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Abstract  

This study  

 

 

1 Introduction 

One of the common subjects discussed in applied mathematics is the approximation of solutions to the nonlinear 

equation 𝑓 𝑥 = 0, where 𝑓:𝐷 → ℝ is a function over the open interval 𝐷. Therefore, constructing iterative 

methods for solving 𝑓 𝑥 = 0 operations important in numerical analysis. To improve the local ranking of the 
affinity index and efficiency, several third and fourth order modified methods have been presented in the literature. 

For details we refer to [2], [4-9] and the references therein. 

2 Description of The Method 

A two steps third order method for solving nonlinear equations developed by Noor et. al. [3], which used 

five functions evaluations. This method had modified by Mastoi et. al. [1] which has two functions and two 

derivatives evaluations: 

𝑦𝑛 = 𝑥𝑛 −  
𝑓 𝑥𝑛  

𝑓 ′  𝑥𝑛  
,                                                                                                                                                  (1)

            

𝑥𝑛+1 = 𝑦𝑛 −  
4(𝑦𝑛−𝑥𝑛 )𝑓 𝑦𝑛  

 𝑦𝑛−𝑥𝑛   𝑓
′  𝑥𝑛  +𝑓′ 𝑦𝑛   +2 𝑓 𝑦𝑛  −𝑓 𝑥𝑛   

            (2) 

This method to be optimal, we need to reduce the number of functions evaluations to three,  𝑛 = 3. One way to do 

this is to replace the derivative of 𝑦𝑛 . Two approximations to 𝑓’ 𝑦𝑛   has been developed by ABABNEH [2]: 

𝑓1
′  𝑦𝑛  ≈

𝑓 ′  𝑥𝑛  𝑓 𝑥𝑛  
2

 𝑓 𝑥𝑛  +𝑓 𝑦𝑛   
2   ,                (3) 

𝑓2
′  𝑦𝑛  ≈

𝑓 ′  𝑥𝑛   𝑓 𝑥𝑛  + 𝛽−2 𝑓 𝑦𝑛   

𝑓 𝑥𝑛  +𝛽𝑓 𝑦𝑛  
,               (4) 
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where 𝛽𝜖𝑅. If  𝑓1
′  𝑦𝑛   or 𝑓2

′ 𝑦𝑛   have been used instead of 𝑓′ 𝑦𝑛   in the method of Sehrish et. al., [1], will also got a 

third order method. To go throw this, the weighted function ℋ 𝑣 , 𝑣 =
𝑓 𝑦𝑛  

𝑓 𝑥𝑛  
 will be used to increase the order from 

three to optimal forth.  

3 Convergence Analysis 

More, two algorithms will be haven as: 

Algorithm 1: 

𝑦𝑛 = 𝑥𝑛 −  
𝑓 𝑥𝑛  

𝑓 ′  𝑥𝑛  
,           (5) 

𝑥𝑛+1 = 𝑦𝑛 −  
4(𝑦𝑛−𝑥𝑛 )𝑓 𝑦𝑛  

 𝑦𝑛−𝑥𝑛   𝑓
′  𝑥𝑛  +𝑓1

′  𝑦𝑛   +2 𝑓 𝑦𝑛  −𝑓 𝑥𝑛   
ℋ 𝑣 ,𝑣 =

𝑓 𝑦𝑛  

𝑓 𝑥𝑛  
.     (6) 

 

Theorem 3.1: Let 𝐷 be an open interval and 𝑓 ∶  𝐷 →  ℝ  be sufficiently differentiable function. Suppose that 𝑚 is 
a simple zero of 𝑓and 𝑥𝑜  is sufficiently close to 𝑚. Denote 𝑒𝑛  =  𝑥𝑛 −  𝑚 and 𝑐𝑘 =  𝑓𝑘   (𝑚)/𝑘!. Then the family 

defined by (6) is an optimal fourth-order convergence if 𝑣 =
𝑓 𝑦𝑛  

𝑓 𝑥𝑛  
 and ℋ 0 = ℋ ′(0) = 1. 

Proof: Let 𝑒𝑛  =  𝑥𝑛 −  𝑚 be the error of the approximation in the 𝑛th iterative step. Using Taylor expansion of 

𝑓(𝑥𝑛  ) about 𝑚 and considering that  𝑓′  𝑥𝑛  ≠ 0 , we have 

𝑓 𝑥𝑛  = 𝑓′ (𝑚) 𝑒 + 𝑐2𝑒
2 + 𝑐3𝑒

3 + 𝑐4𝑒
4 + 𝑂 𝑒5        (7) 

Furthermore, we have 

𝑓’ 𝑥𝑛  = 𝑓′ (𝑚) 1 + 2𝑐2𝑒 + 3𝑐3𝑒
2 + 4𝑐4𝑒

3 + 5𝑐5𝑒
4 + 𝑂 𝑒5      (8) 

and 

𝑓 𝑥𝑛  

𝑓 ′  𝑥𝑛  
= 𝑒 − 𝑐2𝑒

2 +  2𝑐2
2 − 2𝑐3 𝑒

3 +  −4𝑐2
3 + 7𝑐2𝑐3 − 3𝑐4 𝑒

4 + 𝑂 𝑒5     (9) 

Substituting (9) in (5) yields 

𝑦 𝑥𝑛  = 𝑚 + 𝑐2𝑒
2 +  −2𝑐2

2 + 2𝑐3 𝑒
3 +  4𝑐2

3 − 7𝑐2𝑐3 + 3𝑐4 𝑒
4 + 𝑂 𝑒5 .    (10) 

Expanding 𝑓 𝑦𝑛   about 𝛿 and using (10), we have 

𝑓 𝑦𝑛  = 𝑓′ 𝑚  𝑐2𝑒
2 +  −2𝑐2

2 + 2𝑐3 𝑒
3 +  5𝑐2

3 − 7𝑐2𝑐3 + 3𝑐4 𝑒
4 + 𝑂 𝑒5 .    (11) 

Furthermore, we have 

𝑓1 ′ 𝑦 = 𝑓 ′  𝑚  1 +  −𝑐3 + 5𝑐2
2 𝑒2 +  −2𝑐4 + 18𝑐2𝑐3 − 20𝑐2

3 𝑒3 +  −3𝑐5 + 26𝑐2𝑐4 + 16𝑐3
2 − 103𝑐2

2𝑐3 +  80𝑐2
4 𝑒4 +

𝑂 𝑒5 .                                        (12) 

Using Taylor expansion of ℋ 𝑣 ,𝑣 =
𝑓 𝑦𝑛  

𝑓 𝑥𝑛  
, we have 

ℋ = ℋ 0 + ℋ ′ 0 𝑐2𝑒 +  −3ℋ ′ 0 𝑐2
2 + 2ℋ ′ 0 𝑐3 +  8ℋ ′ 0 𝑐2

3 − 10ℋ ′ 0 𝑐2𝑐3 + 3ℋ ′ 0 𝑐4 𝑒
3 

        + −20ℋ ′ 0 𝑐2
4 + 37ℋ ′ 0 𝑐2

2𝑐3 − 14ℋ ′ 0 𝑐2𝑐4 − 8ℋ ′ 0 𝑐3
2 + 4ℋ ′ 0 𝑐5 𝑒

4 + 𝑂 𝑒5   (13) 

Substituting (7-13) in (6) yields 

𝑥𝑛+1 = 𝑚 +  −ℋ 0 𝑐2 + 𝑐2 𝑒
2 + (3ℋ(0)𝑐2

2 −ℋ′(0)𝑐2
2 − 2ℋ(0)𝑐3 − 2𝑐2

2 + 2𝑐3)𝑒3

+  4𝑐2
3 − 7𝑐2𝑐3 + 3𝑐4 + 6𝑐2

3ℋ ′ 0 − 4ℋ 0 𝑐2𝑐3 −  
25

4
 𝑐2

3ℋ 0 + 10𝑐2ℋ 0 𝑐3

− 3ℋ 0 𝑐4 𝑒
4 + 𝑂 𝑒5  

Using the conditions ℋ 0 = ℋ ′(0) = 1, we got, 

𝑥𝑛+1 = 𝑚 +  
15

4
𝑐2

3 − 𝑐2𝑐3 𝑒
4 + 𝑂 𝑒5 . 

Then the algorithm 1, has order at least four, and the proof has been completed. 

 

Algorithm 2: 
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𝑦𝑛 = 𝑥𝑛 −  
𝑓 𝑥𝑛  

𝑓 ′  𝑥𝑛  
,           (14) 

𝑥𝑛+1 = 𝑦𝑛 −  
4 𝑦𝑛−𝑥𝑛  𝑓 𝑦𝑛  

 𝑦𝑛−𝑥𝑛   𝑓
′  𝑥𝑛  +𝑓2

′  𝑦𝑛   +2 𝑓 𝑦𝑛  −𝑓 𝑥𝑛   
 ℋ 𝑣 , 𝑣 =

𝑓 𝑦𝑛  

𝑓 𝑥𝑛  
.     (15) 

 

Theorem 3.2: Let 𝐷 be an open interval and 𝑓 ∶  𝐷 →  ℝ be sufficiently differentiable function. Suppose that 𝑚 is a 

simple zero of 𝑓 and 𝑥𝑜  is sufficiently close to 𝑚. Denote 𝑒𝑛  =  𝑥𝑛 −  𝑚 and 𝑐𝑘 =  𝑓𝑘   (𝑚)/𝑘!. Then the family 

defined by (15) is a family optimal fourth-order convergence if 𝑣 =
𝑓 𝑦𝑛  

𝑓 𝑥𝑛  
 and ℋ 0 = ℋ ′(0) = 1. 

Proof: using the equations (7) and (8) from the last proof, we got 

𝑓2 ′ 𝑦 = 𝑓′ 𝑚 (1 +  −𝑐3 + 2𝛽𝑐2
2 + 2𝑐2

2 𝑒2 +  −2𝑐4 − 8𝛽𝑐2
3 + 8𝛽𝑐2𝑐3 − 4𝑐2

3 + 6𝑐2𝑐3 − 2𝛽2𝑐2
3 𝑒3 + 

 14𝛽2𝑐2
4 + 2𝛽3𝑐2

4 + 26𝛽𝑐2
4 + 8𝛽𝑐3

2 + 8𝑐2
4 − 3𝑐5 + 4𝑐3

2 + 8𝑐2𝑐4 − 42𝛽𝑐2
2𝑐3 + 12𝛽𝑐2𝑐4 −  12𝛽2𝑐3𝑐2

2 − 16𝑐2
2𝑐3 𝑒

4 

+𝑂(𝑒5),𝛽 ∈ 𝑅.                                                                                                                                                   (16) 

                                                                                                           

 

Substituting (7-11), (13) and (16) in (6) yields 

 

 𝑥𝑛+1 = 𝑚 +  −ℋ 0 𝑐2 + 𝑐2 𝑒
2 +  3ℋ 0 𝑐2

2 −ℋ ′ 0 𝑐2
2 − 2ℋ 0 𝑐3 − 2𝑐2

2 + 2𝑐3 𝑒
3

+  4𝑐2
3 − 7𝑐2𝑐3 + 3𝑐4 + 6ℋ ′ 0 𝑐2

3 − 4ℋ ′ 0 𝑐2𝑐3 − 7ℋ 0 𝑐2
3 + 10ℋ 0 𝑐2𝑐3 − 3ℋ 0 𝑐4

+
1

2
𝛽ℋ 0 𝑐2

3 𝑒4 + 𝑂 𝑒5  

Using the conditions ℋ 0 = ℋ ′(0) = 1, we got, 

𝑥𝑛+1 = 𝑚 +  3𝑐2
3 − 𝑐2𝑐3 +

1

2
𝛽𝑐2

3 𝑒4 + 𝑂 𝑒5 ,𝛽 ∈ 𝑅. 

Then the algorithm 2, has order at least four, and the proof has been completed. 

4 Numerical examples 

In this section, nonlinear numerical examples are presented to illustrate the effectiveness of the proposed methods in 

this paper. 

The method (LM11) defined by using theorem 3.1the weighted with function 

ℋ 𝑣 = cos 𝑥 + sin(𝑥) . 
The method (LM12) defined by using theorem 3.1the weighted with function 

ℋ 𝑣 = 1 + 𝑣 + 𝐵 𝑣𝑎   , 𝐵 = −2,𝑎 = 2 . 

The method (LM21) defined by using theorem 3.2 the weighted 1 with function 

ℋ 𝑣 = cos 𝑥 + sin(𝑥) . 

The method (LM22) defined by using theorem 3.2 the weighted with function 

ℋ 𝑣 = 1 + 𝑣 + 𝐵 𝑣𝑎   , 𝐵 = −2,𝑎 = 2 . 

They were compared with some fourth-order methods. 

The ABABNEH method [2] (AM) defined by: 

𝑦𝑛 = 𝑥𝑛 −
𝑓 𝑥𝑛  

𝑓 ′  𝑥𝑛  
 , 

𝑥𝑛+1 = 𝑦𝑛 −
4(𝑦𝑛−𝑥𝑛 )𝑓(𝑦𝑛 )

 𝑦𝑛−𝑥𝑛   𝑓
′  𝑥𝑛  +𝑓 ′  𝑦𝑛   +2[𝑓 𝑦𝑛  −𝑓 𝑥𝑛  ]

 , 

the King method [7] (KM) defined by: 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 𝑥𝑛  

𝑓′ 𝑥𝑛  
−

𝑓 𝑥𝑛  + 𝛾𝑓 𝑦𝑛  

𝑓 𝑥𝑛  +  𝛾 − 2 𝑓 𝑦𝑛  

𝑓 𝑦𝑛 

𝑓′  𝑥𝑛  
,   𝛾 = 1 

The Traub method [8] (TM) defined by: 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛 )

𝑓′(𝑥𝑛 )
 , 

𝑥𝑛+1 = 𝑦𝑛 −
𝑓2(𝑥𝑛 )

 𝑓2 𝑥𝑛  −2𝑓(𝑥𝑛 )𝑓 𝑦𝑛   

𝑓(𝑥𝑛 )

𝑓′ (𝑥𝑛 )
 , 

 

The Hani I. Siyyam and I. A. Al-Subaihi method [9] (SSM) defined by: 

𝐺 𝑡 = 1 + 2𝑡 + 4𝑡2 + 𝑡3 ,   𝑡 =
𝑦𝑛

𝑓(𝑥𝑛 )
 , 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛 )

𝑓′(𝑥𝑛 )
 , 

𝑥𝑛+1 = 𝑦𝑛 −
2𝑓 𝑥𝑛  𝐺 𝑢𝑛  + 𝑦𝑛−𝑥𝑛  𝑓

′  𝑥𝑛  [1+𝐺 𝑢𝑛  ]

2𝑓 ′  𝑥𝑛  
 . 

All numerical calculations were performed using MATLAB R2018a software package of 1000-number floating 

point arithmetic. The following discontinuation criteria for computer programs are used in the calculations: 
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 𝑥𝑛 − 𝑥𝑛−1 < 𝜀     𝑎𝑛𝑑      𝑓(𝑥𝑛 ) < 𝜀. 

When the stopping criterion are met 𝑥𝑛  is taken over the calculated exact root 𝛼. For numerical illustrations, 𝜀 is 

taken to be 𝜀 = 10−30. As a convergence criterion, the distance of two successive approximations 𝑚 =  𝑥𝑛 − 𝑥𝑛−1  
is shown in following Table. The number of iterations of the root approximation (IT) is also shown in the Table. 
Referring to [10], the arithmetic order of convergence (COC) is given by 

𝐶𝑂𝐶 =
𝑙𝑛 (𝑥𝑛 − 𝛼) (𝑥𝑛−1 − 𝛼)  

𝑙𝑛 (𝑥𝑛−1 − 𝛼) (𝑥𝑛−2 − 𝛼)  
 

We get, 

 

Methods IT  𝑓𝑛 (𝑥)   𝑥𝑛 − 𝑥𝑛−1  𝐶𝑂𝐶 

Example 𝑓1 𝑥 = 3𝑥 + sin 𝑥 − exp(𝑥) 

AM 3 3.78688e-101 4.91489e-34 3 

KM NC 

TM NC 

SSM 4 1.88768e-250 4.12256e-63 4 

LM11 4 1.61418e-267 2.48142e-67 3.69249 

LM12 4 4.68619e-242 4.92598e-61 4 

LM21 NC 

LM22 NC 

Example 𝑓2 𝑥 = cos 𝑥 − 𝑥 exp(𝑥) 

AM 4 6.27261e-148 6.65019e-50 3 

KM 4 1.83126e-431 1.41233e-108 4 

TM 3 6.40732e-122 4.99293e-31 4 

SSM 4 3.40014e-414 2.6141e-104 4 

LM11 4 6.67121e-439 2.05929e-110 4 

LM12 4 3.7127e-404 7.90383e-102 4 

LM21 4 1.34614e-416 6.66179e-105 4 

LM22 4 1.35731e-418 2.14695e-105 4 

Example 𝑓3 𝑥 = 3𝑥 + cos 𝑥 −1 

AM 5 3.32987e-256 1.58685e-85 3 

KM 4 1.50828e-229 1.37935e-57 4 

TM NC 

SSM 4 8.66945e-211 6.10278e-53 4 

LM11 4 4.75062e-234 1.08152e-58 4 

LM12 4 4.44857e-200 2.73194e-50 4 

LM21 4 1.45715e-213 1.25346e-53 4 

LM22 4 8.4001e-213 1.97192e-53 4 

Example 𝑓4 𝑥 = 𝑙𝑛𝑥 +  𝑥 − 5 

AM 4 2.63012e-130 7.92492e-43 3 

KM 4 1.16536e-401 7.94308e-100 4 

TM 4 3.46512e-426 6.87106e-106 4 

SSM 4 4.78943e-373 9.34162e-93 4 

LM11 4 5.24948e-417 1.30553e-103 4 

LM12 4 2.81124e-359 2.35818e-89 4 

LM21 4 3.2836e-245 1.34159e-61 4 

LM22 4 2.54369e-245 1.27301e-61 4 

Example 𝑓5 𝑥 = cos 𝑥 − 𝑥 
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AM 4 7.14748e-99 4.44112e-33 3 

KM 4 1.17685e-256 1.96559e-64 3.906 

TM 4 1.43971e-285 1.35423e-71 3.37438 

SSM 4 3.73236e-243 4.33318e-61 4 

LM11 4 2.54724e-260 2.45756e-65 3.83197 

LM12 4 1.12657e-234 5.44263e-59 4 

LM21 4 5.04373e-248 1.00698e-62 4 

LM22 4 3.78596e-252 9.52131e-64 3.99972 

Example 𝑓6 𝑥 = 𝑠𝑖𝑛2 𝑥 − 𝑥2 + 1 

AM 4 1.16326e-93 9.13857e-32 3 

KM NC 

TM NC 

SSM 4 3.9355e-246 2.94896e-62 4 

LM11 NC 

LM12 4 1.0214e-237 3.51425e-60 4 

LM21 4 2.47151e-376 4.32813e-94 4 

LM22 4 6.58525e-375 9.58128e-94 4 

Example 𝑓7 𝑥 = 𝑥2 − 𝑒𝑥 − 3𝑥 +2 

AM 4 6.43344e-139 2.69133e-46 3 

KM 4 3.6704e-369 2.40901e-92 4 

TM 4 1.01902e-360 2.77977e-90 4 

SSM 4 4.33819e-378 1.62172e-94 4 

LM11 4 6.6594e-367 8.55363e-92 4 

LM12 4 1.59989e-390 1.60404e-97 4 

LM21 4 1.24752e-419 1.27923e-104 4 

LM22 4 4.09056e-411 1.38317e-102 4 

Example 𝑓8 𝑥 =  𝑥 − cos(𝑥) 

AM 4 1.43847e-145 1.92217e-48 3 

KM 4 2.85e-397 2.95764e-99 4 

TM 4 1.13654e-384 3.35802e-96 4 

SSM 4 9.0189e-429 8.34616e-107 4 

LM11 4 2.11355e-393 2.54628e-98 4 

LM12 4 3.68971e-406 1.80912e-101 4 

LM21 4 2.24135e-365 6.02801e-91 4 

LM22 4 2.63833e-364 1.10294e-90 4 

Example 𝑓9 𝑥 = 2𝑥 − ln 𝑥 − 7 

AM 4 6.85985e-135 1.69968e-44 3 

KM 4 4.71979e-359 2.17106e-89 4 

TM 4 6.29542e-351 2.17611e-87 4 

SSM 4 8.28065e-367 2.67711e-91 4 

LM11 4 5.44735e-357 6.97982e-89 4 

LM12 4 6.37494e-375 2.7081e-93 4 

LM21 3 7.3799e-162 8.81847e-41 4 

LM22 4 1.84337e-308 9.96293e-78 4 

Example 𝑓10 𝑥 = exp 𝑥 − 5𝑥 

AM 4 6.01609e-226 1.74441e-75 3 

KM 3 6.47341e-164 2.85633e-41 4 
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TM 3 1.17001e-168 2.12293e-42 4 

SSM 3 1.69273e-161 1.0745e-40 4 

LM11 3 7.3799e-162 8.81847e-41 4 

LM12 3 7.00429e-160 2.60642e-40 4 

LM21 3 6.74858e-165 1.66725e-41 4 

LM22 3 3.04575e-162 7.14177e-41 4 

5 Conclusion 

In this work new optimal fourth order algorithms for solving nonlinear equations have been proposed. The given 

table shows the best performance of the new methods in terms of number of iterations, and order of convergence as 

compared to other well-known existing methods. We conclude that the given methods are compatible with the 

existing iterative methods. 
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