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Abstract

In this paper, we define and investigate the generalized John sequences and we deal with, in
detail, two special cases, namely, John and John-Lucas sequences. We present Binet’s formu-
las, generating functions, Simson formulas, and the summation formulas for these sequences.
Moreover, we give some identities and matrices related with these sequences. Furthermore, we
show that there are close relations between John and John-Lucas numbers and Pell, Pell-Lucas

numbers.
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1. Introduction

Pell sequence {P,},>¢o (OEIS: A000129, [11]) and Pell-Lucas sequence {Q,},>0 (OEIS:
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A002203, [11]) are defined by the second-order recurrence relations
P,=2P, 1+ P,  Py=0,P =1 (1.1)
and
Qn = 2Qn—1 + Qn—Qa QO =2, Ql =2. (12)
The sequences {P,},>0 and {Q,},>0 can be extended to negative subscripts by defining
P_,,=-2P (n 1)+ P_(n_9

and
Q—n = 72@—(n—1) + Q—(n—Q)

for n =1,2,3,... respectively. Therefore, recurrences (1.1) and (1.2) hold for all integer n.

Pell sequence has been studied by many authors and more detail can be found in the
extensive literature dedicated to these sequences, see for example, [1,2,3,4,5,6,9,10]. For higher
order Pell sequences, see [7,8,12,13,14,15].

Now, we define two sequences related to Pell and Pell-Lucas numbers. John and John-

Lucas numbers are defined as
Jp=2Jp 1+ Jp_o+1, with Jy=0,J, =1, n>2,

and

Hn = 2Hn—1 + H,L_Q - 2, with HO = 3, H1 = 37 n Z 2,
respectively. The first few values of John and John-Lucas numbers are
0,1,3,8,20,49,119, 288,696, 1681, 4059, . . .

and

3,3,7, 15, 35, 83,199, 479, 1155, 2787, 6727, .. .

respectively. The sequences {J,} and {H,} satisfy the following third order linear recurences:

In 3Jn—1 _Jn72_Jn737 JO:07 J1 :]-7J2 :33

H, = 3H,_ *Hn—Q*Hn—Sy Hy :37H1 :3;H2 =T.

There are close relations between John and John-Lucas and Pell, Pell-Lucas numbers. For

example, they satisfy the following interrelations:

1
Jn - i(Pn+2*Pn+1*1)7
H, = Qn + 17
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and

1
Jn = Z(Qnﬂ*?),

H, = 2P, —2P,+1.

The purpose of this article is to generalize and investigate these interesting sequence of num-
bers (i.e., John, John-Lucas numbers). First, we recall some properties of generalized Tri-
bonacci numbers.

The generalized (r,s,t) sequence (or generalized Tribonacci sequence or generalized 3-step
Fibonacci sequence)

{Wn(WOa Wl; WQa r,s, t)}nZO
(or shortly {W,},>0) is defined as follows:
Wn :T‘Wn,1 +8Wn,2+th,3, W() =a, W1 :b,WQ =cC, TLZ 3 (13)

where Wy, W, W, are arbitrary complex (or real) numbers and r, s,t are real numbers.
This sequence has been studied by many authors, see for example [17]. The sequence

{W,}n>0 can be extended to negative subscripts by defining
s r 1
W_,= _¥W—(n—1) - ;W—(n—Q) + gW—(n—S)

for n = 1,2,3,... when ¢ # 0. Therefore, recurrence (1.3) holds for all integer n. As {W,} is a

third-order recurrence sequence (difference equation), it’s characteristic equation is

23 —ra? —sx—t=0 (1.4)
whose roots are

a = g+A—|—B,

B = g—i—wA—&-wQB,

v o= g—i—sz—i—wB7

where

rs rs t /3 r3 rs t 1/3
St 2.2 + 3 t2 —1 .
A = Apsgy— o st s _Cl+iv3

57 18 "6 21 ¢ g~ exp(2mi/3).

Using these roots and the recurrence relation, Binet’s formula can be given as follows:
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Theorem 1. (Three Distinct Roots Case: « # 8 # ) Binet’s formula of generalized Tribonacci numbers is

pra” P2 p3y"
@ Ba—7) BB - -P (15)
= A1a" + A" + A",

Wn

where

p1=Wo — (B+7)W1+ ByWo, p2 = Wa — (a+9)W1 + ayWo, p3 = Wa — (a + B)W1 + aBW,

and
A, = p1 _ Wy — (B +~v)W1 + ByWy
(= B)(a—7) (= B)(a—1) ’
A, = P2 ~ Wa = (a+ )W + arWy
B-a)(B—7) (B=a)(B=") ’
Ay = D3 ~ Wo—(a+B)W; + 045W0
(y—a)(y=8) (v—a)(y—8)

2 Generalized John Sequence

In this paper, we consider the case r = 3,s = —1,t = —1. A generalized John sequence {W,,},,>0 =

{W,,(Wo, W1, W2)},>0 is defined by the third-order recurrence relations
Wy =3Wpn_1—Wyp_2—Wy_3 (21)

with the initial values Wy = ¢y, W1 = ¢1, Wo = ¢2 not all being zero.

The sequence {W,},>o can be extended to negative subscripts by defining
W_opn=-W_(1) +3W_(n_2) — W_(n_3)

for n =1,2,3,.... Therefore, recurrence (2.1) holds for all integer n
(1.5) can be used to obtain Binet formula of generalized John numbers. Binet formula of
generalized John numbers can be given as

B zia” 228" z3Y"
L Py Py S E B (- Sl oy vy ) 22)

zla” + Zgﬂn z3

4 2
- zla” + Zgﬂn — 223
B 4
where
21 = Wo— (B+7)Wi+ ByWo =Ws — (B8+ 1)W1 + W,
z9 = Wy — (Oé + ’Y)Wl + ayWy = Wy — (Oé + 1)W1 + aWp,
zg = Wa—(a+ )W+ afWy =Wy —2W; — Wy,
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i.e.,

(WQ — (ﬁ + 1)W1 + ﬁW())Ckn + (W2 — (a + 1)W1 + OéWO)ﬁn — 2(W2 —2W; — Wo)

W, = 1 .

Here, o, and v are the roots of the cubic equation

2?3 +r+1=(2-22—-1)(z—1)=0.

Moreover

a = 1+V2,

B 1- ﬁa

v = 1
Note that

at+B+y = 3,

af fay+fy = 1,
045’7 713
i.e
a+p8=2 af=-1, a—=2V2

and

The first few generalized John numbers with positive subscript and negative subscript are

given in the following Table 1.

Table 1. A few generalized John numbers
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n W W_,

0 Wo Wo =Wy

1 W1 W_1=3W1; — Wy — Wy

2 Wy W_o =4Wy — 4W; + Wy

3 Wy =3Wy — Wy — W, W_g = 13W; — 8Wy — 4Ws

4 Wy = 8Wy — 4W7 — 3W, W_y4 =21Wy — 28W7 + 8W,

5 Wy = 20Wsy — 11W; — 8W, W_s =71W71 — 49Wy — 21W5

6 We = 49W, — 28W; — 20W) W_g = 120Wy — 168W7 + 4905

7 Wr = 119W5 — 69W; — 49W) W_7 = 409W; — 288Wy — 120W5

8 Wg = 288Wy — 168W1 — 119W W_g = 697Wy — 984W7 + 288W5

9 Wy = 696W5 — 407W, — 288W, W_g = 2379W; — 1681Wy — 697W
10 Wio = 1681W5 — 984W71 — 696W, W_10 = 4060Wy — 5740W7 + 1681 W,
11 W11 = 4059Wy — 2377TW7 — 1681W, W_11 = 13861W71 — 9800Wy — 4060W5
12 Wis = 9800Wy — 5740W1 — 4059W W_12 = 23661Wy — 33460W7 + 9800W,

13 Wiz = 23660Ws — 13859W71 — 9800W, W _13 = 80783W, — 57121W, — 23661 W5
Now we define two special cases of the sequence {W,}. John sequence {J,},>0 and John-

Lucas sequence {H,},>¢ are defined, respectively, by the third-order recurrence relations

Jn = 3Jn—1 - Jn—2 - Jn—?n JO = 07 Jl = 17 J2 = 3a (23)

H, 3H, 1 — Hy o —H, 3,  Hy=3H =3 Hy=T. (2.4)

The sequences {J,},>0 and {H,},>o can be extended to negative subscripts by defining

Jﬁn = _J—(n—l) + 3J_(n_2) - J—(n—g)

H_,

7H—(n—1) + 3H—(n—2) - H—(n—3)

for n =1,2,3, ... respectively. Therefore, recurrences (2.3)-(2.4) hold for all integer n.
Next, we present the first few values of the John and John-Lucas numbers with positive
and negative subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative

subscripts.
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
J, 0 1 3 8 20 49 119 288 696 1681 4059 9800 23660 57121
Jn, 0 0 -1 1 -4 8 —21 49 —120 288 —697 1681 —4060 9800
H, 3 3 7 15 35 8 199 479 1155 2787 6727 16239 39203 94643
H, 3 -1 7 =13 35 =81 199 477 1155 2785 6727 —16237 39203 —94641
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For all integers n, John and John-Lucas numbers can be expressed using Binet’s formulas

as
n+1 n+1 _ 2
Jn = a * 6 ’
4
Hn = a"+ ﬁn + ]-v

respectively. Note that Binet’s formulas of Pell and Pell-Lucas numbers, respectively, are

an_ﬂn

P, = ——,

a—p

Qu = a"+5",

SO
1

Jn = i(Pn+2 — Pn+1 - 1), (25)
H, = Qu+1. (2.6)

o0
Next, we give the ordinary generating function ) W,z" of the sequence W,,.
n=0

o0
Lemma 2. Suppose that fw, (z) = Y. W,a™ is the ordinary generating function of the generalized John
n=0

sequence {Wy }n>0. Then, > Wya™ is given by

n=0

f: - gn — Wot (Wi = 3Wo)a + (Wa — 3W, + Wo)a?
vt L 1 -3z 422 +23 '

Proof. Take r =3,s = —1,t = —1 in Soykan [17, Lemma 1.1]. O

The previous lemma gives the following results as particular examples.

Corollary 3. Generated functions of John and John-Lucas numbers are

oo

T
Jnn = )
; v 1—3z+ 22+ 23
- 3 — 6z + 22
ZH"‘Tn = x+2$ 30
= 1—-3zx+z°+=x

respectively.

3 Simson Formulas
There is a well-known Simson Identity (formula) for Pell sequence {F),}, namely,

Fn+1F7z—1 - F72L = (71)”‘
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which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula)

as well. This can be written in the form

Fn+1 Fn

The following theorem gives generalization of this result to the generalized John sequence

{Wn}nzO-
Theorem 4 (Simson Formula of Generalized John Numbers). For all integers n, we have
Wn+2 Wn+1 Wn
Wipr Wn  Waoy | = (=D"(Wa = 2W1 — Wo)(=W35 — 2W7 + W5 + AW Wa — 2WWa).
Wn anl Wn72

Proof. Take r =3,s = —1,t{ = —1 in Soykan [16, Theorem 2.2]. [

The previous theorem gives the following results as particular examples.
Corollary 5. For all integers n, Simson formula of John and John-Lucas numbers are given as

Jnvz Jnt1r I
i1 Jn Jner | = (DT
o Jn—1 Jn—2
Hyyo Hpp1  Hy
Hny1  H, H,, | = 32x(-1)"
H, H,1 H, -

respectively.

4 Some Identities

In this section, we obtain some identities of John and John-Lucas numbers. First, we can give

a few basic relations between {W,} and {J,}.

Lemma 6. The following equalities are true:

(a) W, = (13Wy — 8Wy — 4Ws) Jpta + (28Wo — 43W5 + 13Wa)Jyq3 + (28W71 — 21Wo — 8Wa)J,12.
(b) W,, = (4Wo — AW7 + Wa)Jpys + (16Wy — 13Wo — 4Wa)Jyo + (8Wy — 13W1 4+ 4Wa) T 4.

(c) W, = (BW1 — Wy — Wa)dpio + (AWo — OWy + 3Wa)Jpy1 + (AW — AWy — W) J,,.

(d) Wy =Wodpsr + (Wi = 3Wo)Jp + (Wo — 3W1 + Wa)Jp_1.
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(e) W, =Wid, + (W2 — 3W1)Jn,1 — Wodp—sa.

(£) (Wo +2W1 — W) (W2 — 2W2 — W2 — 2Wo Wy + AW, Wa) J, = —(W2 + W2 + WoWy — 3Wy W)Wy ig +
(AW2 4+ 3W2 +3Wo Wy — WoWa — OW, Wo )Wy, 45 — (W2 + W2+ W2 +2Wo Wy — 3WoWa — 2W Wa) Wi 4o

(g) (WO + 2W; — WQ)(WO2 — 2W12 — W22 — 2WoWo + 4W1W2)Jn = (VVI2 - WQWQ)W”_H), — (W02 + WoWy —
SWoWs + WiWa)Wyio + (W2 + W3 + WoWy — 3WiWo) W, 4.

() (Wo+2W, — Wa) (W2 — 2W2 — W2 — 2WoWa + AW, Wa)Jy = —(W2 — 3W2 + WoWy + Wy Wa) Wiy +
(W3 + WoWy + WoWs — 3W1 W)W i1 + (=WE + WoWa)W,.

(1) (Wo+2W1 — Wo) (W —2WE — W3 — 2WWo +4W1Wa)J,, = —(3WE — IWE — W3 + 2W Wy — WoWa +
6W1W2)Wn+1 + (Wg — 4W12 + WoWi + WoWs + W1W2)Wn + (W02 — 3W12 + WoWy + W1W2)Wn_1.

(G) Wo+2W, —Wo)(WE —2W2 —W3 —2WoWo +4W Wa)J,, = (—8WZ+23W32 +3W2 — 5Wo W1 +4W Wy —
LTWA W)W, + (AWE — 12W32 — W2 + 3Wo W1 — WoWa + TW i Wo)W,,_1 + (3WE —9OWE — W3+ 2W W, —
WoWs + 6W,Wo)W,, _s.

Proof. Note that all the identities hold for all integers n. We prove (a). To show (a), writing
Wn:ax Jn+4+b>< Jn+3+CX Jn+2

and solving the system of equations

Wo = axJyg+bxJs+cxJy
Wi = axJs+bxJyg+cxJs
We = axJg+bxJs+cxJy

we find that a = 13W; — 8Wy — 4Ws, b = 28Wy — 43W; + 13Ws5, ¢ = 28W; — 21Wy — 8Ws5. The other
equalities can be proved similarly. [J
Note that all the identities in the above Lemma can be proved by induction as well.

Next, we present a few basic relations between {W,,} and {H,}.
Lemma 7. The following equalities are true:
(a) 8W, = (5Wy — 1AWy + 5Wa)Hyys — 2(10Wo — 21W; + TWa)H s + (19Wo — 20W; + 5Wa) Hy, .
(b) 8W,, = —(5Wy — Wa)Hypqs + 2(TWo — 3W1)Hypo — (5Wo — 14W5 + 5Wo) H,p 1.
(c) 8W, = —(Wo +6W —3Wa)Hp o + 2(TW1 — 3Wa)Hyp 1 + (5Wo — Wa)H,,.

(d) 8W, = —(3Wy + AW, — 3W3)Hys1 + 2(3Wo + 3Wy — 2Wa)H,, + (Wo + 6Wy — 3W3)H,,_ 1.
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(e) 8W, = —(3Wy + 6Wy — 5Wa) H,, + 2(2Wo + 5Wy — 3Wa)Hy,_q + (3Wp + 4Wy — 3Wa) H,, _s.

(£) (Wo+2W, — W) (W2 —2W2 — W2 — 2WoWa + AW, Wa)H,, = (W2 +10W2 + TWZ + 8WoW; — 6WoWs —
20W; WQ)Wn+4 — 2(3W02 + 14W12 + 11W22 + 14WoWy — 12WoWo — 30W1W2)Wn+3 + (7W02 + 14W12 +
13W22 + 20WoWy — 22WoWy — 32W1W2)Wn+2.

(8) Wo +2W1 — Wo)(W@ — 2WE — W3E — 2WoWa + AW 1 Wo)H,, = —(3W§ — 2WE + W3 + 4W,W; —
6WoW2)Wis + 2(3WE + 2WE + 3W3 + 6WoWy — 8WoWa — 6W1 Wa)W,, 0 — (WG + 10WE + TW3 +
SWoW, — 6WoWo — 2001 Wo) W, 1.

(h) (Wo + 2Wi — Wa)(W2 — 2W2 — W2 — 2WoWs + AW, Wa)H, — —(3W2 — 10W2 — 3WZ — 2WoWs +
12W1W2)Wn+2 + 2(W02 — 6W12 — 3W22 — 2WoW1 + 10W1W2)Wn+1 + (3W02 — 2W12 + W22 + AWoW7 —
6WoWa)W,n.

() (Wo + 2Wy — Wa) (W2 — 2W2 — W2 — 2WoWa + AW\ Wa)H, = (—TWZ + 18W2 + 3W2 — 4W, W, +
6WoWs — 16W1W2)Wn+1 + 2(3W02 — 6W12 — W22 + 2WoWy — AW Ws + 6W1W2)Wn + (3W02 — 10W12 —
3W22 —2WoWs + 12W1W2)Wn_1.

(j) (Wo + 2W, — VVQ)(VVO2 — 2W12 — W22 — 2WoWy + 4W1W2)Hn = (*15W02 + 42W12 + 7W22 — 8WoW7 +
LW, W — 36V, Wa) W, + 2(5W2 — 14W2 — 3W2 + 2WoW, — 4WoWs + 1AW, Wa)Wo_1 + (TW2 —
18W12 - 3W22 + 4AWyWy — 6WyWs + 16W1W2)Wn,2.

Now, we give a few basic relations between {J,} and {H,}.

Lemma 8. The following equalities are true

8Jn = Hpia—5Hpyo,
8Jn = 3H,13—06H,12— Hyq1,
81, = 3H,io—AH,s1 —3H,,
81, = 5Hys—G6H, —3H, 1,
8J, = OH, —8H, 1 —5H, 5,
and
Hy, = —13Jppa+46J505 — 35Jns0,
Hy = TJups—220nsa+ 137011,
H, = —Juto2+6Jpy1 —7Jy,
Hy = 3Jup1—6J0+ Jo1,
H, = 3J,—2J,_1—3J,_o.
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5 Relations Betwen Special Numbers

In this section, we present identities on John, John-Lucas numbers and Pell, Pell-Lucas num-

bers. We know that

1
Jn - g(Pn+2_Pn+1_]-)v
Hn = Qn + 1.

We also note that from Lemma 8, we have

8J, = B3H,io—4H, 1 —3H,,

H, = - n+2 6Jn+1 — 7.
Using the above identities we see that

o= (@) (1)

H, = 2P,y —2P,+1.

Using the above identities (and Lemma 6), we obtain the following Binet’s formula of gener-

alized John numbers in the following forms:

W, = (3W1 — Wy — WQ)Jn+2 + (4W0 —9W; + 3W2)Jn+1 + (4W1 —4Wy — WQ)Jn
1
= Z((Wl — Wo)Qn+1 + (W2 —3Wy + 2WO)Qn —2Wo +4W7 + QWO)
1
= 5((W2 —2Wy + Wo)Pn+1 — (WQ —4Wy + SWQ)Pn — Wo +2W7 + Wo)

6 On the Recurrence Properties of Generalized John Sequence
Taking r = 3,s = —1,t = —1 in Soykan [18, Theorem 2], we obtain the following Proposition.

Proposition 9. For n € Z, generalized John numbers (the case r = 3,8 = —1,t = —1) have the following
identity:
1

From the above Proposition and Corollary 6 in [18], we have the following corollary which
gives the connection between the special cases of generalized John sequence at the positive
index and the negative index: for John and John-Lucas numbers: take W, = J, with Jy, =

0,J;1 =1,J, =3 and take W,, = H,, with Hy = 3, H; = 3, H, = 7, respectively.

Corollary 10. For n € Z, we have the following recurrence relations:
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(a) John sequence:

(b) John-Lucas sequence:

1
H_, = H? — Hs,,).
2(_1)n( n 2 )

By using the identity H, = —J,2 + 6J,+1 — 7J,, (and Proposition 9 or Corollary 10), we get
Jon = (=1)""(Jon + Jndnto — 6JnJns1 + 7J7).
Note also that since J,, = %(Pn+2 —~P,y1—1)and P_, = (—-1)""1P,, we get
J_p = %((—1)”*1(&_1 + P,_3) —1)
and since H, = @, + 1 and Q_,, = (—1)"Q,, we obtain

H_,=(-1)"Q,+1.

7 Sums

The following Corollary gives sum formulas of Pell and Pell-Lucas numbers.

Corollary 11. Forn > 0, Pell and Pell-Lucas numbers have the following properties:

1.
(a) ZZ:O Pk = %(3Pn + Pn—l — ].)
(b) ZZ:O Poy = i(5p2n — P9 — 2)
(€) Yp_oPori1 = 3(5Pont1 — Pan—1).
2.

(a) YhooQr = 3(3Qn + Qu1).
(b) ZZ:O Q?k: = %(SQQn - Q2n72 + 4)
(€) Yp_o Qa1 = F(5Q2n41 — Q2n—1 — 4).

Proof. It is given in Soykan [19, Corollary 4.9]. O

The following Corollary presents sum formulas of John and John-Lucas numbers.

Corollary 12. Forn > 0, John and John-Lucas numbers have the following properties:
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(@) Yp_oJk = 5(Pay2 —n—2).
(b) ZZ:O Jop = i(3p2n+1 + Py, — 2n — 3).

(C) Z::O J2k+1 = i(?PQn_’_l + 3P, —2n — 3)

(a) Yoo Hr = 3(Quar + Qn +2(n +1)).
(b) >r_oHor = 5(Q2n41+2(n +2)).

(€) Do Horr = %(Q2n+2 + 2n).

Proof. The proof follows from Corollary 11 and the identities (2.5) and (2.6), i.e.,

1
Jn - i(Pn+2_Pn+l_1)v
H, = @Q,+1. O

8 Matrices Related With Generalized John numbers

Matrix formulation of W,, can be given as

n

WYL-‘,—Q 3 - 1 - 1 WQ
Wpyr (=] 1 0 0 Wy |- (8.1)
1% 0 1 0 Wo

We define the square matrix A of order 3 as:
A =

such that det A = —1. From (2.1) we have
Wn+2 3 n+1
Wn-‘rl = 1 (8.2)
Wy, 0
and from (8.1) (or using (8.2) and induction) we have

Witeo 3
Wn+1 = 1
Wh 0
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If we take W = J in (8.2) we have

Joio 3 -1 -1 Join
Jea =11 0 o0 7. |- (8.3)
7, 01 0 Jn
‘We also define
Toir  —dn—dn1 =
B, = I —In—1—Jn—2 —Jna
Jn-1 —JIn—2—Jn-3 —Jn—2
and
Wpyr =Wy =Wy Wy
Cn = W, —Wp1—Wyo W,
Wio1 Wi =Wyg =Wy

Theorem 13. For all integers m,n, we have
(a) B, =A"

(b) C1A™ = A"C4

(¢) Chym = CnByy = BpCh.

Proof. Take r =3,s = —1,t = —1 in Soykan [17, Theorem 5.1.]. O

Some properties of matrix A™ can be given as
A" = 3An—l _ An—2 _ An—3

and

and

det(A™) = (—=1)"
for all integer m and n.

Corollary 14. For all integers n, we have the following formulas for John and John-Lucas numbers.

(a) John Numbers.

n

3 -1 -1 Jn—i—l *Jn - Jn—l 7Jn
A" = 1 0 0 = Jn —dJn—-1 — Jn72 “Jn-—-1
0 1 0 Jnfl —Jn-2 Jn73 —Jn-2
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(b) John-Lucas Numbers.

3Hn+3 - 4Hn+2 - 3Hn+1 —6Hn+2 + 1O}In+1 + 4Hn _3Hn+2 + 4Hn+1 + 3Hn
Av =1 3H,,,—4H,,, —3H, —6H,. 1 +10H, +4H,_ 1 —3H, 1 +4H, +3H,_,
3H,.1 —4H, —3H,_, —6H, +10H, 1 +4H,_ 5 —3H, +4H,_1 + 3H,_»

Proof.
(a) It is given in Theorem 13 (a).
(b) Note that, from Lemma 8, we have
8Jp =3Hp o —4H,, 41 — 3H,,.
Using the last equation and (a), we get required result. [

Using the above last Corollary and the identities (2.5) and (2.6), i.e.,

1
Jn — §(Pn+2_Pn+1_1)7
H, = Qn+17

we obtain the following identities for Pell and Pell-Lucas numbers.

Corollary 15. For all integers n, we have the following formulas for Pell and Pell-Lucas numbers.

(a) Pell Numbers.

(Pn+3_Pn+2_1) %(Pn_Pn+2+2) %(Pn+1_Pn+2+1>
(Pn—i-Z - Pn—i—l - 1) % (Pn—l - P7L+1 + 2) % (Pn - P7L+1 + 1)
1 (Poy1— P, —1) 1 (Pyoa— P, +2) 1 (Pyo1— P+ 1)

NI—= NI—=

An =

(b) Pell-Lucas Numbers.

QQn-‘rl + Qn -2 _Qn—H - Qn +4 _Qn-i-l +2
An = i Qn+1 -2 *Qn-&-l + Qn + 4 7Qn + 2
Qn - 2 QnJrl - 3Qn + 4 _Qn+1 + 2Qn + 2

Theorem 16. For all integers m,n, we have
Wn+m = W71Jm+1 + (*Wn—l - Wn—Q) Jm - Wn—lt]m—l

Proof. Take r =3,s = —1,t = —1 in Soykan [17, Theorem 5.2.]. O
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By Lemma 6, we know that

(Wo + 2Wy — W) (WG — 2WF — Wi — 2Wo Wy + AW, Wa)J,p,
= —(W§ —3WZ+ WoWyi + WilWa) Wy ia

+(W22 + W0W1 + WOW2 - 3W1W2)Wm+1 + (—VVI2 + WoWg)Wm
so (8.4) can be written in the following form

(Wo + 2Wy — Wo)(WE — 2WE — W3 — 2WoWo + AW Wo) W, 1
= Wu(=(W§ —3W7 + WoWi + WiWo) Wiy s
+(W2 + WoWy + WoWsa — 3WiWo)Wio + (=WE + WoWa)Wni1)
H (—Waor = Wio) (—=(W3 = 3WE + WoW,y
Wi W )Wnio + (W5 + WoWq + WoWa — 3WiWa)Wi1 + (—WF + WoWa)W,,)
W1 (=(WE = 3WE 4+ WoWy + Wi Wa)Wiiq

+(W2 + WoW, + WoWy — 3W, Wa) Wi, + (=W2Z + WoWa) Wy, 1)

Corollary 17. For all integers m,n, we have

Jn—i—m = J7L']m+1 + (_Jn—l - Jn—2) Jm - Jn—l']m—h
Hn+m - HnJm—i-l + (_Hn—l - Hn—?) Jm - Hn—ljm—lv
and
32H,sn = (12Hmss — 16H, o — 12Ho 1) Hy + (—=12Hpsy + 16H,, + 12Hy_1)Hy_y

+(—=12H 42 + 16Hp 1 + 12H,, ) (Hy—1 + Hp—9).

Taking m = n in the last corollary, we obtain the following identities:

J2n - JanJrl - (Jnfl + Jn72) Jn - Jﬁfh
H2n = Han+1 + (_anl - Hn72) Jn - anlt]nfla
32Ho, = (12Hpys — 16H,po — 12Hs1)Hy + (—12Hps1 + 16H, + 12H,—1)Ho-1

+(=12H, 42 + 16Hp, 11 + 12H,, ) (Hp—1 + Hy—2).
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