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Abstract

In this paper we study the form of the solutions of the following systems of difference equations

wn+1 =
sn(wn−3 + sn−4)

sn−4 + wn−3 − sn
, sn+1 =

wn−2(wn−2 + sn−3)

2wn−2 + sn−3
.

wn+1 =
(sn−4 − wn−3)sn
sn−4 − wn−3 + sn

, sn+1 =
(sn−3 − wn−2)wn−2

sn−3
.

With nonzero real numbers initial conditions.
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1 Introduction:

Recently, there has been great interest in studying difference equation systems. This is due,to
the need for certain methods that can be used to analyze equations emerging in mathematical
models depicting exact situation in the fields of population biology, economics, probability the-
ory, genetics, psychology, and others. Difference equations naturally arise as discrete analogs
and as numerical solutions to differential and delay differential equations having applications
in biology, ecology, economy, physics, and other fields. See [1–10] and the references cited
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therein. There are many papers related to the difference equations system, for example, the
periodicity of solutions of the system of rational difference equations

wn+1 =
wn−1 + sn
wn−1sn−1

, sn+1 =
sn−1 + wn

sn−1wn−1

was studied by Kurbanli et al. in [18].

Touafek et al.[21] studied the periodic nature and gave of the solutions of the systems of
difference equations

wn+1 =
wn−3

±1± wn−3sn−1
, sn+1 =

sn−3

±1± sn−3wn−1
.

Kurbanli et al. [19] studied the behavior of the positive solutions of the following system

wn+1 =
wn−1

1 + wn−1sn
, sn+1 =

sn−1

1 + sn−1wn
.

Mansour et al. [20] investigated the behavior of solutions of the difference equations systems

wn+1 =
wn−5

−1 + wn−5sn−2
, sn+1 =

sn−5

±1± sn−5wn−2
.

Zhang et al. [27] studied the dynamics of a system of the third-order difference equation

wn+1 =
wn−2

B + snsn−1sn−2
, sn+1 =

sn−2

A+ swnn−1wn−2
.

Similarly, difference equations and nonlinear systems of the rational difference equations were
investigated see [1]-[27].
Our aim in this paper is to consider the following systems of difference equations

wn+1 =
sn(wn−3 + sn−4)

sn−4 + wn−3 − sn
, sn+1 =

wn−2(wn−2 + sn−3)

2wn−2 + sn−3
.

wn+1 =
(sn−4 − wn−3)sn
sn−4 − wn−3 + sn

, sn+1 =
(sn−3 − wn−2)wn−2

sn−3
.

With nonzero real numbers initial conditions.

2 The system wn+1 =
sn(wn−3+sn−4)
sn−4+wn−3−sn

, sn+1 =
wn−2(wn−2+sn−3)

2wn−2+sn−3

In this section, we study the solutions of the system of the difference equations

wn+1 =
sn(wn−3 + sn−4)

sn−4 + wn−3 − sn
, sn+1 =

wn−2(wn−2 + sn−3)

2wn−2 + sn−3
. (1)

The initial conditions of system (1) are arbitrary real numbers.
Theorem 1. Suppose that {wn, sn} are solutions of system (1). Then solutions of {wn} are
periodic with period four and given by the following formulas for n=1,2,... ,

w4n−1 = c, w4n = d, w4n+1 =
g(f + a)

f + a− g
, w4n+2 = b,
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s4n−1 =
d(dϕ2n+1 + tϕ2n)

dϕ2n+2 + tϕ2n+1
, s4n =

g(a+ f)((a+ f)ϕ2n − gϕ2n−2)

(f + a− g)((a+ f)ϕ2n+1 − gϕ2n−1)
,

s4n+1 =
b(bϕ2n+1 + hϕ2n)

bϕ2n+2 + hϕ2n+1
, s4n+2 =

c(cϕ2n+1 + rϕ2n)

cϕ2n+2 + rϕ2n+1
.

Where w−3 = a, w−2 = b, w−1 = c, w0 = d, s−4 = f, s−3 = h, s−2 = r, s−1 = t, s0 = g and
{ϕ}∞m=0 = {1, 1, 2, 3, 5, ...}, ϕm+2 = ϕm+1 + ϕm.
Proof: For n=0, the result holds. Now, suppose that n > 0 and that our assumption holds for
n− 1 and n− 2. That is

w4n−5 = c, w4n−4 = d, w4n−3 =
g(f + a)

f + a− g
, w4n−2 = b,

s4n−5 =
d(dϕ2n−1 + tϕ2n−2)

dϕ2n + tϕ2n−1
, s4n−4 =

g(a+ f)((a+ f)ϕ2n−2 − gϕ2n−4)

(f + a− g)((a+ f)ϕ2n−1 − gϕ2n−3)
,

s4n−3 =
b(bϕ2n−1 + hϕ2n−2)

bϕ2n + hϕ2n−1
, s4n−2 =

c(cϕ2n−1 + rϕ2n−2)

cϕ2n + rϕ2n−1
,

w4n−9 = c, w4n−8 = d, w4n−7 =
g(f + a)

f + a− g
, w4n−6 = b,

s4n−9 =
d(dϕ2n−3 + tϕ2n−4)

dϕ2n−2 + tϕ2n−3
, s4n−8 =

g(a+ f)((a+ f)ϕ2n−4 − gϕ2n−6)

(f + a− g)((a+ f)ϕ2n−3 − gϕ2n−5)
,

s4n−7 =
b(bϕ2n−3 + hϕ2n−4)

bϕ2n−2 + hϕ2n−3
, s4n−6 =

c(cϕ2n−3 + rϕ2n−4)

cϕ2n−2 + rϕ2n−3
.

Now, it follows from Eq.(1) that

w4n =
s4n−1(w4n−4 + s4n−5)

s4n−5 + w4n−4 − s4n−1

=

d(dϕ2n+1+tϕ2n)
dϕ2n+2+tϕ2n+1

(d+ d(dϕ2n−1+tϕ2n−2)
dϕ2n+tϕ2n−1

)

d(dϕ2n−1+tϕ2n−2)
dϕ2n+tϕ2n−1

+ d− d(dϕ2n+1+tϕ2n)
dϕ2n+2+tϕ2n+1

=

d(dϕ2n+1+tϕ2n)
dϕ2n+2+tϕ2n+1

(d(dϕ2n+tϕ2n−1)+d(dϕ2n−1+tϕ2n−2)
dϕ2n+tϕ2n−1

)

d(dϕ2n−1+tϕ2n−2)(dϕ2n+2+tϕ2n+1)+d(dϕ2n+tϕ2n−1)(dϕ2n+2+tϕ2n+1)−d(dϕ2n+1+tϕ2n)(dϕ2n+tϕ2n−1)
(dϕ2n+tϕ2n−1)(dϕ2n+2+tϕ2n+1)

= d.

And

s4n =
w4n−3(w4n−3 + s4n−4)

2w4n−3 + s4n−4

=

g(f+a)
f+a−g (

g(f+a)
f+a−g + g(a+f)((a+f)ϕ2n−2−gϕ2n−4)

(f+a−g)((a+f)ϕ2n−1−gϕ2n−3)
)

2g(f+a)
f+a−g + g(a+f)((a+f)ϕ2n−2−gϕ2n−4)

(f+a−g)((a+f)ϕ2n−1−gϕ2n−3)

=

g(f+a)
f+a−g (

((a+f)(ϕ2n−1+ϕ2n−2)−g(ϕ2n−3+ϕ2n−4)
((a+f)ϕ2n−1−gϕ2n−3)

)

2((a+f)ϕ2n−1−gϕ2n−3)+((a+f)ϕ2n−2−gϕ2n−4)
((a+f)ϕ2n−1−gϕ2n−3)
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=
g(a+ f)((a+ f)ϕ2n − gϕ2n−2)

(f + a− g)((a+ f)ϕ2n+1 − gϕ2n−1)
.

Also,

w4n−1 =
s4n−2(w4n−5 + s4n−6)

s4n−6 + w4n−5 − s4n−2

=

c(cϕ2n−1+rϕ2n−2)
cϕ2n+rϕ2n−1

(c+ c(cϕ2n−3+rϕ2n−4)
cϕ2n−2+rϕ2n−3

)

c(cϕ2n−3+rϕ2n−4)
cϕ2n−2+rϕ2n−3

+ c− c(cϕ2n−1+rϕ2n−2)
cϕ2n+rϕ2n−1

=

c(cϕ2n−1+rϕ2n−2)
cϕ2n+rϕ2n−1

( c(cϕ2n−2+rϕ2n−3)+c(cϕ2n−3+rϕ2n−4)
cϕ2n−2+rϕ2n−3

)

c(cϕ2n−3+rϕ2n−4)(cϕ2n+rϕ2n−1)+c(cϕ2n−2+rϕ2n−3)(cϕ2n+rϕ2n−1)−c(cϕ2n−1+rϕ2n−2)(cϕ2n−2+rϕ2n−3)
(cϕ2n−2+rϕ2n−3)(cϕ2n+rϕ2n−1)

= c.

And

s4n−1 =
w4n−4(w4n−4 + s4n−5)

2w4n−4 + s4n−5

=
d(d+ d(dϕ2n−1+tϕ2n−2)

dϕ2n+tϕ2n−1
)

2d+ d(dϕ2n−1+tϕ2n−2)
dϕ2n+tϕ2n−1

=
d(d(dϕ2n+tϕ2n−1)+d(dϕ2n−1+tϕ2n−2)

dϕ2n+tϕ2n−1
)

2d(dϕ2n+tϕ2n−1)+d(dϕ2n−1+tϕ2n−2)
dϕ2n+tϕ2n−1

=
d(dϕ2n+1 + tϕ2n)

dϕ2n+2 + tϕ2n+1
.

Similarly, obtaining the other relations is very simple. Thus, the proof is completed.
Example 1. Figure 1 we consider the solution of Eq.(1) with the initial conditions w−3 =
0.66, w−2 = 0.4, w−1 = 2.2, w0 = 1.9, s−4 = 1.6, s−3 = 3.8, s−2 = 4.3, s−1 = 1.66 and s0 = 3.3.
Example 2. Figure 2 shows the solution of Eq.(1) when we assume that w−3 = 1.5, w−2 =
0.4, w−1 = 2.2, w0 = 3.9, s−4 = 0.5, s−3 = 1.8, s−2 = 0.3, s−1 = 3.66 and s0 = 2.1.

3 The system wn+1 =
(sn−4−wn−3)sn
sn−4−wn−3+sn

, sn+1 =
(sn−3−wn−2)wn−2

sn−3

In this section, we study the solutions of the system of the difference equations

wn+1 =
(sn−4 − wn−3)sn
sn−4 − wn−3 + sn

, sn+1 =
(sn−3 − wn−2)wn−2

sn−3
. (2)

The initial conditions of system (2) are arbitrary real numbers.
Theorem 1. Suppose that {wn, sn} are solutions of system (2). Then for n=0,1,2, ... , we have

w4n =
(t− d)d2t

(tϕn−2 + dϕn−3)(tϕn−1 + dϕn−2)(tϕn + dϕn−1)
,

w4n+1 =
(f − a)2g2

((f − a)ϕn+1 + gϕn)((f − a)ϕn + gϕn−1)((f − a)ϕn−1 + gϕn−2)
,
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Figure 1. This figure shows the behavior of the solution of the system (1) with initial values as in example
(1).

w4n+2 =
(h− b)b2h

(hϕn−1 + bϕn−2)(hϕn + bϕn−1)(hϕn+1 + bϕn)
,

w4n+3 =
(r − c)c2r

(rϕn−1 + cϕn−2)(rϕn + cϕn−1)(rϕn+1 + cϕn)
,

s4n =
(f − a)2g2

((f − a)ϕn−1 + gϕn−2)((f − a)ϕn + gϕn−1)2
,

s4n+1 =
(h− b)b2h

(hϕn−1 + bϕn−2)(hϕn + bϕn−1)2
,

s4n+2 =
(r − c)c2r

(rϕn−1 + cϕn−2)(rϕn + cϕn−1)2
,

s4n+3 =
(t− d)d2t

(tϕn−1 + dϕn−2)(tϕn + dϕn−1)2
.

Where {ϕ}∞m=−3 = {−1, 1, 0, 1, 1, 2, 3, ...}, ϕm+2 = ϕm+1 + ϕm.
Proof: For n=0, the result holds. Now, suppose that n > 0 and that our assumption holds for
n− 1 and n− 2. That is

w4n−4 =
(t− d)d2t

(tϕn−3 + dϕn−4)(tϕn−2 + dϕn−3)(tϕn−1 + dϕn−2)
,

w4n−3 =
(f − a)2g2

((f − a)ϕn + gϕn−1)((f − a)ϕn−1 + gϕn−2)((f − a)ϕn−2 + gϕn−3)
,

w4n−2 =
(h− b)b2h

(hϕn−2 + bϕn−3)(hϕn−1 + bϕn−2)(hϕn + bϕn−1)
,
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Figure 2. This figure shows the behavior of the solution of the system (1) with initial values as in example
(2).

w4n−1 =
(r − c)c2r

(rϕn−2 + cϕn−3)(rϕn−1 + cϕn−2)(rϕn + cϕn−1)
,

s4n−4 =
(f − a)2g2

((f − a)ϕn−2 + gϕn−3)((f − a)ϕn−1 + gϕn−2)2
,

s4n−3 =
(h− b)b2h

(hϕn−2 + bϕn−3)(hϕn−1 + bϕn−2)2
,

s4n−2 =
(r − c)c2r

(rϕn−2 + cϕn−3)(rϕn−1 + cϕn−2)2
,

s4n−1 =
(t− d)d2t

(tϕn−2 + dϕn−3)(tϕn−1 + dϕn−2)2
.

s4n−5 =
(t− d)d2t

(tϕn−3 + dϕn−4)(tϕn−2 + dϕn−3)2
.

Now, it follows from Eq.(2) that

w4n+1 =
(s4n−4 − w4n−3)s4n
s4n−4 − w4n−3 + s4n

=
ρ(a, f, g)

κ(a, f, g)

ρ(a, f, g) = (
(f − a)2g2

((f − a)ϕn−2 + gϕn−3)((f − a)ϕn−1 + gϕn−2)2

− (f − a)2g2

((f − a)ϕn + gϕn−1)((f − a)ϕn−1 + gϕn−2)((f − a)ϕn−2 + gϕn−3)
)
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× (f − a)2g2

((f − a)ϕn−1 + gϕn−2)((f − a)ϕn + gϕn−1)2

κ(a, f, g) =
(f − a)2g2

((f − a)ϕn−2 + gϕn−3)((f − a)ϕn−1 + gϕn−2)2

− (f − a)2g2

((f − a)ϕn + gϕn−1)((f − a)ϕn−1 + gϕn−2)((f − a)ϕn−2 + gϕn−3)

+
(f − a)2g2

((f − a)ϕn−1 + gϕn−2)((f − a)ϕn + gϕn−1)2

After some calculations we get

w4n+1 =

((f−a)ϕn−2+gϕn−3)g
2(f−a)2

((f−a)ϕn+gϕn−1)((f−a)ϕn−1+gϕn−2)

((f − a)ϕn + gϕn−1)((f − a)ϕn−2 + gϕn−3) + ((f − a)ϕn−2 + gϕn−3)((f − a)ϕn−1 + gϕn−2)

Hence, we have

w4n+1 =
(f − a)2g2

((f − a)ϕn+1 + gϕn)((f − a)ϕn + gϕn−1)((f − a)ϕn−1 + gϕn−2)
,

And

s4n+1 =
(s4n−3 − w4n−2)w4n−2

s4n−3

s4n+1 =
( (h−b)b2h
(hϕn−2+bϕn−3)(hϕn−1+bϕn−2)2

− (h−b)b2h
(hϕn−2+bϕn−3)(hϕn−1+bϕn−2)(hϕn+bϕn−1)

)

(h−b)b2h
(hϕn−2+bϕn−3)(hϕn−1+bϕn−2)2

× (h− b)b2h

(hϕn−2 + bϕn−3)(hϕn−1 + bϕn−2)(hϕn + bϕn−1)

=
(hϕn + bϕn−1 − hϕn−1 − bϕn−2)(h− b)b2h

(hϕn−1 + bϕn−2)(hϕn−2 + bϕn−3)(hϕn + bϕn−1)2

So, we have

s4n+1 =
(h− b)b2h

(hϕn−1 + bϕn−2)(hϕn + bϕn−1)2
.

Also,

w4n+2 =
(s4n−3 − w4n−2)s4n+1

s4n−3 − w4n−2 + s4n+1

=
ρ(b, h)

κ(b, h)

ρ(b, h) = (
(h− b)b2h

(hϕn−2 + bϕn−3)(hϕn−1 + bϕn−2)2
− (h− b)b2h

(hϕn−2 + bϕn−3)(hϕn−1 + bϕn−2)(hϕn + bϕn−1)
)

× (h− b)b2h

(hϕn−1 + bϕn−2)(hϕn + bϕn−1)2
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κ(b, h) =
(h− b)b2h

(hϕn−2 + bϕn−3)(hϕn−1 + bϕn−2)2

− (h− b)b2h

(hϕn−2 + bϕn−3)(hϕn−1 + bϕn−2)(hϕn + bϕn−1)

+
(h− b)b2h

(hϕn−1 + bϕn−2)(hϕn + bϕn−1)2

After some calculations we get

w4n+2 =

(hϕn−2+bϕn−3)(h−b)b2h
(hϕn+bϕn−1)(hϕn−1+bϕn−2)

(hϕn + bϕn−1)(hϕn−2 + bϕn−3) + (hϕn−2 + bϕn−3)(hϕn−1 + bϕn−2)

Hence, we have

w4n+2 =
(h− b)b2h

(hϕn + bϕn−1)(hϕn−1 + bϕn−2)(hϕn+1 + bϕn)
.

And

s4n+2 =
(s4n−2 − w4n−1)w4n−1

s4n−2

s4n+2 =
( (r−c)c2r
(rϕn−2+cϕn−3)(rϕn−1+cϕn−2)2

− (r−c)c2r
(rϕn−2+cϕn−3)(rϕn−1+cϕn−2)(rϕn+cϕn−1)

)

(r−c)c2r
(rϕn−2+cϕn−3)(rϕn−1+cϕn−2)2

× (r − c)c2r

(rϕn−2 + cϕn−3)(rϕn−1 + cϕn−2)(rϕn + cϕn−1)

=
(rϕn + cϕn−1 − rϕn−1 − cϕn−2)(c− r)c2r

(rϕn−1 + cϕn−2)(rϕn−2 + cϕn−3)(rϕn + cϕn−1)2

So, we have

s4n+2 =
(r − c)c2r

(rϕn−1 + cϕn−2)(rϕn + cϕn−1)2
.

Similarly, obtaining the other relations is very simple. Thus, the proof is completed.
Example 3. Consider the difference system equation (2) with the initial conditions w−3 =
0.5, w−2 = 0.4, w−1 = 0.2, w0 = 0.9, s−4 = 1.6, s−3 = 0.8, s−2 = 0.3, s−1 = 1.6 and s0 = 0.3. (See
Fig.3) .
Example 4. We assume that the initial conditions for the difference system equation (2)
w−3 = 0.2, w−2 = 1.2, w−1 = 0.3, w0 = 1.9, s−4 = 0.3, s−3 = 0.28, s−2 = 0.5, s−1 = 0.1 and s0 = 0.13.
(See Fig.4) .
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Figure 3. This figure shows the behavior of the solution of the system (2) with initial values as in example
(3).

Figure 4. This figure shows the behavior of the solution of the system (2) with initial values as in example
(4).
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