holds for all integers n.

Characteristic equation of {W,} is
o241 =(P -2 -2 -1)(2—-1)=0

whose roots are

1+ Y19+ 3v33 + V19 — 3v/33

3
5 — 1+wv/194 3v33 4+ w?v/19 — 3v/33
= 3 ,
14 w?V/1943v33+ w19 — 3V33
’-Y - 3 )
o = 1,
where
w= %\/?: = exp(27i/3).
Note that
a+B4+7+d6 = 2
af+ay+ad+py+ B+ = 0,
apy+afd+ayd+pyé = 0,
afyé = 1.
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Note also that

atpf+y = 1,
af+ay+py = -1,
afy = 1.

The first few generalized Pierre numbers with positive subscript and negative subscript are
given in the following Table 1.

Table 1. A few generalized Pierre numbers

n W, W_,

0 Wo Wo

1 Wi 2Wy — W3y

2 Wy 2Wy — Wa

3 Ws 2Wo — Wy

4 2W3 — Wy AWy — Wy — 2Ws

5 AWs — Wy — 2W, AW, — 4AWs + W3

6 8Ws — 2W1 — Wy — AW AWy — AW + Wy

7 15W3 — 4W7 — 2W5 — 8W) W1 — AWy + 8Wo — AW
8 28Ws — 8Wy — 4Ws — 15W) Wo 4+ 8Wy — 12Wy + 4Ws
9 52W3 — 15W, — 8Wy — 28W, 8Wy — 12W1 + 6Wse — W3

10 96W3 — 28W; — 16Ws — 52W 6W, — 12Wo + 156W5 — 8W3
11 177Ws — 52W; — 28W5 — 96W) 6Wo + 15W; — 32W5 4 12W5
12 326W3 — 96W; — 52W, — 177TW, 15Wo — 32W1 + 24Ws — 6W3

13 600W3 — 177W — 96Wo — 326Wy  24W, — 32Wy + 24W5 — 15W3
Note that the sequences {P,} and {C,,} which are defined in the section Introduction, are

the special cases of the generalized Pierre sequence {W, }. For convenience, we can give the
definition of these two special cases of the sequence {W,}, in this section as well. Pierre
sequence {P,},>o and Pierre-Lucas sequence {C),},>¢ are defined, respectively, by the fourth-

order recurrence relations

P, = 2P7L—1_Pn—47 P0207P1:1;P2:2a P3:4, ’I’LZ4,

2C,1 = Chg, Co=4,01=2,0=4,C3=8, n=>4
The sequences {P,},>0 and {C),},>0 can be extended to negative subscripts by defining

P_, = 2}D—(n—i‘)) - P—(n—4)v

Con = 20_(n_3)—C_(n_y,
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for n=1,2,3,... respectively.
Next, we present the first few values of the Pierre and Pierre-Lucas numbers with positive
and negative subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative

subscripts.
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
P, 0 1 2 4 8 15 28 52 96 177 326 600 1104 2031
P, 0 0 0 -1 O 0 -2 1 0 —4 4 -1 =8 12
c, 4 2 4 8 12 22 40 72 132 242 444 816 1500 2758

c.,, 4 0 0 6 -4 0 12 -14 4 24 —40 22 4 —-104
(1.5) can be used to obtain the Binet formula of generalized Pierre numbers. Binet’s

formula of generalized Pierre numbers can be given as follows:

Theorem 9. (Four Distinct Roots Case: « # 8 # v # 6 = 1) For all integers m, Binet’s formula of

generalized Pierre numbers is

(aWs3 — a2 — a)Ws + (—a? + a+ 1)W; — Wy)a™

W, =

202 +2a — 2
+(Bws — B2 = B)Wa + (=>4 B+ 1)W1 — W) "
287 + 25 -2
(VW5 =2 =)W + (=7* + 7 + YW1 — Wo)y"
+
292 4+ 2y —2
_W3—W2—W1—W0

2

Pierre and Pierre-Lucas numbers can be expressed using Binet’s formulas as follows.

Corollary 10. (Four Distinct Roots Case: o # 8 # v # 6 = 1) For all integers n, Binet’s formula of Pierre

and Pierre-Lucas numbers are

p _(@tatla" (B2+A+DS"  (P+y+1" L
T2t +a—-1) 282+ 8-1) 20+ -1) 2

and

Cn :an+ﬁn+’yn+1a
respectively.

Note that Binet’s formulas of Tribonacci and Tribonacci-Lucas numbers, respectively, are

_ (Ol—l) n+2 (5_1) n+2 (’7_1) n+2
L= sw g tam T Ty
_ (Oé B 1) n+2 (ﬁ - 1) n+2 (ry B 1) n+2
W ta-DY Tamyp-1n" Tapis-n)
Kn — a/IL_’_ﬂ’IL_’_,yﬂ/’
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see, Soykan [19] for more details.
So, by using Binet’s formulas of Pierre, Pierre-Lucas and Tribonacci, Tribonacci-Lucas
numbers, (or by using mathematical induction), we get the following Lemma which contains

many identities:

Lemma 11. For all integers n, the following equalities (identities) are true:

(a)
o T3 = Puys— Py
.Tn:Pn+3_2Pn+2+Pn'
o 2Py = 9T)s0 + 8Ty + 5T, — 1.
o 2P, = Tpyo + T — 1.
.Tn+1:Pn+1_Pn~

(b)
° 22Tn+3 = 90n+3 + C(’n+2 - 4Cn+1 - 6C.
L] 22Tn = —Up43 + 6Cn+2 — 2Cn+1 — 3Cn
L4 Cn+4 = 7Tn+2 + 4Tn+1 + 3Tn + 1.
L4 On - - n+2+4Tn+1 _Tn+1
] 22Tn = 5Cn+2 - 3Cn+1 - 4071, + 2.
L4 Cn+1 + 3Cn = 10Tn+1 — 4Tn + 4.

(c)
.Kn+3:Pn+3+Pn+2+Pn+1_3Pn~
.Kn:_Pn+3+Pn+2+5Pn+1_5Pn~
o 22P, 14 = 34K, 10 + 28K,s1 + 19K, — 11.
o 22P, = 4K io + 2Kpi1 — Ky — 11,
o K, = 4Py 1 — 6P, — 1.

(d)

e 2K, 3= 3Cn+3 - Cn+2 - On+1 —Cy.
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e 2K, = n+3 — Cn+2 - Cn+1 + Cn
® n+4 :2Kn+2+2Kn+1 +Kn+]-
e (), =K, +1.

e K, =C, —1.

(o]
Next, we give the ordinary generating function Y W,2" of the sequence W,,.
n=0

o0
Lemma 12. Suppose that fw, (z) = > Wy,z" is the ordinary generating function of the generalized Pierre
n=0

[e.e]
sequence {W,}. Then, > W, z" is given by
n=0

i W. 2" = WO + (Wl — QWO)Z + (W2 - 2W1)Z2 + (W3 — 2W2)23
~ " 1—2z+ 24 '

Proof. Take r=2,s =0,t =0,u = —1 in Lemma 3.

The previous lemma gives the following results as particular examples.

Corollary 13. Generating functions of Pierre and Pierre-Lucas numbers are

~ " o 1-2z424 (14 z+22423)(2—1)
icn —6z +4 —6z +4

n< = = )
o 1—2z+42% (142422423 (z-1)

respectively.

3 Simson Formulas

Now, we present Simson’s formula of generalized Pierre numbers.

Theorem 14 (Simson’s Formula of Generalized Pierre Numbers). For all integers n, we have
Wiis Wago Wiy Wy

Wiva Wipr  Wn Wi
Woper Wn Wia1 Wyos

Wn Wn—l Wn—2 Wn—3
(7W3 —3Wy — Wl)WQQ + (3W3 + Wy — Wo)le + (W3 + Ws + W1)W02 + 4(—W2W3 — WoWs3 + W0W2)W1).

= (Ws—Wa— W1 —Wo)(WE—W§ W3- W@+ (—5Wa+ Wy +Wo) W2+

Proof. Take r=2,5s =0,t =0,u = —1 in Theorem 4. [J

The previous theorem gives the following results as particular examples.
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Corollary 15. For all integers n, the Simson’s formulas of Pierre and Pierre-Lucas numbers are given as

Pn+3 Pn+2 Pn+1 Pn
Pn+2 Pn+1 Pn Pnfl

= 1,
P7L+1 Pn Pn—l Pn—2
Pn Pn—l Pn—2 Pn—3
Cn+3 Cn+2 Cn+1 Cn
Chi2a Chp Cn Cn_
+2 +1 1 _ —176,

Cn+1 Cn Cn—l Can
Cn Cnfl Cn72 Cnf?)

respectively.

4 Some Identities

In this section, we obtain some identities of Pierre and Pierre-Lucas numbers. First, we can

give a few basic relations between {W,} and {P,}.

Lemma 16. The following equalities are true:

(a) Wn = (4W2 - WO — 2W3)Pn+5 + (4W0 - W1 — 8W2 + 4.W3)Pn+4 + (4W1 - 4W0 — W2)Pn+3 + (4W2 —
AWy — W3) Ppyo.

(b) W, = (2Wo — W1)Poys+ (4W1 — AWy — W) Py s + (AWo — AWy — W) Py o + (Wo — AWs + 2Ws) Py 1.
(c) Wy = (2W1 — Wa)Poys + (4Ws — AWy — W3) Poyo + (Wo — 4Ws + 2W3) Poyr + (Wi — 2W5) Py.

(d) Wy, = (2Wy — W3)Ppia + (Wo — 4Wa + 2W3) Py + (W1 — 2Wo) Py + (Wa — 2W1) Py

(e) Wy = WoPy1 + (W1 — 2Wo) Py + (Wy — 2W1) Po_y + (W3 — 2W5) P_s.

(£) (Wo+ Wi+ Wy — Ws) (W3 + W5+ W3 — W3+ WoW2 — WEW; + 3WoW2 — WEW, — WoW2 + Wy W2 —
WEWs — W2Wy — Wy W2 — 3W2Ws + 5Wo W2 — TWEW; — AW W1 Wa + AW, W,y W + AW, Wo W) P, =
— (W3 + 2W3 + AW3 + WoW2 — W2W, + WoW2 — AW2Ws — 6Wo Wy Wa + 2Wo Wi Wa) Wiy s + (W3 +
W2W, — 2WoW2 — WiW2 + W2W;5 — AWoW2 + AW2Wy — 2Wo Wi W + 2WoWoWs) Wiio + (W5 —
WoW2 + W2Wa + WoW2 + 2W2W; — 2WoWoWs — 2W1 W Wa) W1 + (W3 +2W5 + WEW5 + Wi W2 —
W2Ws5 — 2Wo Wy Wa — 2W WaW3) W,

Proof. Note that all the identities hold for all integers n. We prove (a). To show (a), writing

Wn=a><Pn+5+b><Pn+4+c><Pn+3+d><Pn+2
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and solving the system of equations

Wo = axXPs+bxPy+cexPys+dx Py
Wi = axPs+bxPs+cx Py+dx P3
Wo = axPr+bxPs+cx Ps+dx Py
Wy = axPs+bxPr+cx Pg+dx Ps

we find that a = 4W2 —W0—2W3,b = 4W0—W1 —8W2 +4W3,C == 4W1 —4WO—W2,CZ = 4W2—4W1 —Wg.
The other equalities can be proved similarly. []
Note that all the identities in the above Lemma can be proved by induction as well.

Next, we present a few basic relations between {W,} and {C,}.

Lemma 17. The following equalities are true:

(a) 22W,, = 7(3WO +2W1 +16W5 — 10W3)Cn+5 — (4W0 — Wi —30Wsy + 16W3)Cn+4 —+ (].GWO —4Wi + Wy —
QW) Cruss + (2Wo + 16W; — 4Ws — 3W3)Chnso.

(b) 22W,, = —(10WO + 3W1 +2W5 — 4W3)Cn+4 + (16W0 — AW +Wo — 2W3)Cn+3 + (2W0 + 16W7 —4W5 —
3W3)Cn+2 + (SWO + 2W1 + 16W5 — 10W3)Cn+1.

(C) 22W,, = —(4W0 + 10W1 +3W5 — 6W3)On+3 + (2W0 +16W1 —4Ws — 3W3)On+2 + (3W0 +2W7 +16W5 —
10W3)On+1 + (10W() + 3W1 + 2W5 — 4W3)Cn

(d) 22W,, = —(6W0 + 4W1 + 10W5 — 9W3)Cn+2 + (3Wo + 2W5 + 16W4 — 10W3)Cn+1 + (].OWO + 3Wy +
2Wo — 4W3)Cn + (4WO + 10W7 + 3Ws — 6W3)Cn,1.

(e) 22W,, = —(9W0 + 6W1 4+ 4W5 — 8W3)Cn+1 + (1OWO + 3W7 +2W, — 4W3)Cn + (4W0 + 10W1 4+ 3W5 —
6W3)Cn_1 + (6WO + AWy + 10Wy — 9W3)Cn_2.

(£) (Wo+ Wi+ Wy — Ws) (W3 + W3+ W3 — W3+ WoW2 — WEW; + 3WW2 — WEW, — WoW2 + Wy W2 —
WEWs — W2Wy — Wy W2 — 3W2EWs + 5Wo W2 — TW2Ws — AW Wy W + AW W1 Ws + AW, WoWs)C,, =
—2(W +2W3+AW3S — 2W3 — 2WEW, + 5Wo W2 +2W, W2 — WEW,y — 2W2EWs + OWo W2 — 12W2Ws —
6TWo W1 Wa+6Wo W1 W3 — AW Wo W3 ) Wi 5 — 2(—2W35 +3W3 + 2Wo W2+ 3W2W, — 6 W W2 — 2W2 W, —
QW W2 — BW W2 — W2W;5 — 12WoW2 + 12W2W5 — 6Wo Wy Wy + 10WWaWs + AW, W Ws) Wiy —
2—2W3 — W3 — 3WoW2 + 3WEW, + 3WoW2 — 2W2Ws — 2W W2 + 6W2Ws + 2W2Ws5 + AW, W, W —
6WoWalWs — 2W i WoWs) Wit + 202WE + W3 + 2W3 + 2WoW2 — 3W2W5 — 2W2W, — 3W, W2 +
QW W2 — SWEW;s — 6Wo W1 Wa + AW W1 W + 6W, Wo W)W,

Now, we give a few basic relations between {P,} and {C,}.
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Lemma 18. The following equalities are true:

22P, = 6Cph45 —3Chta —10C, 43 —4C, 12,
22P, = 9Cp44 —10C, 43 —4Ch 412 — 6Cy 11,
22P, = 8Cp43—4C,42 —6C,+1 —9C,,
22P, = 12C,42 —6Cy4+1 —9C, —8C) 1,
22P, = 18Cn41 —9C, —8C,_1 —12C, 1,
and

Cn, = —A4P,45+14P, 4 —12P, 3,

C, = 6P,44—12P,13+4P, 41,

C, = 4P,;1 —6P,.

5 Relations Between Special Numbers

In this section, we present identities on Pierre, Pierre-Lucas numbers and Tribonacci, Tribonacci-

Lucas numbers. We know that

9P, = Tpyo+Th—1,
Cn = —Thpo+4T041 —Tn+1,
C, = K,+1,

22P, = 4K,i0+2K, — K, —11.

Note also that from Lemma 16 and Lemma 17, we have the formulas of W,, as
W, = (2W1; —Wu)Phyis+ AWy — AW — W5)Ppyo + (Wo — 4Ws + 2W3) P, + (W1 — 2W0) Py,
22W,, = —(4Wy + 10W; + 3Wo — 6W3)Chq3 + (2Wo + 16W7 — 4Ws — 3W3)Clqa

+(3Wo +2W1 + 16W5 — 10W3)Cn+1 + (10W0 + 3W1 + 2W5 — 4W3)Cn.

Using the above identities, we obtain the relation of generalized Pierre numbers and Tri-

bonacci, Tribonacci-Lucas numbers in the following forms:

Lemma 19. For all integers n, we have the following identities:

(@) 2W, = (3Wa — Wy — Wo — W3)Tpya + 2(Wo — 2Wa + W3)Thyr + (3W1 — Wo — 3Wa + W3)T, — W +
Wy + Wy + Wo.

(b) 22W,, = (6W, — 2Wo — TWs + 3W3) Knso — (Wo + 8Wy — 13Wa + 4Ws)Kpsr + (6Wo — TW1 — Wa +
2W3)Kn + 11(W0 + Wi+ Wy — W3)
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6 On the Recurrence Properties of Generalized Pierre Sequence

Taking r =2,5s =0, =0,u = —1 in Theorem 5, we obtain the following Proposition.
Proposition 20. For n € Z, generalized Pierre numbers (the case r = 2,8 = 0,t = 0,u = —1) have the
following identity:
1
W—n = 6(_6W3n + GCnWQn - 303Wn + 3C2an + WOCS + 2VVOC'?m - SWOCnC2n)-

From the above Proposition 20 (or by taking G, = P, and H,, = C, in (1.10) and (1.11)
respectively), we have the following corollary which gives the connection between the special
cases of generalized Pierre sequence at the positive index and the negative index: for Pierre
and Pierre-Lucas and Pierre numbers: take W, = P, with P, =0,P, =1, P, =2, P; =4 and take
W, = C), with Cy =4,C; = 2,C5 =4,C5 = 8, respectively. Note that in this case H, = C),.

Corollary 21. For n € Z, we have the following recurrence relations:
(a) Pierre sequence:

1
P_p = 5(=2Psn + 20 Pon = Ci P+ Con P).

(b) Pierre-Lucas sequence:

c_, = (03 + 2C3, — SCQnCn) .

1
6
We can also present the formulas of P_,, and C_,, in the following forms.

Corollary 22. For n € Z, we have the following recurrence relations:
(a) P—n = *2(2Pn+1 - 3Pn>2pn + (4Pn+1 - 9P71,)P2n + 2PnP2n+1 - P3n~
(b) an = %(Ts + 177%_2 + TnTn+2 - 4Tn:rn+1 + TnTn72 - 4Tn71Tn72 + T2n + T2n74 - 1)

(C) C,n = (K,QZ — K2n + 2)

N[ =

Proof.

(a) By using the identity C,, = 4P,11 — 6P, and Corollary 21, (or by using Corollary 6 (a)) we
get
P, =—2(2P,;1 —3P,)*P, + (4P 1 — 9P,) Py, + 2P, Poy i1 — Psy.

(b) Since P, = 7(Tn+2 +T,—1)and T_,, = T? + Ty, + T4 2Ty, — 4T,,11T,, (see, for example Soykan
[24]), we get

P— 2 (T2 + T2 -2 + T, Tn+2 4TnTn+1 + TnTn—Q - 4Tn—1Tn—2 + TQn + T2n—4 - 1)

(c) Since C,, = K,, +1 and K_,, = (K2 — K»,) (see, for example Soykan [24]), we obtain

1
2

1
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7 Sum Formulas

The following Corollary gives sum formulas of Tribonacci and Tribonacci-Lucas numbers.

Corollary 23. Forn > 0, Tribonacci and Tribonacci-Lucas numbers have the following properties:
(a)

(1) Ypeo Tk = 5(Thisz — Tnyr — 1).

(i) Yor_oTor = 5(Tont1 + Ton — 1).

(iil) Yr_o Toks1 = 2 (Tont2 + Tong1).
(b)

(i) EZ:O Kk: = %(Kn+3 - K7L+1)'

(ii) Yp_o Kow = 5 (Kong1 + Kon +2).

(iil) Yr_o Kokt1 = 3(Konto + Kong1 — 2).

Proof. It is given in Soykan [17, Corollary 2.3 and Corollary 2.4]. [

The following Corollary presents sum formulas of Pierre and Pierre-Lucas numbers.

Corollary 24. For n > 0, Pierre and Pierre-Lucas numbers have the following properties:
(a)

(i) EZ:O Py = %(2T7L+2 +Tpe1 + T, —n—3).

(ii) EZ:O Py = %(T2n+2 + Topt1 +Top —n —2).

(lil) ZZ:O P2k+1 = %(QTQTH_Q —+ 2T2n+1 —+ Tgn —n— 2)
(b)

(1) Yo Cr = 3(Knyo + Kn +2(n+1)).

(i) Yh_o Cor = 3(Kant1 + Kon +2(n +2)).

(iii) Y-y o Cort1 = %(K2n+2 + Kont1 + 2n).

Proof. The proof follows from Corollary 23 and the identities

1
P, = §(Tn+2+Tn_1>7
C, = K,+10O
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8 Matrices and Identities Related With Generalized Pierre Num-

bers

If we define the square matrix A of order 4 as

2 0 0 -1
1 0 0 O
A =
01 0 O
00 1 O
and also define
Pn+1 —In-2 —In—-1 _Pn
Bn _ Pn —4tn-3 —In-2 —In-1
Pnfl —4In-4 —1In-3 —4In-2
Pn72 _Pn75 ~—1In—-4 —ILn-3
and
Wn+1 _Wn—Q —V¥n-—1 _Wn
Un _ Wn *Wn—3 —VWn-2 —VWn-1
anl —Wn—4 —VWn-3 “TVWn-2
Wn72 _Wn75 —VWn—4 —V¥n-3

then we get the following Theorem.
Theorem 25. For all integers m,n, we have
(a) B, =A™
(b) U, A™ = A™U;.
(¢) Untm = UpBy, = BUy,.
Proof. Take r =2,5s =0,t =0,u = —1 in Theorem 7. [J
Corollary 26. For all integers n, we have the following formulas for the Pierre and Pierre-Lucas numbers.

(a) Pierre Numbers.

n

2 0 0 -1 Pn+1 I n-2 —4dn—-1 _Pn
An 100 O _ P, —-P,3 —P,_2 —FP
01 0 O P,1 —Poy —Pr3 —P,o
0 0 1 0 Pn—2 n—>5 —4dn—-4 —4n-3
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(b) Pierre-Lucas Numbers.

a11 a2 @13 ai4

@21 A22 Aa23 (24

=
as1 as2 az3 34
(41 Q42 043 Q44
where
a11 = 8Cn44 —4Cn 43 — 6Ch12 — 9011
ag1 = 8Ch 43 —4C, 49 — 6C, 11 — 9C,
az1 = 8Ch42 —4C, 41 — 6C, —9C,_1
aq1 = 8Cp41 —4C,, —6C,_1 — 9C,_2
a1z = —(8Chy1 — 4C, — 6C_1 — 9C,,_2)
aze = —(8C,, —4Cy,_1 — 6Cp,_2 — 9C),_3)
agy = —(8Cp—1 —4C,_2 — 6C,_3 — 9C),_4)
a40 = —(8Cp—2 —4Cy_3 — 6Cy_y — 9C,,_5)
a13 = —(8Chy2 — 4Cp 41 — 6C, —9C, 1)
aszs = —(8Ch41 — 4C, — 6Cp_1 — 9C,,—2)
ass = —(8C,, —4Cy,_1 — 6Cp,_2 —9C),_3)
a43 = —(8Cp—1 —4C_2 — 6C,_3 —9C),_4)
a14 = —(8Chy3 — 4Cp 42 — 6CH1 — 9C,,)
agy = —(8Ch42 — 4Cp 41 — 6C, —9C,, 1)
asy = —(8Ch41 — 4C, — 6Cp_1 —9C,,_2)
agqg = —(8C, —4C,_1 — 6Cp_2 —9C,,_3)
Proof.

(a) It is given in Theorem 25 (a).
(b) Note that, from Lemma 18, we have
22P, = 8Cp43 —4C, 42 — 6C, 11 — 9C,,.
Using the last equation and (a), we get the required result. O
Using the above last Corollary and the identities

2P, = Tn+2 +T, -1,

22Pn == 4Kn+2 + QKn+1 — Kn — 11,

we obtain the following formulas for Tribonacci and Tribonacci-Lucas numbers.
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Corollary 27. For all integers n, we have the following formulas for Tribonacci and Tribonacci-Lucas

numbers.

(a) Tribonacci Numbers.
bin biz biz bus

An b21 b22 b23 b24

N

bs1 b3z b3z bas

byr  baz baz  bay
where
bi1 =Thyo +2T 41 + 1, — 1

boy =Thy2+T, —1
b3r =Thyo —Tn—1
by = —Thyo + 2T 11 + T, — 1

bio = Toyo — 2Tpss — Ty + 1
boo = —Thyo + 2T 11 — T, +1
bse = —Tpyo + 31, +1
bis = 3Tyro — AT, 1 — 3Ty + 1

biz=-Thia+ T, +1
bog = Tora — 2Tpp1 — To + 1
bss = —Tpyo+ 2T — T, +1

byz = Ty +3T, +1

big = —Thyo —Th +1
bog = —Thyo +Tn +1
by = Toso — 2Tt — T + 1
baa = —Topo + 2Tt — Ty + 1
(b) Tribonacci-Lucas Numbers.
€11 €12 €13 Ci4
€21 C22 C23 C24
€31 C32 €33 C34

Cq1  C42 C43 Cy4

where
c11 =6K,40+3K,41 +4K, — 11

Co1 = 4Kn+2 + 2Kn+l - Kn —11
c31 = —Kpyo+ 5K, + 3K, — 11
cy1 = 3K 40 — 4Ky, y1 + 2K, — 11
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Cro = —3Knio + 4K s — 2Ky + 11
Co2 = —2Kpi9 — Kpy1 + 6K, +11
Cy2 = 6Kpro — 8Ky — TK, + 11
Cao = —TKnio + 13Kps1 — Ky + 11

13 = Kppg — 5Kpy1 — 3K, + 11
Cog = —3Kpio+ 4Kpiq — 2K, + 11
33 = —2K 40 — Kpiq + 6K, + 11
cas = 6Kppg — 8Kpnyy — TK, + 11

cra = —4K, 0 — 2K + K + 11
eon = Kpio — 5Kpiq — 3K, + 11
3 = —3Knyo 4+ 4K 41 — 2K, + 11
cin = —2Kp 0 — Kpiq + 6K, + 11

Next, we present an identity for W, ,,,.

Theorem 28. For all integers m,n, we have

Wner - WanJrl - anlpmf2 - Wn72Pm71 - Wn73Pm-

Proof. Take r =2,s=0,t =0,u = —1 in Theorem 8. []

As particular cases of the above theorem, we give identities for P, ,,

Corollary 29. For all integers m,n, we have

Pner - PanJrl - Pn71Pm72 - Pn72Pm71 - Pn73Pm7

Cner - Cnpm+1 - C’nfl]Dmf2 - Cn72pm71 - Cn73pm~

Taking m = n in the last corollary, we obtain the following identities:

PQn - PrLP7L+1 - 2Pn—1Pn—2 - P7L—3PIL7

0271 - CnPn+1 - Cn—IPn—Q - Cn—ZPn—l - On—?)Pn-
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